/* Open Asset Import Library (assimp) ---------------------------------------------------------------------- Copyright (c) 2006-2012, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------- */ #include "AssimpPCH.h" #ifndef ASSIMP_BUILD_NO_EXPORT #ifndef ASSIMP_BUILD_NO_COLLADA_EXPORTER #include "ColladaExporter.h" using namespace Assimp; namespace Assimp { // ------------------------------------------------------------------------------------------------ // Worker function for exporting a scene to Collada. Prototyped and registered in Exporter.cpp void ExportSceneCollada(const char* pFile,IOSystem* pIOSystem, const aiScene* pScene) { // invoke the exporter ColladaExporter iDoTheExportThing( pScene); // we're still here - export successfully completed. Write result to the given IOSYstem boost::scoped_ptr<IOStream> outfile (pIOSystem->Open(pFile,"wt")); // XXX maybe use a small wrapper around IOStream that behaves like std::stringstream in order to avoid the extra copy. outfile->Write( iDoTheExportThing.mOutput.str().c_str(), static_cast<size_t>(iDoTheExportThing.mOutput.tellp()),1); } } // end of namespace Assimp // ------------------------------------------------------------------------------------------------ // Constructor for a specific scene to export ColladaExporter::ColladaExporter( const aiScene* pScene) { // make sure that all formatting happens using the standard, C locale and not the user's current locale mOutput.imbue( std::locale("C") ); mScene = pScene; // set up strings endstr = "\n"; // start writing WriteFile(); } // ------------------------------------------------------------------------------------------------ // Starts writing the contents void ColladaExporter::WriteFile() { // write the DTD mOutput << "<?xml version=\"1.0\"?>" << endstr; // COLLADA element start mOutput << "<COLLADA xmlns=\"http://www.collada.org/2005/11/COLLADASchema\" version=\"1.4.1\">" << endstr; PushTag(); WriteHeader(); WriteMaterials(); WriteGeometryLibrary(); WriteSceneLibrary(); // useless Collada bullshit at the end, just in case we haven't had enough indirections, yet. mOutput << startstr << "<scene>" << endstr; PushTag(); mOutput << startstr << "<instance_visual_scene url=\"#myScene\" />" << endstr; PopTag(); mOutput << startstr << "</scene>" << endstr; PopTag(); mOutput << "</COLLADA>" << endstr; } // ------------------------------------------------------------------------------------------------ // Writes the asset header void ColladaExporter::WriteHeader() { // Dummy stuff. Nobody actually cares for it anyways mOutput << startstr << "<asset>" << endstr; PushTag(); mOutput << startstr << "<contributor>" << endstr; PushTag(); mOutput << startstr << "<author>Someone</author>" << endstr; mOutput << startstr << "<authoring_tool>Assimp Collada Exporter</authoring_tool>" << endstr; PopTag(); mOutput << startstr << "</contributor>" << endstr; mOutput << startstr << "<created>2000-01-01T23:59:59</created>" << endstr; mOutput << startstr << "<modified>2000-01-01T23:59:59</modified>" << endstr; mOutput << startstr << "<unit name=\"centimeter\" meter=\"0.01\" />" << endstr; mOutput << startstr << "<up_axis>Y_UP</up_axis>" << endstr; PopTag(); mOutput << startstr << "</asset>" << endstr; } // ------------------------------------------------------------------------------------------------ // Reads a single surface entry from the given material keys void ColladaExporter::ReadMaterialSurface( Surface& poSurface, const aiMaterial* pSrcMat, aiTextureType pTexture, const char* pKey, size_t pType, size_t pIndex) { if( pSrcMat->GetTextureCount( pTexture) > 0 ) { aiString texfile; unsigned int uvChannel = 0; pSrcMat->GetTexture( pTexture, 0, &texfile, NULL, &uvChannel); poSurface.texture = texfile.C_Str(); poSurface.channel = uvChannel; } else { if( pKey ) pSrcMat->Get( pKey, pType, pIndex, poSurface.color); } } // ------------------------------------------------------------------------------------------------ // Writes an image entry for the given surface void ColladaExporter::WriteImageEntry( const Surface& pSurface, const