/* --------------------------------------------------------------------------- Open Asset Import Library (assimp) --------------------------------------------------------------------------- Copyright (c) 2006-2024, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file ASELoader.cpp * @brief Implementation of the ASE importer class */ #ifndef ASSIMP_BUILD_NO_ASE_IMPORTER #ifndef ASSIMP_BUILD_NO_3DS_IMPORTER // internal headers #include "ASELoader.h" #include "Common/TargetAnimation.h" #include #include #include #include #include #include #include #include // utilities #include namespace Assimp { using namespace Assimp::ASE; static constexpr aiImporterDesc desc = { "ASE Importer", "", "", "Similar to 3DS but text-encoded", aiImporterFlags_SupportTextFlavour, 0, 0, 0, 0, "ase ask" }; // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer ASEImporter::ASEImporter() : mParser(), mBuffer(), pcScene(), configRecomputeNormals(), noSkeletonMesh() { // empty } // ------------------------------------------------------------------------------------------------ // Returns whether the class can handle the format of the given file. bool ASEImporter::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool /*checkSig*/) const { static const char *tokens[] = { "*3dsmax_asciiexport" }; return SearchFileHeaderForToken(pIOHandler, pFile, tokens, AI_COUNT_OF(tokens)); } // ------------------------------------------------------------------------------------------------ // Loader meta information const aiImporterDesc *ASEImporter::GetInfo() const { return &desc; } // ------------------------------------------------------------------------------------------------ // Setup configuration options void ASEImporter::SetupProperties(const Importer *pImp) { configRecomputeNormals = (pImp->GetPropertyInteger( AI_CONFIG_IMPORT_ASE_RECONSTRUCT_NORMALS, 1) ? true : false); noSkeletonMesh = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_NO_SKELETON_MESHES, 0) != 0; } // ------------------------------------------------------------------------------------------------ // Imports the given file into the given scene structure. void ASEImporter::InternReadFile(const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler) { std::unique_ptr file(pIOHandler->Open(pFile, "rb")); // Check whether we can read from the file if (file == nullptr) { throw DeadlyImportError("Failed to open ASE file ", pFile, "."); } // Allocate storage and copy the contents of the file to a memory buffer std::vector mBuffer2; TextFileToBuffer(file.get(), mBuffer2); const size_t fileSize = mBuffer2.size(); this->mBuffer = &mBuffer2[0]; this->pcScene = pScene; // ------------------------------------------------------------------ // Guess the file format by looking at the extension // ASC is considered to be the older format 110, // ASE is the actual version 200 (that is currently written by max) // ------------------------------------------------------------------ unsigned int defaultFormat; std::string::size_type s = pFile.length() - 1; switch (pFile.c_str()[s]) { case 'C': case 'c': defaultFormat = AI_ASE_OLD_FILE_FORMAT; break; default: defaultFormat = AI_ASE_NEW_FILE_FORMAT; }; // Construct an ASE parser and parse the file ASE::Parser parser(mBuffer, fileSize, defaultFormat); mParser = &parser; mParser->Parse(); //------------------------------------------------------------------ // Check whether we god at least one mesh. If we did - generate // materials and copy meshes. // ------------------------------------------------------------------ if (!mParser->m_vMeshes.empty()) { // If absolutely no material has been loaded from the file // we need to generate a default material GenerateDefaultMaterial(); // process all meshes bool tookNormals = false; std::vector avOutMeshes; avOutMeshes.reserve(mParser->m_vMeshes.size() * 2); for (std::vector::iterator i = mParser->m_vMeshes.begin(); i != mParser->m_vMeshes.end(); ++i) { if ((*i).bSkip) { continue; } BuildUniqueRepresentation(*i); // Need to generate proper vertex normals if necessary if (GenerateNormals(*i)) { tookNormals = true; } // Convert all meshes to aiMesh objects ConvertMeshes(*i, avOutMeshes); } if (tookNormals) { ASSIMP_LOG_DEBUG("ASE: Taking normals from the file. Use " "the AI_CONFIG_IMPORT_ASE_RECONSTRUCT_NORMALS setting if you " "experience problems"); } // Now build the output mesh list. Remove dummies pScene->mNumMeshes = (unsigned int)avOutMeshes.size(); aiMesh **pp = pScene->mMeshes = new aiMesh *[pScene->mNumMeshes]; for (std::vector::const_iterator i = avOutMeshes.begin(); i != avOutMeshes.end(); ++i) { if (!