/* --------------------------------------------------------------------------- Open Asset Import Library (assimp) --------------------------------------------------------------------------- Copyright (c) 2006-2024, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file SMDLoader.cpp * @brief Implementation of the SMD importer class */ #ifndef ASSIMP_BUILD_NO_SMD_IMPORTER #include #include #include #include #include #include #include #include #include #include // internal headers #include "SMDLoader.h" #ifndef _MSC_VER #define strtok_s strtok_r #endif namespace Assimp { static constexpr aiImporterDesc desc = { "Valve SMD Importer", "", "", "", aiImporterFlags_SupportTextFlavour, 0, 0, 0, 0, "smd vta" }; // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer SMDImporter::SMDImporter() : configFrameID(), mBuffer(), mEnd(nullptr), pScene(nullptr), iFileSize( 0 ), iSmallestFrame( INT_MAX ), dLengthOfAnim( 0.0 ), bHasUVs(false ), iLineNumber((unsigned int)-1) { // empty } // ------------------------------------------------------------------------------------------------ // Returns whether the class can handle the format of the given file. bool SMDImporter::CanRead( const std::string& filename, IOSystem* /*pIOHandler*/, bool) const { return SimpleExtensionCheck(filename, "smd", "vta"); } // ------------------------------------------------------------------------------------------------ // Get a list of all supported file extensions const aiImporterDesc* SMDImporter::GetInfo () const { return &desc; } // ------------------------------------------------------------------------------------------------ // Setup configuration properties void SMDImporter::SetupProperties(const Importer* pImp) { // The // AI_CONFIG_IMPORT_SMD_KEYFRAME option overrides the // AI_CONFIG_IMPORT_GLOBAL_KEYFRAME option. configFrameID = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_SMD_KEYFRAME,-1); if(static_cast(-1) == configFrameID) { configFrameID = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_GLOBAL_KEYFRAME,0); } bLoadAnimationList = pImp->GetPropertyBool(AI_CONFIG_IMPORT_SMD_LOAD_ANIMATION_LIST, true); noSkeletonMesh = pImp->GetPropertyBool(AI_CONFIG_IMPORT_NO_SKELETON_MESHES, false); } // ------------------------------------------------------------------------------------------------ // Imports the given file into the given scene structure. void SMDImporter::InternReadFile( const std::string& pFile, aiScene* scene, IOSystem* pIOHandler) { this->pScene = scene; ReadSmd(pFile, pIOHandler); // If there are no triangles it seems to be an animation SMD, // containing only the animation skeleton. if (asTriangles.empty()) { if (asBones.empty()) { throw DeadlyImportError("SMD: No triangles and no bones have " "been found in the file. This file seems to be invalid."); } // Set the flag in the scene structure which indicates // that there is nothing than an animation skeleton pScene->mFlags |= AI_SCENE_FLAGS_INCOMPLETE; } if (!asBones.empty()) { // Check whether all bones have been initialized for (const auto &asBone : asBones) { if (!asBone.mName.length()) { ASSIMP_LOG_WARN("SMD: Not all bones have been initialized"); break; } } // now fix invalid time values and make sure the animation starts at frame 0 FixTimeValues(); } // build output nodes (bones are added as empty dummy nodes) CreateOutputNodes(); if (!