std::string& pNameAdd) { if( !pSurface.texture.empty() ) { mOutput << startstr << "<image id=\"" << pNameAdd << "\">" << endstr; PushTag(); mOutput << startstr << "<init_from>"; for( std::string::const_iterator it = pSurface.texture.begin(); it != pSurface.texture.end(); ++it ) { if( isalnum( *it) || *it == '_' || *it == '.' || *it == '/' || *it == '\\' ) mOutput << *it; else mOutput << '%' << std::hex << size_t( (unsigned char) *it) << std::dec; } mOutput << "</init_from>" << endstr; PopTag(); mOutput << startstr << "</image>" << endstr; } } // ------------------------------------------------------------------------------------------------ // Writes a color-or-texture entry into an effect definition void ColladaExporter::WriteTextureColorEntry( const Surface& pSurface, const std::string& pTypeName, const std::string& pImageName) { mOutput << startstr << "<" << pTypeName << ">" << endstr; PushTag(); if( pSurface.texture.empty() ) { mOutput << startstr << "<color sid=\"" << pTypeName << "\">" << pSurface.color.r << " " << pSurface.color.g << " " << pSurface.color.b << " " << pSurface.color.a << "</color>" << endstr; } else { mOutput << startstr << "<texture texture=\"" << pImageName << "\" texcoord=\"CHANNEL" << pSurface.channel << "\" />" << endstr; } PopTag(); mOutput << startstr << "</" << pTypeName << ">" << endstr; } // ------------------------------------------------------------------------------------------------ // Writes the two parameters necessary for referencing a texture in an effect entry void ColladaExporter::WriteTextureParamEntry( const Surface& pSurface, const std::string& pTypeName, const std::string& pMatName) { // if surface is a texture, write out the sampler and the surface parameters necessary to reference the texture if( !pSurface.texture.empty() ) { mOutput << startstr << "<newparam sid=\"" << pMatName << "-" << pTypeName << "-surface\">" << endstr; PushTag(); mOutput << startstr << "<surface type=\"2D\">" << endstr; PushTag(); mOutput << startstr << "<init_from>" << pMatName << "-" << pTypeName << "-image</init_from>" << endstr; PopTag(); mOutput << startstr << "</surface>" << endstr; PopTag(); mOutput << startstr << "</newparam>" << endstr; mOutput << startstr << "<newparam sid=\"" << pMatName << "-" << pTypeName << "-sampler\">" << endstr; PushTag(); mOutput << startstr << "<sampler2D>" << endstr; PushTag(); mOutput << startstr << "<source>" << pMatName << "-" << pTypeName << "-surface</source>" << endstr; PopTag(); mOutput << startstr << "</sampler2D>" << endstr; PopTag(); mOutput << startstr << "</newparam>" << endstr; } } // ------------------------------------------------------------------------------------------------ // Writes the material setup void ColladaExporter::WriteMaterials() { materials.resize( mScene->mNumMaterials); /// collect all materials from the scene size_t numTextures = 0; for( size_t a = 0; a < mScene->mNumMaterials; ++a ) { const aiMaterial* mat = mScene->mMaterials[a]; aiString name; if( mat->Get( AI_MATKEY_NAME, name) != aiReturn_SUCCESS ) name = "mat"; materials[a].name = std::string( "m") + boost::lexical_cast<std::string> (a) + name.C_Str(); for( std::string::iterator it = materials[a].name.begin(); it != materials[a].name.end(); ++it ) if( !isalnum( *it) ) *it = '_'; ReadMaterialSurface( materials[a].ambient, mat, aiTextureType_AMBIENT, AI_MATKEY_COLOR_AMBIENT); if( !materials[a].ambient.texture.empty() ) numTextures++; ReadMaterialSurface( materials[a].diffuse, mat, aiTextureType_DIFFUSE, AI_MATKEY_COLOR_DIFFUSE); if( !materials[a].diffuse.texture.empty() ) numTextures++; ReadMaterialSurface( materials[a].specular, mat, aiTextureType_SPECULAR, AI_MATKEY_COLOR_SPECULAR); if( !materials[a].specular.texture.empty() ) numTextures++; ReadMaterialSurface( materials[a].emissive, mat, aiTextureType_EMISSIVE, AI_MATKEY_COLOR_EMISSIVE); if( !materials[a].emissive.texture.empty() ) numTextures++; ReadMaterialSurface( materials[a].reflective, mat, aiTextureType_REFLECTION, AI_MATKEY_COLOR_REFLECTIVE); if( !materials[a].reflective.texture.empty() ) numTextures++; ReadMaterialSurface( materials[a].normal, mat, aiTextureType_NORMALS, NULL, 