(*i)->mNumFaces) { continue; } *pp++ = *i; } pScene->mNumMeshes = (unsigned int)(pp - pScene->mMeshes); // Build final material indices (remove submaterials and setup // the final list) BuildMaterialIndices(); } // ------------------------------------------------------------------ // Copy all scene graph nodes - lights, cameras, dummies and meshes // into one huge list. //------------------------------------------------------------------ std::vector nodes; nodes.reserve(mParser->m_vMeshes.size() + mParser->m_vLights.size() + mParser->m_vCameras.size() + mParser->m_vDummies.size()); // Lights for (auto &light : mParser->m_vLights) nodes.push_back(&light); // Cameras for (auto &camera : mParser->m_vCameras) nodes.push_back(&camera); // Meshes for (auto &mesh : mParser->m_vMeshes) nodes.push_back(&mesh); // Dummies for (auto &dummy : mParser->m_vDummies) nodes.push_back(&dummy); // build the final node graph BuildNodes(nodes); // build output animations BuildAnimations(nodes); // build output cameras BuildCameras(); // build output lights BuildLights(); // ------------------------------------------------------------------ // If we have no meshes use the SkeletonMeshBuilder helper class // to build a mesh for the animation skeleton // FIXME: very strange results // ------------------------------------------------------------------ if (!pScene->mNumMeshes) { pScene->mFlags |= AI_SCENE_FLAGS_INCOMPLETE; if (!noSkeletonMesh) { SkeletonMeshBuilder skeleton(pScene); } } } // ------------------------------------------------------------------------------------------------ void ASEImporter::GenerateDefaultMaterial() { ai_assert(nullptr != mParser); bool bHas = false; for (std::vector::iterator i = mParser->m_vMeshes.begin(); i != mParser->m_vMeshes.end(); ++i) { if ((*i).bSkip) continue; if (ASE::Face::DEFAULT_MATINDEX == (*i).iMaterialIndex) { (*i).iMaterialIndex = (unsigned int)mParser->m_vMaterials.size(); bHas = true; } } if (bHas || mParser->m_vMaterials.empty()) { // add a simple material without submaterials to the parser's list mParser->m_vMaterials.emplace_back(AI_DEFAULT_MATERIAL_NAME); ASE::Material &mat = mParser->m_vMaterials.back(); mat.mDiffuse = aiColor3D(0.6f, 0.6f, 0.6f); mat.mSpecular = aiColor3D(1.0f, 1.0f, 1.0f); mat.mAmbient = aiColor3D(0.05f, 0.05f, 0.05f); mat.mShading = Discreet3DS::Gouraud; } } // ------------------------------------------------------------------------------------------------ void ASEImporter::BuildAnimations(const std::vector &nodes) { // check whether we have at least one mesh which has animations std::vector::const_iterator i = nodes.begin(); unsigned int iNum = 0; for (; i != nodes.end(); ++i) { // TODO: Implement Bezier & TCB support if ((*i)->mAnim.mPositionType != ASE::Animation::TRACK) { ASSIMP_LOG_WARN("ASE: Position controller uses Bezier/TCB keys. " "This is not supported."); } if ((*i)->mAnim.mRotationType != ASE::Animation::TRACK) { ASSIMP_LOG_WARN("ASE: Rotation controller uses Bezier/TCB keys. " "This is not supported."); } if ((*i)->mAnim.mScalingType != ASE::Animation::TRACK) { ASSIMP_LOG_WARN("ASE: Position controller uses Bezier/TCB keys. " "This is not supported."); } // We compare against 1 here - firstly one key is not // really an animation and secondly MAX writes dummies // that represent the node transformation. if ((*i)->mAnim.akeyPositions.size() > 1 || (*i)->mAnim.akeyRotations.size() > 1 || (*i)->mAnim.akeyScaling.size() > 1) { ++iNum; } if ((*i)->mTargetAnim.akeyPositions.size() > 1 && is_not_qnan((*i)->mTargetPosition.x)) { ++iNum; } } if (iNum) { // Generate a new animation channel and setup everything for it pcScene->mNumAnimations = 1; pcScene->mAnimations = new aiAnimation *[1]; aiAnimation *pcAnim = pcScene->mAnimations[0] = new aiAnimation(); pcAnim->mNumChannels = iNum; pcAnim->mChannels = new aiNodeAnim *[iNum]; pcAnim->mTicksPerSecond = mParser->iFrameSpeed * mParser->iTicksPerFrame; iNum = 0; // Now iterate through all meshes and collect all data we can find for (i = nodes.begin(); i != nodes.end(); ++i) { ASE::BaseNode *me = *i; if (me->mTargetAnim.akeyPositions.size() > 1 && is_not_qnan(me->mTargetPosition.x)) { // Generate an extra channel for the camera/light target. // BuildNodes() does also generate an extra node, named // .Target. aiNodeAnim *nd = pcAnim->mChannels[iNum++] = new aiNodeAnim(); nd->mNodeName.Set(me->mName + ".Target"); // Allocate the key array and fill it nd->mNumPositionKeys = (unsigned int)me->mTargetAnim.akeyPositions.size(); nd->mPositionKeys = new aiVectorKey[nd->mNumPositionKeys]; ::memcpy(nd->mPositionKeys, &me->mTargetAnim.akeyPositions[0], nd->mNumPositionKeys * sizeof(aiVectorKey)); } if (me->mAnim.akeyPositions.size() > 1 || me->mAnim.akeyRotations.size() > 1 || me->mAnim.akeyScaling.size() > 1) { // Begin a new node animation channel for this node aiNodeAnim *nd = pcAnim->mChannels[iNum++] = new aiNodeAnim(); nd->mNodeName.Set(me->mName); // copy position keys if (me->mAnim.akeyPositions.size() > 1) { // Allocate the key array and fill it nd->mNumPositionKeys = (unsigned int)me->mAnim.akeyPositions.size(); nd->mPositionKeys = new aiVectorKey[nd->mNumPositionKeys]; ::memcpy(nd->mPositionKeys, &me->mAnim.akeyPositions[0], nd->mNumPositionKeys * sizeof(aiVectorKey)); } // copy rotation keys