(pScene->mFlags & AI_SCENE_FLAGS_INCOMPLETE)) { // create output meshes CreateOutputMeshes(); // build an output material list CreateOutputMaterials(); // use root node that renders all meshes pScene->mRootNode->mNumMeshes = pScene->mNumMeshes; pScene->mRootNode->mMeshes = new unsigned int[pScene->mNumMeshes]; for (unsigned int i = 0; i < pScene->mNumMeshes; ++i) { pScene->mRootNode->mMeshes[i] = i; } } // build the output animation CreateOutputAnimations(pFile, pIOHandler); if ((pScene->mFlags & AI_SCENE_FLAGS_INCOMPLETE) && !noSkeletonMesh) { SkeletonMeshBuilder skeleton(pScene); } } // ------------------------------------------------------------------------------------------------ // Write an error message with line number to the log file void SMDImporter::LogErrorNoThrow(const char* msg) { const size_t _BufferSize = 1024; char szTemp[_BufferSize]; ai_snprintf(szTemp,_BufferSize,"Line %u: %s",iLineNumber,msg); DefaultLogger::get()->error(szTemp); } // ------------------------------------------------------------------------------------------------ // Write a warning with line number to the log file void SMDImporter::LogWarning(const char* msg) { const size_t _BufferSize = 1024; char szTemp[_BufferSize]; ai_assert(strlen(msg) < 1000); ai_snprintf(szTemp,_BufferSize,"Line %u: %s",iLineNumber,msg); ASSIMP_LOG_WARN(szTemp); } // ------------------------------------------------------------------------------------------------ // Fix invalid time values in the file void SMDImporter::FixTimeValues() { double dDelta = (double)iSmallestFrame; double dMax = 0.0f; for (auto &asBone : asBones) { for (auto &asKey : asBone.sAnim.asKeys) { asKey.dTime -= dDelta; dMax = std::max(dMax, asKey.dTime); } } dLengthOfAnim = dMax; } // ------------------------------------------------------------------------------------------------ // create output meshes void SMDImporter::CreateOutputMeshes() { if (aszTextures.empty()) { aszTextures.emplace_back(); } // we need to sort all faces by their material index // in opposition to other loaders we can be sure that each // material is at least used once. pScene->mNumMeshes = (unsigned int) aszTextures.size(); pScene->mMeshes = new aiMesh*[pScene->mNumMeshes]; typedef std::vector FaceList; std::unique_ptr aaiFaces(new FaceList[pScene->mNumMeshes]); // approximate the space that will be required unsigned int iNum = (unsigned int)asTriangles.size() / pScene->mNumMeshes; iNum += iNum >> 1; for (unsigned int i = 0; i < pScene->mNumMeshes;++i) { aaiFaces[i].reserve(iNum); } // collect all faces iNum = 0; for (const auto &asTriangle : asTriangles) { if (asTriangle.iTexture >= aszTextures.size()) { ASSIMP_LOG_INFO("[SMD/VTA] Material index overflow in face"); aaiFaces[asTriangle.iTexture].push_back((unsigned int)aszTextures.size()-1); } else { aaiFaces[asTriangle.iTexture].push_back(iNum); } ++iNum; } // now create the output meshes for (unsigned int i = 0; i < pScene->mNumMeshes;++i) { aiMesh*& pcMesh = pScene->mMeshes[i] = new aiMesh(); ai_assert(!aaiFaces[i].empty()); // should not be empty ... pcMesh->mPrimitiveTypes = aiPrimitiveType_TRIANGLE; pcMesh->mNumVertices = (unsigned int)aaiFaces[i].size()*3; pcMesh->mNumFaces = (unsigned int)aaiFaces[i].size(); pcMesh->mMaterialIndex = i; // storage for bones typedef std::pair TempWeightListEntry; typedef std::vector< TempWeightListEntry > TempBoneWeightList; std::unique_ptr aaiBones(new TempBoneWeightList[asBones.size()]()); // try to reserve enough memory without wasting too much for (unsigned int iBone = 0; iBone < asBones.size();++iBone) { aaiBones[iBone].reserve(pcMesh->mNumVertices/asBones.size()); } // allocate storage pcMesh->mFaces = new aiFace[pcMesh->mNumFaces]; aiVector3D* pcNormals = pcMesh->mNormals = new aiVector3D[pcMesh->mNumVertices]; aiVector3D* pcVerts = pcMesh->mVertices = new aiVector3D[pcMesh->mNumVertices]; aiVector3D* pcUVs = nullptr; if (bHasUVs) { pcUVs = pcMesh->mTextureCoords[0] = new aiVector3D[pcMesh->mNumVertices]; pcMesh->mNumUVComponents[0] = 2; } iNum = 0; for (unsigned int iFace = 0; iFace < pcMesh->mNumFaces;++iFace) { pcMesh->mFaces[iFace].mIndices = new unsigned int[3]; pcMesh->mFaces[iFace].mNumIndices = 3; // fill the vertices unsigned int iSrcFace = aaiFaces[i][iFace]; SMD::Face& face = asTriangles[iSrcFace]; *pcVerts++ = face.avVertices[0].pos; *pcVerts++ = face.avVertices[1].pos; *pcVerts++ = face.avVertices[2].pos; // fill the normals *pcNormals++ = face.avVertices[0].nor; *pcNormals++ = face.avVertices[1].nor; *pcNormals++ = face.avVertices[2].nor; // fill the texture coordinates if (pcUVs) { *pcUVs++ = face.avVertices[0].uv; *pcUVs++ = face.avVertices[1].uv; *pcUVs++ = face.avVertices[2].uv; } for (unsigned int iVert = 0; iVert < 3;++iVert) { float fSum = 0.0f; for (unsigned int iBone = 0;iBone < face.avVertices[iVert].aiBoneLinks.size();++iBone) { TempWeightListEntry& pairval = face.avVertices[iVert].aiBoneLinks[iBone]; // FIX: The second check is here just to make sure we won't // assign more than one weight to a single vertex index if (pairval.first >= asBones.size() || pairval.first == face.avVertices[iVert].iParentNode) { ASSIMP_LOG_ERROR("[SMD/VTA] Bone index overflow. " "The bone index will be ignored, the weight will be assigned " "to the vertex' parent node"); continue; } aaiBones[pairval.first].emplace_back(iNum,pairval.second); fSum += pairval.second; } // ****************************************************************** // If the sum of all vertex weights is not 1.0 we must assign // the rest to the vertex' parent node. Well, at least the doc says // we should ... // FIX: We use 0.975 as limit, floating-point inaccuracies seem to // be very strong in some SMD exporters. Furthermore it is possible // that the parent of a vertex is 0xffffffff (if the corresponding // entry in the file was unreadable) // ****************************************************************** if (fSum < 0.975f && face.avVertices[iVert].iParentNode != UINT_MAX) { if (face.avVertices[iVert].iParentNode >= asBones.size()) { ASSIMP_LOG_ERROR("[SMD/VTA] Bone index overflow. " "The index of the vertex parent bone is invalid. " "The remaining weights will be normalized to 1.0"); if (fSum) { fSum = 1 / fSum; for (auto &pairval : face.avVertices[iVert].aiBoneLinks) { if (pairval.first >= asBones.size()) { continue; } aaiBones[pairval.first].back().second *= fSum; } } } else { aaiBones[face.avVertices[iVert].iParentNode].emplace_back(iNum,1.0f-fSum); } } pcMesh->mFaces[iFace].mIndices[iVert] = iNum++; } } // now build all bones of the mesh iNum = 0; for (unsigned int iBone = 0; iBone < asBones.size();++iBone) { if (!aaiBones[iBone].empty())++iNum; } if (iNum) { pcMesh->mNumBones = iNum; pcMesh->mBones = new aiBone*[pcMesh->mNumBones]; iNum = 0; for (unsigned int iBone = 0; iBone < asBones.size();++iBone) { if (aaiBones[iBone].empty()) { continue; } aiBone*& bone = pcMesh->mBones[iNum] = new aiBone(); bone->mNumWeights = (unsigned int)aaiBones[iBone].size(); bone->mWeights = new aiVertexWeight[bone->mNumWeights]; bone->mOffsetMatrix = asBones[iBone].mOffsetMatrix; bone->mName.Set( asBones[iBone].mName ); asBones[iBone].bIsUsed = true; for (unsigned int iWeight = 0; iWeight < bone->mNumWeights;++iWeight) { bone->mWeights[iWeight].mVertexId = aaiBones[iBone][iWeight].first; bone->mWeights[iWeight].mWeight = aaiBones[iBone][iWeight].second; } ++iNum; } } } } // ------------------------------------------------------------------------------------------------ // add bone child nodes void SMDImporter::AddBoneChildren(aiNode* pcNode, uint32_t