0, 0); if( !materials[a].normal.texture.empty() ) numTextures++; mat->Get( AI_MATKEY_SHININESS, materials[a].shininess); } // output textures if present if( numTextures > 0 ) { mOutput << startstr << "<library_images>" << endstr; PushTag(); for( std::vector<Material>::const_iterator it = materials.begin(); it != materials.end(); ++it ) { const Material& mat = *it; WriteImageEntry( mat.ambient, mat.name + "-ambient-image"); WriteImageEntry( mat.diffuse, mat.name + "-diffuse-image"); WriteImageEntry( mat.specular, mat.name + "-specular-image"); WriteImageEntry( mat.emissive, mat.name + "-emissive-image"); WriteImageEntry( mat.reflective, mat.name + "-reflective-image"); WriteImageEntry( mat.normal, mat.name + "-normal-image"); } PopTag(); mOutput << startstr << "</library_images>" << endstr; } // output effects - those are the actual carriers of information if( !materials.empty() ) { mOutput << startstr << "<library_effects>" << endstr; PushTag(); for( std::vector<Material>::const_iterator it = materials.begin(); it != materials.end(); ++it ) { const Material& mat = *it; // this is so ridiculous it must be right mOutput << startstr << "<effect id=\"" << mat.name << "-fx\" name=\"" << mat.name << "\">" << endstr; PushTag(); mOutput << startstr << "<profile_COMMON>" << endstr; PushTag(); // write sampler- and surface params for the texture entries WriteTextureParamEntry( mat.emissive, "emissive", mat.name); WriteTextureParamEntry( mat.ambient, "ambient", mat.name); WriteTextureParamEntry( mat.diffuse, "diffuse", mat.name); WriteTextureParamEntry( mat.specular, "specular", mat.name); WriteTextureParamEntry( mat.reflective, "reflective", mat.name); mOutput << startstr << "<technique sid=\"standard\">" << endstr; PushTag(); mOutput << startstr << "<phong>" << endstr; PushTag(); WriteTextureColorEntry( mat.emissive, "emission", mat.name + "-emissive-sampler"); WriteTextureColorEntry( mat.ambient, "ambient", mat.name + "-ambient-sampler"); WriteTextureColorEntry( mat.diffuse, "diffuse", mat.name + "-diffuse-sampler"); WriteTextureColorEntry( mat.specular, "specular", mat.name + "-specular-sampler"); mOutput << startstr << "<shininess>" << endstr; PushTag(); mOutput << startstr << "<float sid=\"shininess\">" << mat.shininess << "</float>" << endstr; PopTag(); mOutput << startstr << "</shininess>" << endstr; WriteTextureColorEntry( mat.reflective, "reflective", mat.name + "-reflective-sampler"); // deactivated because the Collada spec PHONG model does not allow other textures. // if( !mat.normal.texture.empty() ) // WriteTextureColorEntry( mat.normal, "bump", mat.name + "-normal-sampler"); PopTag(); mOutput << startstr << "</phong>" << endstr; PopTag(); mOutput << startstr << "</technique>" << endstr; PopTag(); mOutput << startstr << "</profile_COMMON>" << endstr; PopTag(); mOutput << startstr << "</effect>" << endstr; } PopTag(); mOutput << startstr << "</library_effects>" << endstr; // write materials - they're just effect references mOutput << startstr << "<library_materials>" << endstr; PushTag(); for( std::vector<Material>::const_iterator it = materials.begin(); it != materials.end(); ++it ) { const Material& mat = *it; mOutput << startstr << "<material id=\"" << mat.name << "\" name=\"" << mat.name << "\">" << endstr; PushTag(); mOutput << startstr << "<instance_effect url=\"#" << mat.name << "-fx\"/>" << endstr; PopTag(); mOutput << startstr << "</material>" << endstr; } PopTag(); mOutput << startstr << "</library_materials>" << endstr; } } // ------------------------------------------------------------------------------------------------ // Writes the geometry library void ColladaExporter::WriteGeometryLibrary() { mOutput << startstr << "<library_geometries>" << endstr; PushTag(); for( size_t a = 0; a < mScene->mNumMeshes; ++a) WriteGeometry( a); PopTag(); mOutput << startstr << "</library_geometries>" << endstr; } // ------------------------------------------------------------------------------------------------ // Writes the given mesh void