if (me->mAnim.akeyRotations.size() > 1) { // Allocate the key array and fill it nd->mNumRotationKeys = (unsigned int)me->mAnim.akeyRotations.size(); nd->mRotationKeys = new aiQuatKey[nd->mNumRotationKeys]; // -------------------------------------------------------------------- // Rotation keys are offsets to the previous keys. // We have the quaternion representations of all // of them, so we just need to concatenate all // (unit-length) quaternions to get the absolute // rotations. // Rotation keys are ABSOLUTE for older files // -------------------------------------------------------------------- aiQuaternion cur; for (unsigned int a = 0; a < nd->mNumRotationKeys; ++a) { aiQuatKey q = me->mAnim.akeyRotations[a]; if (mParser->iFileFormat > 110) { cur = (a ? cur * q.mValue : q.mValue); q.mValue = cur.Normalize(); } nd->mRotationKeys[a] = q; // need this to get to Assimp quaternion conventions nd->mRotationKeys[a].mValue.w *= -1.f; } } // copy scaling keys if (me->mAnim.akeyScaling.size() > 1) { // Allocate the key array and fill it nd->mNumScalingKeys = (unsigned int)me->mAnim.akeyScaling.size(); nd->mScalingKeys = new aiVectorKey[nd->mNumScalingKeys]; ::memcpy(nd->mScalingKeys, &me->mAnim.akeyScaling[0], nd->mNumScalingKeys * sizeof(aiVectorKey)); } } } } } // ------------------------------------------------------------------------------------------------ // Build output cameras void ASEImporter::BuildCameras() { if (!mParser->m_vCameras.empty()) { pcScene->mNumCameras = (unsigned int)mParser->m_vCameras.size(); pcScene->mCameras = new aiCamera *[pcScene->mNumCameras]; for (unsigned int i = 0; i < pcScene->mNumCameras; ++i) { aiCamera *out = pcScene->mCameras[i] = new aiCamera(); ASE::Camera &in = mParser->m_vCameras[i]; // copy members out->mClipPlaneFar = in.mFar; out->mClipPlaneNear = (in.mNear ? in.mNear : 0.1f); out->mHorizontalFOV = in.mFOV; out->mName.Set(in.mName); } } } // ------------------------------------------------------------------------------------------------ // Build output lights void ASEImporter::BuildLights() { if (!mParser->m_vLights.empty()) { pcScene->mNumLights = (unsigned int)mParser->m_vLights.size(); pcScene->mLights = new aiLight *[pcScene->mNumLights]; for (unsigned int i = 0; i < pcScene->mNumLights; ++i) { aiLight *out = pcScene->mLights[i] = new aiLight(); ASE::Light &in = mParser->m_vLights[i]; // The direction is encoded in the transformation matrix of the node. // In 3DS MAX the light source points into negative Z direction if // the node transformation is the identity. out->mDirection = aiVector3D(0.f, 0.f, -1.f); out->mName.Set(in.mName); switch (in.mLightType) { case ASE::Light::TARGET: out->mType = aiLightSource_SPOT; out->mAngleInnerCone = AI_DEG_TO_RAD(in.mAngle); out->mAngleOuterCone = (in.mFalloff ? AI_DEG_TO_RAD(in.mFalloff) : out->mAngleInnerCone); break; case ASE::Light::DIRECTIONAL: out->mType = aiLightSource_DIRECTIONAL; break; default: //case ASE::Light::OMNI: out->mType = aiLightSource_POINT; break; }; out->mColorDiffuse = out->mColorSpecular = in.mColor * in.mIntensity; } } } // ------------------------------------------------------------------------------------------------ void ASEImporter::AddNodes(const std::vector &nodes, aiNode *pcParent, const std::string &name) { aiMatrix4x4 m; AddNodes(nodes, pcParent, name, m); } // ------------------------------------------------------------------------------------------------ // Add meshes to a given node void ASEImporter::AddMeshes(const ASE::BaseNode *snode, aiNode *node) { for (unsigned int i = 0; i < pcScene->mNumMeshes; ++i) { // Get the name of the mesh (the mesh instance has been temporarily stored in the third vertex color) const aiMesh *pcMesh = pcScene->mMeshes[i]; const ASE::Mesh *mesh = (const ASE::Mesh *)pcMesh->mColors[2]; if (mesh == snode) { ++node->mNumMeshes; } } if (node->mNumMeshes) { node->mMeshes = new unsigned int[node->mNumMeshes]; for (unsigned int i = 0, p = 0; i < pcScene->mNumMeshes; ++i) { const aiMesh *pcMesh = pcScene->mMeshes[i]; const ASE::Mesh *mesh = (const ASE::Mesh *)pcMesh->mColors[2]; if (mesh == snode) { node->mMeshes[p++] = i; // Transform all vertices of the mesh back into their local space -> // at the moment they are pretransformed aiMatrix4x4 m = mesh->mTransform; m.Inverse(); aiVector3D *pvCurPtr = pcMesh->mVertices; const aiVector3D *pvEndPtr = pvCurPtr + pcMesh->mNumVertices; while (pvCurPtr != pvEndPtr) { *pvCurPtr = m * (*pvCurPtr); pvCurPtr++; } // Do the same for the normal vectors, if we have them. // As always, inverse transpose. if (pcMesh->mNormals) { aiMatrix3x3 m3 = aiMatrix3x3(mesh->mTransform); m3.Transpose(); pvCurPtr = pcMesh->mNormals; pvEndPtr = pvCurPtr + pcMesh->mNumVertices; while (pvCurPtr != pvEndPtr) { *pvCurPtr = m3 * (*pvCurPtr); pvCurPtr++; } } } } } } // ------------------------------------------------------------------------------------------------ // Add child nodes to a given parent node void ASEImporter::AddNodes(const std::vector &nodes, aiNode *pcParent, const std::string &name, const aiMatrix4x4 &mat) { const size_t len = name.size(); ai_assert(4 <= AI_MAX_NUMBER_OF_COLOR_SETS); // Receives child nodes for the pcParent node std::vector apcNodes; // Now iterate through all nodes in the scene and search for one // which has *us* as parent. for (std::vector::const_iterator it = nodes.begin(), end = nodes.end(); it != end; ++it) { const BaseNode *snode = *it; if (!name.empty()) { if (len != snode->mParent.length() || name != snode->mParent.c_str()) { continue; } } else if (snode->mParent.length()) { continue; } (*it)->mProcessed = true; // Allocate a new node and add it to the output data structure apcNodes.push_back(new aiNode); aiNode *node = apcNodes.back(); node->mName.Set((snode->mName.length() ? snode->mName.c_str() : "Unnamed_Node")); node->mParent = pcParent; // Setup the transformation matrix of the node aiMatrix4x4 mParentAdjust = mat; mParentAdjust.Inverse(); node->mTransformation = mParentAdjust * snode->mTransform; // Add sub nodes - prevent stack overflow due to recursive parenting if (node->mName != node->mParent->mName && node->mName != node->mParent->mParent->mName) { AddNodes(nodes, node, node->mName.C_Str(), snode->mTransform); } // Further processing depends on the type of the node if (snode->mType == ASE::BaseNode::Mesh) { // If the type of this node is "Mesh" we need to search // the list of output meshes in the data structure for // all those that belonged to this node once. This is // slightly inconvinient here and a better solution should // be used when this code is refactored next. AddMeshes(snode, node); } else if (is_not_qnan(snode->mTargetPosition.x)) { // If this is a target camera or light we generate a small // child node which marks the position of the camera // target (the direction information is contained in *this* // node's animation track but the exact target position // would be lost otherwise) if (!node->mNumChildren) { node->mChildren = new aiNode *[1]; } aiNode *nd = new aiNode(); nd->mName.Set(snode->mName + ".Target"); nd->mTransformation.a4 = snode->mTargetPosition.x - snode->mTransform.a4; nd->mTransformation.b4 = snode->mTargetPosition.y - snode->mTransform.b4; nd->mTransformation.c4 = snode->mTargetPosition.z - snode->mTransform.c4; nd->mParent = node; // The .Target node is always the first child node for (unsigned int m = 0; m < node->mNumChildren; ++m) node->mChildren[m + 1] = node->mChildren[m]; node->mChildren[0] = nd; node->mNumChildren++; // What we did is so great, it is at least worth a debug message ASSIMP_LOG_VERBOSE_DEBUG("ASE: Generating separate target node (", snode->mName, ")"); } } // Allocate enough space for the child nodes // We allocate one slot more in case this is a target camera/light pcParent->mNumChildren = (unsigned int)apcNodes.size(); if (pcParent->mNumChildren) { pcParent->mChildren = new aiNode *[apcNodes.size() + 1 /* PLUS ONE !!! */]; // now build all nodes for our nice new children for (unsigned int p = 0; p < apcNodes.size(); ++p) pcParent->mChildren[p] = apcNodes[p]; } return; } // ------------------------------------------------------------------------------------------------ // Build the output node graph void ASEImporter::BuildNodes(std::vector &nodes) { ai_assert(nullptr != pcScene); // allocate the one and only root node aiNode *root = pcScene->mRootNode = new aiNode(); root->mName.Set(""); // Setup the coordinate system transformation pcScene->mRootNode->mNumChildren = 1; pcScene->mRootNode->mChildren = new aiNode *[1]; aiNode *ch = pcScene->mRootNode->mChildren[0] = new aiNode(); ch->mParent = root; // Change the transformation matrix of all nodes for (BaseNode *node : nodes) { aiMatrix4x4 &m = node->mTransform; m.Transpose(); // row-order vs column-order } // add all nodes static const std::string none = ""; AddNodes(nodes, ch, none); // now iterate through al nodes and find those that have not yet // been added to the nodegraph (= their parent could not be recognized) std::vector aiList; for (std::vector::iterator it = nodes.begin(), end = nodes.end(); it != end; ++it) { if ((*it)->mProcessed) { continue; } // check whether our parent is known bool bKnowParent = false; // search the list another time, starting *here* and try to find out whether // there is a node that references *us* as a parent for (std::vector::const_iterator it2 = nodes.begin(); it2 != end; ++it2) { if (it2 == it) { continue; } if ((*it2)->mName == (*it)->mParent) { bKnowParent = true; break; } } if (!bKnowParent) { aiList.push_back(*it); } } // Are there any orphaned nodes? if (!aiList.empty()) { std::vector apcNodes; apcNodes.reserve(aiList.size() + pcScene->mRootNode->mNumChildren); for (unsigned int i = 0; i < pcScene->mRootNode->mNumChildren; ++i) apcNodes.push_back(pcScene->mRootNode->mChildren[i]); delete[] pcScene->mRootNode->mChildren; for (std::vector::/*const_*/ iterator