ColladaExporter::WriteGeometry( size_t pIndex) { const aiMesh* mesh = mScene->mMeshes[pIndex]; std::string idstr = GetMeshId( pIndex); if( mesh->mNumFaces == 0 || mesh->mNumVertices == 0 ) return; // opening tag mOutput << startstr << "<geometry id=\"" << idstr << "\" name=\"" << idstr << "_name\" >" << endstr; PushTag(); mOutput << startstr << "<mesh>" << endstr; PushTag(); // Positions WriteFloatArray( idstr + "-positions", FloatType_Vector, (float*) mesh->mVertices, mesh->mNumVertices); // Normals, if any if( mesh->HasNormals() ) WriteFloatArray( idstr + "-normals", FloatType_Vector, (float*) mesh->mNormals, mesh->mNumVertices); // texture coords for( size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) { if( mesh->HasTextureCoords( a) ) { WriteFloatArray( idstr + "-tex" + boost::lexical_cast<std::string> (a), mesh->mNumUVComponents[a] == 3 ? FloatType_TexCoord3 : FloatType_TexCoord2, (float*) mesh->mTextureCoords[a], mesh->mNumVertices); } } // vertex colors for( size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) { if( mesh->HasVertexColors( a) ) WriteFloatArray( idstr + "-color" + boost::lexical_cast<std::string> (a), FloatType_Color, (float*) mesh->mColors[a], mesh->mNumVertices); } // assemble vertex structure mOutput << startstr << "<vertices id=\"" << idstr << "-vertices" << "\">" << endstr; PushTag(); mOutput << startstr << "<input semantic=\"POSITION\" source=\"#" << idstr << "-positions\" />" << endstr; if( mesh->HasNormals() ) mOutput << startstr << "<input semantic=\"NORMAL\" source=\"#" << idstr << "-normals\" />" << endstr; for( size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a ) { if( mesh->HasTextureCoords( a) ) mOutput << startstr << "<input semantic=\"TEXCOORD\" source=\"#" << idstr << "-tex" << a << "\" " /*<< "set=\"" << a << "\"" */ << " />" << endstr; } for( size_t a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a ) { if( mesh->HasVertexColors( a) ) mOutput << startstr << "<input semantic=\"COLOR\" source=\"#" << idstr << "-color" << a << "\" " /*<< set=\"" << a << "\"" */ << " />" << endstr; } PopTag(); mOutput << startstr << "</vertices>" << endstr; // write face setup mOutput << startstr << "<polylist count=\"" << mesh->mNumFaces << "\" material=\"theresonlyone\">" << endstr; PushTag(); mOutput << startstr << "<input offset=\"0\" semantic=\"VERTEX\" source=\"#" << idstr << "-vertices\" />" << endstr; mOutput << startstr << "<vcount>"; for( size_t a = 0; a < mesh->mNumFaces; ++a ) mOutput << mesh->mFaces[a].mNumIndices << " "; mOutput << "</vcount>" << endstr; mOutput << startstr << "<p>"; for( size_t a = 0; a < mesh->mNumFaces; ++a ) { const aiFace& face = mesh->mFaces[a]; for( size_t b = 0; b < face.mNumIndices; ++b ) mOutput << face.mIndices[b] << " "; } mOutput << "</p>" << endstr; PopTag(); mOutput << startstr << "</polylist>" << endstr; // closing tags PopTag(); mOutput << startstr << "</mesh>" << endstr; PopTag(); mOutput << startstr << "</geometry>" << endstr; } // ------------------------------------------------------------------------------------------------ // Writes a float array of the given type void ColladaExporter::WriteFloatArray( const std::string& pIdString, FloatDataType pType, const float* pData, size_t pElementCount) { size_t floatsPerElement = 0; switch( pType ) { case FloatType_Vector: floatsPerElement = 3; break; case FloatType_TexCoord2: floatsPerElement = 2; break; case FloatType_TexCoord3: floatsPerElement = 3; break; case FloatType_Color: floatsPerElement = 3; break; default: return; } std::string arrayId = pIdString + "-array"; mOutput << startstr << "<source id=\"" << pIdString << "\" name=\"" << pIdString << "\">" << endstr; PushTag(); // source array mOutput << startstr << "<float_array id=\"" << arrayId << "\" count=\"" << pElementCount * floatsPerElement << "\"> "; PushTag(); if( pType == FloatType_TexCoord2 ) { for( size_t a = 0; a < pElementCount; ++a ) { mOutput << pData[a*3+0] << " "; mOutput << pData[a*3+1] << " "; } } else if( pType == FloatType_Color ) { for( size_t a = 0; a < pElementCount; ++a ) { mOutput << pData[a*4+0] << " "; mOutput << pData[a*4+1] << " "; mOutput << pData[a*4+2] << " "; } } else { for( size_t a = 0; a < pElementCount * floatsPerElement; ++a ) mOutput << pData[a] << " "; } mOutput << "</float_array>" << endstr; PopTag(); // the usual Collada bullshit. Let's bloat it even more! mOutput << startstr << "<technique_common>" << endstr; PushTag(); mOutput << startstr << "<accessor count=\"" << pElementCount << "\" offset=\"0\" source=\"#" << arrayId << "\" stride=\"" << floatsPerElement << "\">" << endstr; PushTag(); switch( pType ) { case FloatType_Vector: mOutput << startstr << "<param name=\"X\" type=\"float\" />" << endstr; mOutput << startstr << "<param name=\"Y\" type=\"float\" />" << endstr; mOutput << startstr << "<param name=\"Z\" type=\"float\" />" << endstr; break; case FloatType_TexCoord2: mOutput << startstr << "<param name=\"S\" type=\"float\" />" << endstr; mOutput << startstr << "<param name=\"T\" type=\"float\" />" << endstr; break; case FloatType_TexCoord3: mOutput << startstr << "<param name=\"S\" type=\"float\" />" << endstr; mOutput << startstr << "<param name=\"T\" type=\"float\" />" << endstr; mOutput << startstr << "<param name=\"P\" type=\"float\" />" << endstr; break; case FloatType_Color: mOutput << startstr << "<param name=\"R\" type=\"float\" />" << endstr; mOutput << startstr << "<param name=\"G\" type=\"float\" />" << endstr; mOutput << startstr << "<param name=\"B\" type=\"float\" />" << endstr; break; } PopTag(); mOutput << startstr << "</accessor>" << endstr; PopTag(); mOutput << startstr << "</technique_common>" << endstr; PopTag(); mOutput << startstr << "</source>" << endstr; } // ------------------------------------------------------------------------------------------------ // Writes the scene library void ColladaExporter::WriteSceneLibrary() { mOutput << startstr << "<library_visual_scenes>" << endstr; PushTag(); mOutput << startstr << "<visual_scene id=\"myScene\" name=\"myScene\">" << endstr; PushTag(); // start recursive write at the root node WriteNode( mScene->mRootNode); PopTag(); mOutput << startstr << "</visual_scene>" << endstr; PopTag(); mOutput << startstr << "</library_visual_scenes>" << endstr; } // ------------------------------------------------------------------------------------------------ // Recursively writes the given node void ColladaExporter::WriteNode( const aiNode* pNode) { mOutput << startstr << "<node id=\"" << pNode->mName.data << "\" name=\"" << pNode->mName.data << "\">" << endstr; PushTag(); // write transformation - we can directly put the matrix there // TODO: (thom) decompose into scale - rot - quad to allow adressing it by animations afterwards const aiMatrix4x4& mat = pNode->mTransformation; mOutput << startstr << "<matrix>"; mOutput << mat.a1 << " " << mat.a2 << " " << mat.a3 << " " << mat.a4 << " "; mOutput << mat.b1 << " " << mat.b2 << " " << mat.b3 << " " << mat.b4 << " "; mOutput << mat.c1 << " " << mat.c2 << " " << mat.c3 << " " << mat.c4 << " "; mOutput << mat.d1 << " " << mat.d2 << " " << mat.d3 << " " << mat.d4; mOutput << "</matrix>" << endstr; // instance every geometry for( size_t a = 0; a < pNode->mNumMeshes; ++a ) { const aiMesh* mesh = mScene->mMeshes[pNode->mMeshes[a]]; // do not instanciate mesh if empty. I wonder how this could happen if( mesh->mNumFaces == 0 || mesh->mNumVertices == 0 ) continue; mOutput << startstr << "<instance_geometry url=\"#" << GetMeshId( pNode->mMeshes[a]) << "\">" << endstr; PushTag(); mOutput << startstr << "<bind_material>" << endstr; PushTag(); mOutput << startstr << "<technique_common>" << endstr; PushTag(); mOutput << startstr << "<instance_material symbol=\"theresonlyone\" target=\"#" << materials[mesh->mMaterialIndex].name << "\" />" << endstr; PopTag(); mOutput << startstr << "</technique_common>" << endstr; PopTag(); mOutput << startstr << "</bind_material>" << endstr; PopTag(); mOutput << startstr << "</instance_geometry>" << endstr; } // recurse into subnodes for( size_t a = 0; a < pNode->mNumChildren; ++a ) WriteNode( pNode->mChildren[a]); PopTag(); mOutput << startstr << "</node>" << endstr; } #endif #endif