i = aiList.begin(); i != aiList.end(); ++i) { const ASE::BaseNode *src = *i; // The parent is not known, so we can assume that we must add // this node to the root node of the whole scene aiNode *pcNode = new aiNode(); pcNode->mParent = pcScene->mRootNode; pcNode->mName.Set(src->mName); AddMeshes(src, pcNode); AddNodes(nodes, pcNode, pcNode->mName.data); apcNodes.push_back(pcNode); } // Regenerate our output array pcScene->mRootNode->mChildren = new aiNode *[apcNodes.size()]; for (unsigned int i = 0; i < apcNodes.size(); ++i) pcScene->mRootNode->mChildren[i] = apcNodes[i]; pcScene->mRootNode->mNumChildren = (unsigned int)apcNodes.size(); } // Reset the third color set to nullptr - we used this field to store a temporary pointer for (unsigned int i = 0; i < pcScene->mNumMeshes; ++i) pcScene->mMeshes[i]->mColors[2] = nullptr; // The root node should not have at least one child or the file is valid if (!pcScene->mRootNode->mNumChildren) { throw DeadlyImportError("ASE: No nodes loaded. The file is either empty or corrupt"); } // Now rotate the whole scene 90 degrees around the x axis to convert to internal coordinate system pcScene->mRootNode->mTransformation = aiMatrix4x4(1.f, 0.f, 0.f, 0.f, 0.f, 0.f, 1.f, 0.f, 0.f, -1.f, 0.f, 0.f, 0.f, 0.f, 0.f, 1.f); } // ------------------------------------------------------------------------------------------------ // Convert the imported data to the internal verbose representation void ASEImporter::BuildUniqueRepresentation(ASE::Mesh &mesh) { // allocate output storage std::vector mPositions; std::vector amTexCoords[AI_MAX_NUMBER_OF_TEXTURECOORDS]; std::vector mVertexColors; std::vector mNormals; std::vector mBoneVertices; unsigned int iSize = (unsigned int)mesh.mFaces.size() * 3; mPositions.resize(iSize); // optional texture coordinates for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) { if (!mesh.amTexCoords[i].empty()) { amTexCoords[i].resize(iSize); } } // optional vertex colors if (!mesh.mVertexColors.empty()) { mVertexColors.resize(iSize); } // optional vertex normals (vertex normals can simply be copied) if (!mesh.mNormals.empty()) { mNormals.resize(iSize); } // bone vertices. There is no need to change the bone list if (!mesh.mBoneVertices.empty()) { mBoneVertices.resize(iSize); } // iterate through all faces in the mesh unsigned int iCurrent = 0, fi = 0; for (std::vector::iterator i = mesh.mFaces.begin(); i != mesh.mFaces.end(); ++i, ++fi) { for (unsigned int n = 0; n < 3; ++n, ++iCurrent) { mPositions[iCurrent] = mesh.mPositions[(*i).mIndices[n]]; // add texture coordinates for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++c) { if (mesh.amTexCoords[c].empty()) break; amTexCoords[c][iCurrent] = mesh.amTexCoords[c][(*i).amUVIndices[c][n]]; } // add vertex colors if (!mesh.mVertexColors.empty()) { mVertexColors[iCurrent] = mesh.mVertexColors[(*i).mColorIndices[n]]; } // add normal vectors if (!mesh.mNormals.empty()) { mNormals[iCurrent] = mesh.mNormals[fi * 3 + n]; mNormals[iCurrent].Normalize(); } // handle bone vertices if ((*i).mIndices[n] < mesh.mBoneVertices.size()) { // (sometimes this will cause bone verts to be duplicated // however, I' quite sure Schrompf' JoinVerticesStep // will fix that again ...) mBoneVertices[iCurrent] = mesh.mBoneVertices[(*i).mIndices[n]]; } (*i).mIndices[n] = iCurrent; } } // replace the old arrays mesh.mNormals = mNormals; mesh.mPositions = mPositions; mesh.mVertexColors = mVertexColors; for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++c) mesh.amTexCoords[c] = amTexCoords[c]; } // ------------------------------------------------------------------------------------------------ // Copy a texture from the ASE structs to the output material void CopyASETexture(aiMaterial &mat, ASE::Texture &texture, aiTextureType type) { // Setup the texture name aiString tex; tex.Set(texture.mMapName); mat.AddProperty(&tex, AI_MATKEY_TEXTURE(type, 0)); // Setup the texture blend factor if (is_not_qnan(texture.mTextureBlend)) mat.AddProperty(&texture.mTextureBlend, 1, AI_MATKEY_TEXBLEND(type, 0)); // Setup texture UV transformations mat.AddProperty(&texture.mOffsetU, 5, AI_MATKEY_UVTRANSFORM(type, 0)); } // ------------------------------------------------------------------------------------------------ // Convert from ASE material to output material void ASEImporter::ConvertMaterial(ASE::Material &mat) { // LARGE TODO: Much code her is copied from 3DS ... join them maybe? // Allocate the output material mat.pcInstance = new aiMaterial(); // At first add the base ambient color of the // scene to the material mat.mAmbient.r += mParser->m_clrAmbient.r; mat.mAmbient.g += mParser->m_clrAmbient.g; mat.mAmbient.b += mParser->m_clrAmbient.b; aiString name; name.Set(mat.mName); mat.pcInstance->AddProperty(&name, AI_MATKEY_NAME); // material colors mat.pcInstance->AddProperty(&mat.mAmbient, 1, AI_MATKEY_COLOR_AMBIENT); mat.pcInstance->AddProperty(&mat.mDiffuse, 1, AI_MATKEY_COLOR_DIFFUSE); mat.pcInstance->AddProperty(&mat.mSpecular, 1, AI_MATKEY_COLOR_SPECULAR); mat.pcInstance->AddProperty(&mat.mEmissive, 1, AI_MATKEY_COLOR_EMISSIVE); // shininess if (0.0f != mat.mSpecularExponent && 0.0f != mat.mShininessStrength) { mat.pcInstance->AddProperty(&mat.mSpecularExponent, 1, AI_MATKEY_SHININESS); mat.pcInstance->AddProperty(&mat.mShininessStrength, 1, AI_MATKEY_SHININESS_STRENGTH); } // If there is no shininess, we can disable phong lighting else if (D3DS::Discreet3DS::Metal == mat.mShading || D3DS::Discreet3DS::Phong == mat.mShading || D3DS::Discreet3DS::Blinn == mat.mShading) { mat.mShading = D3DS::Discreet3DS::Gouraud; } // opacity mat.pcInstance->AddProperty(&mat.mTransparency, 1, AI_MATKEY_OPACITY); // Two sided rendering? if (mat.mTwoSided) { int i = 1; mat.pcInstance->AddProperty(&i, 1, AI_MATKEY_TWOSIDED); } // shading mode aiShadingMode eShading = aiShadingMode_NoShading; switch (mat.mShading) { case D3DS::Discreet3DS::Flat: eShading = aiShadingMode_Flat; break; case D3DS::Discreet3DS::Phong: eShading = aiShadingMode_Phong; break; case D3DS::Discreet3DS::Blinn: eShading = aiShadingMode_Blinn; break; // I don't know what "Wire" shading should be, // assume it is simple lambertian diffuse (L dot N) shading case D3DS::Discreet3DS::Wire: { // set the wireframe flag unsigned int iWire = 1; mat.pcInstance->AddProperty((int *)&iWire, 1, AI_MATKEY_ENABLE_WIREFRAME); } // fallthrough case D3DS::Discreet3DS::Gouraud: eShading = aiShadingMode_Gouraud; break; case D3DS::Discreet3DS::Metal: eShading = aiShadingMode_CookTorrance; break; } mat.pcInstance->AddProperty((int *)&eShading, 1, AI_MATKEY_SHADING_MODEL); // DIFFUSE texture if (mat.sTexDiffuse.mMapName.length() > 0) CopyASETexture(*mat.pcInstance, mat.sTexDiffuse, aiTextureType_DIFFUSE); // SPECULAR texture if (mat.sTexSpecular.mMapName.length() > 0) CopyASETexture(*mat.pcInstance, mat.sTexSpecular, aiTextureType_SPECULAR); // AMBIENT texture if (mat.sTexAmbient.mMapName.length() > 0) CopyASETexture(*mat.pcInstance, mat.sTexAmbient, aiTextureType_AMBIENT); // OPACITY texture if (mat.sTexOpacity.mMapName.length() > 0) CopyASETexture(*mat.pcInstance, mat.sTexOpacity, aiTextureType_OPACITY); // EMISSIVE texture if (mat.sTexEmissive.mMapName.length() > 0) CopyASETexture(*mat.pcInstance, mat.sTexEmissive, aiTextureType_EMISSIVE); // BUMP texture if (mat.sTexBump.mMapName.length() > 0) CopyASETexture(*mat.pcInstance, mat.sTexBump, aiTextureType_HEIGHT); // SHININESS texture if (mat.sTexShininess.mMapName.length() > 0) CopyASETexture(*mat.pcInstance, mat.sTexShininess, aiTextureType_SHININESS); // store the name of the material itself, too if (mat.mName.length() > 0) { aiString tex; tex.Set(mat.mName); mat.pcInstance->AddProperty(&tex, AI_MATKEY_NAME); } return; } // ------------------------------------------------------------------------------------------------ // Build output meshes void ASEImporter::ConvertMeshes(ASE::Mesh &mesh, std::vector &avOutMeshes) { // validate the material index of the mesh if (mesh.iMaterialIndex >= mParser->m_vMaterials.size()) { mesh.iMaterialIndex = (unsigned int)mParser->m_vMaterials.size() - 1; ASSIMP_LOG_WARN("Material index is out of range"); } // If the material the mesh is assigned to consists of submeshes, split it if (!mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials.empty()) { std::vector vSubMaterials = mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials; std::vector *aiSplit = new std::vector[vSubMaterials.size()]; // build a list of all faces per sub-material for (unsigned int i = 0; i < mesh.mFaces.size(); ++i) { // check range if (mesh.mFaces[i].iMaterial >= vSubMaterials.size()) { ASSIMP_LOG_WARN("Submaterial index is out of range"); // use the last material instead aiSplit[vSubMaterials.size() - 1].push_back(i); } else aiSplit[mesh.mFaces[i].iMaterial].push_back(i); } // now generate submeshes for (unsigned int p = 0; p < vSubMaterials.size(); ++p) { if (!aiSplit[p].empty()) { aiMesh *p_pcOut = new aiMesh(); p_pcOut->mPrimitiveTypes = aiPrimitiveType_TRIANGLE; // let the sub material index p_pcOut->mMaterialIndex = p; // we will need this material mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials[p].bNeed = true; // store the real index here ... color channel 3 p_pcOut->mColors[3] = (aiColor4D *)(uintptr_t)mesh.iMaterialIndex; // store a pointer to the mesh in color channel 2 p_pcOut->mColors[2] = (aiColor4D *)&mesh; avOutMeshes.push_back(p_pcOut); // convert vertices p_pcOut->mNumVertices = (unsigned int)aiSplit[p].size() * 3; p_pcOut->mNumFaces = (unsigned int)aiSplit[p].size(); // receive output vertex weights std::vector> *avOutputBones = nullptr; if (!mesh.mBones.empty()) { avOutputBones = new std::vector>[mesh.mBones.size()]; } // allocate enough storage for faces p_pcOut->mFaces = new aiFace[p_pcOut->mNumFaces]; unsigned int iBase = 0, iIndex; if (p_pcOut->mNumVertices) { p_pcOut->mVertices = new aiVector3D[p_pcOut->mNumVertices]; p_pcOut->mNormals = new aiVector3D[p_pcOut->mNumVertices]; for (unsigned int q = 0; q < aiSplit[p].size(); ++q) { iIndex = aiSplit[p][q]; p_pcOut->mFaces[q].mIndices = new unsigned int[3]; p_pcOut->mFaces[q].mNumIndices = 3; for (unsigned int t = 0; t < 3; ++t, ++iBase) { const uint32_t iIndex2 = mesh.mFaces[iIndex].mIndices[t]; p_pcOut->mVertices[iBase] = mesh.mPositions[iIndex2]; p_pcOut->mNormals[iBase] = mesh.mNormals[iIndex2]; // convert bones, if existing if (!mesh.mBones.empty()) { ai_assert(avOutputBones); // check whether there is a vertex weight for this vertex index if (iIndex2 < mesh.mBoneVertices.size()) { for (std::vector>::const_iterator blubb = mesh.mBoneVertices[iIndex2].mBoneWeights.begin(); blubb != mesh.mBoneVertices[iIndex2].mBoneWeights.end(); ++blubb) { // NOTE: illegal cases have already been filtered out avOutputBones[(*blubb).first].emplace_back( iBase, (*blubb).second); } } } p_pcOut->mFaces[q].mIndices[t] = iBase; } } } // convert texture coordinates (up to AI_MAX_NUMBER_OF_TEXTURECOORDS sets supported) for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++c) { if (!mesh.amTexCoords[c].empty()) { p_pcOut->mTextureCoords[c] = new aiVector3D[p_pcOut->mNumVertices]; iBase = 0; for (unsigned int q = 0; q < aiSplit[p].size(); ++q) { iIndex = aiSplit[p][q]; for (unsigned int t = 0; t < 3; ++t) { p_pcOut->mTextureCoords[c][iBase++] = mesh.amTexCoords[c][mesh.mFaces[iIndex].mIndices[t]]; } } // Setup the number of valid vertex components p_pcOut->mNumUVComponents[c] = mesh.mNumUVComponents[c]; } } // Convert vertex colors (only one set supported) if (!mesh.mVertexColors.empty()) { p_pcOut->mColors[0] = new aiColor4D[p_pcOut->mNumVertices]; iBase = 0; for (unsigned int q = 0; q < aiSplit[p].size(); ++q) { iIndex = aiSplit[p][q]; for (unsigned int t = 0; t < 3; ++t) { p_pcOut->mColors[0][iBase++] = mesh.mVertexColors[mesh.mFaces[iIndex].mIndices[t]]; } } } // Copy bones if (!mesh.mBones.empty()) { p_pcOut->mNumBones = 0; for (unsigned int mrspock = 0; mrspock < mesh.mBones.size(); ++mrspock) if (!avOutputBones[mrspock].empty()) p_pcOut->mNumBones++; p_pcOut->mBones = new aiBone *[p_pcOut->mNumBones]; aiBone **pcBone = p_pcOut->mBones; for (unsigned int mrspock = 0; mrspock < mesh.mBones.size(); ++mrspock) { if (!avOutputBones[mrspock].empty()) { // we will need this bone. add it to the output mesh and // add all per-vertex weights aiBone *pc = *pcBone = new aiBone(); pc->mName.Set(mesh.mBones[mrspock].mName); pc->mNumWeights = (unsigned int)avOutputBones[mrspock].size(); pc->mWeights = new aiVertexWeight[pc->mNumWeights]; for (unsigned int captainkirk = 0; captainkirk < pc->mNumWeights; ++captainkirk) { const std::pair &ref = avOutputBones[mrspock][captainkirk]; pc->mWeights[captainkirk].mVertexId = ref.first; pc->mWeights[captainkirk].mWeight = ref.second; } ++pcBone; } } // delete allocated storage delete[] avOutputBones; } } } // delete storage delete[] aiSplit; } else { // Otherwise we can simply copy the data to one output mesh // This codepath needs less memory and uses fast memcpy()s // to do the actual copying. So I think it is worth the // effort here. aiMesh *p_pcOut = new aiMesh(); p_pcOut->mPrimitiveTypes = aiPrimitiveType_TRIANGLE; // set an empty sub material index p_pcOut->mMaterialIndex = ASE::Face::DEFAULT_MATINDEX; mParser->m_vMaterials[mesh.iMaterialIndex].bNeed = true; // store the real index here ... in color channel 3 p_pcOut->mColors[3] = (aiColor4D *)(uintptr_t)mesh.iMaterialIndex; // store a pointer to the mesh in color channel 2 p_pcOut->mColors[2] = (aiColor4D *)&mesh; avOutMeshes.push_back(p_pcOut); // If the mesh hasn't faces or vertices, there are two cases // possible: 1. the model is invalid. 2. This is a dummy // helper object which we are going to remove later ... if (mesh.mFaces.empty() || mesh.mPositions.empty()) { return; } // convert vertices p_pcOut->mNumVertices = (unsigned int)mesh.mPositions.size(); p_pcOut->mNumFaces = (unsigned int)mesh.mFaces.size(); // allocate enough storage for faces p_pcOut->mFaces = new aiFace[p_pcOut->mNumFaces]; // copy vertices p_pcOut->mVertices = new aiVector3D[mesh.mPositions.size()]; memcpy(p_pcOut->mVertices, &mesh.mPositions[0], mesh.mPositions.size() * sizeof(aiVector3D)); // copy normals p_pcOut->mNormals = new aiVector3D[mesh.mNormals.size()]; memcpy(p_pcOut->mNormals, &mesh.mNormals[0], mesh.mNormals.size() * sizeof(aiVector3D)); // copy texture coordinates for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++c) { if (!mesh.amTexCoords[c].empty()) { p_pcOut->mTextureCoords[c] = new aiVector3D[mesh.amTexCoords[c].size()]; memcpy(p_pcOut->mTextureCoords[c], &mesh.amTexCoords[c][0], mesh.amTexCoords[c].size() * sizeof(aiVector3D)); // setup the number of valid vertex components p_pcOut->mNumUVComponents[c] = mesh.mNumUVComponents[c]; } } // copy vertex colors if (!mesh.mVertexColors.empty()) { p_pcOut->mColors[0] = new aiColor4D[mesh.mVertexColors.size()]; memcpy(p_pcOut->mColors[0], &mesh.mVertexColors[0], mesh.mVertexColors.size() * sizeof(aiColor4D)); } // copy faces for (unsigned int iFace = 0; iFace < p_pcOut->mNumFaces; ++iFace) { p_pcOut->mFaces[iFace].mNumIndices = 3; p_pcOut->mFaces[iFace].mIndices = new unsigned int[3]; // copy indices p_pcOut->mFaces[iFace].mIndices[0] = mesh.mFaces[iFace].mIndices[0]; p_pcOut->mFaces[iFace].mIndices[1] = mesh.mFaces[iFace].mIndices[1]; p_pcOut->mFaces[iFace].mIndices[2] = mesh.mFaces[iFace].mIndices[2]; } // copy vertex bones if (!mesh.mBones.empty() && !mesh.mBoneVertices.empty()) { std::vector> avBonesOut(mesh.mBones.size()); // find all vertex weights for this bone unsigned int quak = 0; for (std::vector::const_iterator harrypotter = mesh.mBoneVertices.begin(); harrypotter != mesh.mBoneVertices.end(); ++harrypotter, ++quak) { for (std::vector>::const_iterator ronaldweasley = (*harrypotter).mBoneWeights.begin(); ronaldweasley != (*harrypotter).mBoneWeights.end(); ++ronaldweasley) { aiVertexWeight weight; weight.mVertexId = quak; weight.mWeight = (*ronaldweasley).second; avBonesOut[(*ronaldweasley).first].push_back(weight); } } // now build a final bone list p_pcOut->mNumBones = 0; for (unsigned int jfkennedy = 0; jfkennedy < mesh.mBones.size(); ++jfkennedy) if (!avBonesOut[jfkennedy].empty()) p_pcOut->mNumBones++; p_pcOut->mBones = new aiBone *[p_pcOut->mNumBones]; aiBone **pcBone = p_pcOut->mBones; for (unsigned int jfkennedy = 0; jfkennedy < mesh.mBones.size(); ++jfkennedy) { if (!avBonesOut[jfkennedy].empty()) { aiBone *pc = *pcBone = new aiBone(); pc->mName.Set(mesh.mBones[jfkennedy].mName); pc->mNumWeights = (unsigned int)avBonesOut[jfkennedy].size(); pc->mWeights = new aiVertexWeight[pc->mNumWeights]; ::memcpy(pc->mWeights, &avBonesOut[jfkennedy][0], sizeof(aiVertexWeight) * pc->mNumWeights); ++pcBone; } } } } } // ------------------------------------------------------------------------------------------------ // Setup proper material indices and build output materials void ASEImporter::BuildMaterialIndices() { ai_assert(nullptr != pcScene); // iterate through all materials and check whether we need them for (unsigned int iMat = 0; iMat < mParser->m_vMaterials.size(); ++iMat) { ASE::Material &mat = mParser->m_vMaterials[iMat]; if (mat.bNeed) { // Convert it to the aiMaterial layout ConvertMaterial(mat); ++pcScene->mNumMaterials; } for (unsigned int iSubMat = 0; iSubMat < mat.avSubMaterials.size(); ++iSubMat) { ASE::Material &submat = mat.avSubMaterials[iSubMat]; if (submat.bNeed) { // Convert it to the aiMaterial layout ConvertMaterial(submat); ++pcScene->mNumMaterials; } } } // allocate the output material array pcScene->mMaterials = new aiMaterial *[pcScene->mNumMaterials]; D3DS::Material **pcIntMaterials = new D3DS::Material *[pcScene->mNumMaterials]; unsigned int iNum = 0; for (unsigned int iMat = 0; iMat < mParser->m_vMaterials.size(); ++iMat) { ASE::Material &mat = mParser->m_vMaterials[iMat]; if (mat.bNeed) { ai_assert(nullptr != mat.pcInstance); pcScene->mMaterials[iNum] = mat.pcInstance; // Store the internal material, too pcIntMaterials[iNum] = &mat; // Iterate through all meshes and search for one which is using // this top-level material index for (unsigned int iMesh = 0; iMesh < pcScene->mNumMeshes; ++iMesh) { aiMesh *mesh = pcScene->mMeshes[iMesh]; if (ASE::Face::DEFAULT_MATINDEX == mesh->mMaterialIndex && iMat == (uintptr_t)mesh->mColors[3]) { mesh->mMaterialIndex = iNum; mesh->mColors[3] = nullptr; } } iNum++; } for (unsigned int iSubMat = 0; iSubMat < mat.avSubMaterials.size(); ++iSubMat) { ASE::Material &submat = mat.avSubMaterials[iSubMat]; if (submat.bNeed) { ai_assert(nullptr != submat.pcInstance); pcScene->mMaterials[iNum] = submat.pcInstance; // Store the internal material, too pcIntMaterials[iNum] = &submat; // Iterate through all meshes and search for one which is using // this sub-level material index for (unsigned int iMesh = 0; iMesh < pcScene->mNumMeshes; ++iMesh) { aiMesh *mesh = pcScene->mMeshes[iMesh]; if (iSubMat == mesh->mMaterialIndex && iMat == (uintptr_t)mesh->mColors[3]) { mesh->mMaterialIndex = iNum; mesh->mColors[3] = nullptr; } } iNum++; } } } // Delete our temporary array delete[] pcIntMaterials; } // ------------------------------------------------------------------------------------------------ // Generate normal vectors basing on smoothing groups bool ASEImporter::GenerateNormals(ASE::Mesh &mesh) { if (!mesh.mNormals.empty() && !configRecomputeNormals) { // Check whether there are only uninitialized normals. If there are // some, skip all normals from the file and compute them on our own for (std::vector::const_iterator qq = mesh.mNormals.begin(); qq != mesh.mNormals.end(); ++qq) { if ((*qq).x || (*qq).y || (*qq).z) { return true; } } } // The array is reused. ComputeNormalsWithSmoothingsGroups(mesh); return false; } } #endif // ASSIMP_BUILD_NO_3DS_IMPORTER #endif // !! ASSIMP_BUILD_NO_BASE_IMPORTER