iParent) { ai_assert( nullptr != pcNode ); ai_assert( 0 == pcNode->mNumChildren ); ai_assert( nullptr == pcNode->mChildren); // first count ... for (auto &bone : asBones) { if (bone.iParent == iParent) { ++pcNode->mNumChildren; } } // now allocate the output array pcNode->mChildren = new aiNode*[pcNode->mNumChildren]; // and fill all subnodes unsigned int qq( 0 ); for (unsigned int i = 0; i < asBones.size();++i) { SMD::Bone& bone = asBones[i]; if (bone.iParent != iParent) { continue; } aiNode* pc = pcNode->mChildren[qq++] = new aiNode(); pc->mName.Set(bone.mName); // store the local transformation matrix of the bind pose if (bone.sAnim.asKeys.size()) { pc->mTransformation = bone.sAnim.asKeys[0].matrix; } if (bone.iParent == static_cast(-1)) { bone.mOffsetMatrix = pc->mTransformation; } else { bone.mOffsetMatrix = asBones[bone.iParent].mOffsetMatrix * pc->mTransformation; } pc->mParent = pcNode; // add children to this node, too AddBoneChildren(pc,i); } } // ------------------------------------------------------------------------------------------------ // create output nodes void SMDImporter::CreateOutputNodes() { pScene->mRootNode = new aiNode(); // now add all bones as dummy sub nodes to the graph AddBoneChildren(pScene->mRootNode,(uint32_t)-1); for (auto &bone : asBones) { bone.mOffsetMatrix.Inverse(); } // if we have only one bone we can even remove the root node if (pScene->mFlags & AI_SCENE_FLAGS_INCOMPLETE && 1 == pScene->mRootNode->mNumChildren) { aiNode* pcOldRoot = pScene->mRootNode; pScene->mRootNode = pcOldRoot->mChildren[0]; pcOldRoot->mChildren[0] = nullptr; delete pcOldRoot; pScene->mRootNode->mParent = nullptr; } else { ::strcpy(pScene->mRootNode->mName.data, ""); pScene->mRootNode->mName.length = 10; } } // ------------------------------------------------------------------------------------------------ // create output animations void SMDImporter::CreateOutputAnimations(const std::string &pFile, IOSystem* pIOHandler) { std::vector> animFileList; if (bLoadAnimationList) { GetAnimationFileList(pFile, pIOHandler, animFileList); } int animCount = static_cast( animFileList.size() + 1u ); pScene->mNumAnimations = 1; pScene->mAnimations = new aiAnimation*[animCount]; memset(pScene->mAnimations, 0, sizeof(aiAnimation*)*animCount); CreateOutputAnimation(0, ""); for (auto &animFile : animFileList) { ReadSmd(std::get<1>(animFile), pIOHandler); if (asBones.empty()) { continue; } FixTimeValues(); CreateOutputAnimation(pScene->mNumAnimations++, std::get<0>(animFile)); } } void SMDImporter::CreateOutputAnimation(int index, const std::string &name) { aiAnimation*& anim = pScene->mAnimations[index] = new aiAnimation(); if (name.length()) { anim->mName.Set(name.c_str()); } anim->mDuration = dLengthOfAnim; anim->mNumChannels = static_cast( asBones.size() ); anim->mTicksPerSecond = 25.0; // FIXME: is this correct? aiNodeAnim** pp = anim->mChannels = new aiNodeAnim*[anim->mNumChannels]; // now build valid keys unsigned int a = 0; for (const auto &asBone : asBones) { aiNodeAnim* p = pp[a] = new aiNodeAnim(); // copy the name of the bone p->mNodeName.Set(asBone.mName); p->mNumRotationKeys = (unsigned int)asBone.sAnim.asKeys.size(); if (p->mNumRotationKeys){ p->mNumPositionKeys = p->mNumRotationKeys; aiVectorKey* pVecKeys = p->mPositionKeys = new aiVectorKey[p->mNumRotationKeys]; aiQuatKey* pRotKeys = p->mRotationKeys = new aiQuatKey[p->mNumRotationKeys]; for (const auto &asKey : asBone.sAnim.asKeys) { pRotKeys->mTime = pVecKeys->mTime = asKey.dTime; // compute the rotation quaternion from the euler angles // aiQuaternion: The order of the parameters is yzx? pRotKeys->mValue = aiQuaternion(asKey.vRot.y, asKey.vRot.z, asKey.vRot.x); pVecKeys->mValue = asKey.vPos; ++pVecKeys; ++pRotKeys; } } ++a; // there are no scaling keys ... } } void SMDImporter::GetAnimationFileList(const std::string &pFile, IOSystem* pIOHandler, std::vector>& outList) { auto base = DefaultIOSystem::absolutePath(pFile); auto name = DefaultIOSystem::completeBaseName(pFile); auto path = base + "/" + name + "_animation.txt"; std::unique_ptr file(pIOHandler->Open(path.c_str(), "rb")); if (file == nullptr) { return; } // Allocate storage and copy the contents of the file to a memory buffer std::vector buf; size_t fileSize = file->FileSize(); buf.resize(fileSize + 1); TextFileToBuffer(file.get(), buf); /* *_animation.txt format: name path idle idle.smd jump anim/jump.smd walk.smd ... */ std::string animName, animPath; char *tok1, *tok2; char *context1, *context2; tok1 = strtok_s(&buf[0], "\r\n", &context1); while (tok1 != nullptr) { tok2 = strtok_s(tok1, " \t", &context2); if (tok2) { char *p = tok2; tok2 = strtok_s(nullptr, " \t", &context2); if (tok2) { animPath = tok2; animName = p; } else { // No name animPath = p; animName = DefaultIOSystem::completeBaseName(animPath); } outList.emplace_back(animName, base + "/" + animPath); } tok1 = strtok_s(nullptr, "\r\n", &context1); } } // ------------------------------------------------------------------------------------------------ // create output materials void SMDImporter::CreateOutputMaterials() { ai_assert( nullptr != pScene ); pScene->mNumMaterials = (unsigned int)aszTextures.size(); pScene->mMaterials = new aiMaterial*[std::max(1u, pScene->mNumMaterials)]; for (unsigned int iMat = 0; iMat < pScene->mNumMaterials; ++iMat) { aiMaterial* pcMat = new aiMaterial(); ai_assert( nullptr != pcMat ); pScene->mMaterials[iMat] = pcMat; aiString szName; szName.length = static_cast(ai_snprintf(szName.data,MAXLEN,"Texture_%u",iMat)); pcMat->AddProperty(&szName,AI_MATKEY_NAME); if (aszTextures[iMat].length()) { ::strncpy(szName.data, aszTextures[iMat].c_str(),MAXLEN-1); szName.length = static_cast( aszTextures[iMat].length() ); pcMat->AddProperty(&szName,AI_MATKEY_TEXTURE_DIFFUSE(0)); } } // create a default material if necessary if (0 == pScene->mNumMaterials) { pScene->mNumMaterials = 1; aiMaterial* pcHelper = new aiMaterial(); pScene->mMaterials[0] = pcHelper; int iMode = static_cast(aiShadingMode_Gouraud); pcHelper->AddProperty(&iMode, 1, AI_MATKEY_SHADING_MODEL); aiColor3D clr; clr.b = clr.g = clr.r = 0.7f; pcHelper->AddProperty(&clr, 1,AI_MATKEY_COLOR_DIFFUSE); pcHelper->AddProperty(&clr, 1,AI_MATKEY_COLOR_SPECULAR); clr.b = clr.g = clr.r = 0.05f; pcHelper->AddProperty(&clr, 1,AI_MATKEY_COLOR_AMBIENT); aiString szName; szName.Set(AI_DEFAULT_MATERIAL_NAME); pcHelper->AddProperty(&szName,AI_MATKEY_NAME); } } // ------------------------------------------------------------------------------------------------ // Parse the file void SMDImporter::ParseFile() { const char* szCurrent = &mBuffer[0]; // read line per line ... for ( ;; ) { if(!SkipSpacesAndLineEnd(szCurrent,&szCurrent, mEnd)) { break; } // "version \n", should be 1 for hl and hl2 SMD files if (TokenMatch(szCurrent,"version",7)) { if(!SkipSpaces(szCurrent,&szCurrent, mEnd)) break; if (1 != strtoul10(szCurrent,&szCurrent)) { ASSIMP_LOG_WARN("SMD.version is not 1. This " "file format is not known. Continuing happily ..."); } continue; } // "nodes\n" - Starts the node section if (TokenMatch(szCurrent,"nodes",5)) { ParseNodesSection(szCurrent, &szCurrent, mEnd); continue; } // "triangles\n" - Starts the triangle section if (TokenMatch(szCurrent,"triangles",9)) { ParseTrianglesSection(szCurrent, &szCurrent, mEnd); continue; } // "vertexanimation\n" - Starts the vertex animation section if (TokenMatch(szCurrent,"vertexanimation",15)) { bHasUVs = false; ParseVASection(szCurrent, &szCurrent, mEnd); continue; } // "skeleton\n" - Starts the skeleton section if (TokenMatch(szCurrent,"skeleton",8)) { ParseSkeletonSection(szCurrent, &szCurrent, mEnd); continue; } SkipLine(szCurrent, &szCurrent, mEnd); } } void SMDImporter::ReadSmd(const std::string &pFile, IOSystem* pIOHandler) { std::unique_ptr file(pIOHandler->Open(pFile, "rb")); // Check whether we can read from the file if (file == nullptr) { throw DeadlyImportError("Failed to open SMD/VTA file ", pFile, "."); } iFileSize = (unsigned int)file->FileSize(); // Allocate storage and copy the contents of the file to a memory buffer mBuffer.resize(iFileSize + 1); TextFileToBuffer(file.get(), mBuffer); mEnd = &mBuffer[mBuffer.size() - 1] + 1; iSmallestFrame = INT_MAX; bHasUVs = true; iLineNumber = 1; // Reserve enough space for ... hm ... 10 textures aszTextures.reserve(10); // Reserve enough space for ... hm ... 1000 triangles asTriangles.reserve(1000); // Reserve enough space for ... hm ... 20 bones asBones.reserve(20); aszTextures.clear(); asTriangles.clear(); asBones.clear(); // parse the file ... ParseFile(); } // ------------------------------------------------------------------------------------------------ unsigned int SMDImporter::GetTextureIndex(const std::string& filename) { unsigned int iIndex = 0; for (std::vector::const_iterator i = aszTextures.begin(); i != aszTextures.end();++i,++iIndex) { // case-insensitive ... it's a path if (0 == ASSIMP_stricmp ( filename.c_str(),(*i).c_str())) { return iIndex; } } iIndex = (unsigned int)aszTextures.size(); aszTextures.push_back(filename); return iIndex; } // ------------------------------------------------------------------------------------------------ // Parse the nodes section of the file void SMDImporter::ParseNodesSection(const char* szCurrent, const char** szCurrentOut, const char *end) { for ( ;; ) { // "end\n" - Ends the nodes section if (0 == ASSIMP_strincmp(szCurrent, "end", 3) && IsSpaceOrNewLine(*(szCurrent+3))) { szCurrent += 4; break; } ParseNodeInfo(szCurrent,&szCurrent, end); } SkipSpacesAndLineEnd(szCurrent, &szCurrent, end); *szCurrentOut = szCurrent; } // ------------------------------------------------------------------------------------------------ // Parse the triangles section of the file void SMDImporter::ParseTrianglesSection(const char *szCurrent, const char **szCurrentOut, const char *end) { // Parse a triangle, parse another triangle, parse the next triangle ... // and so on until we reach a token that looks quite similar to "end" for ( ;; ) { if(!SkipSpacesAndLineEnd(szCurrent,&szCurrent, end)) { break; } // "end\n" - Ends the triangles section if (TokenMatch(szCurrent,"end",3)) { break; } ParseTriangle(szCurrent,&szCurrent, end); } SkipSpacesAndLineEnd(szCurrent,&szCurrent, end); *szCurrentOut = szCurrent; } // ------------------------------------------------------------------------------------------------ // Parse the vertex animation section of the file void SMDImporter::ParseVASection(const char *szCurrent, const char **szCurrentOut, const char *end) { unsigned int iCurIndex = 0; for ( ;; ) { if (!SkipSpacesAndLineEnd(szCurrent,&szCurrent, end)) { break; } // "end\n" - Ends the "vertexanimation" section if (TokenMatch(szCurrent,"end",3)) { break; } // "time \n" if (TokenMatch(szCurrent,"time",4)) { // NOTE: The doc says that time values COULD be negative ... // NOTE2: this is the shape key -> valve docs int iTime = 0; if (!ParseSignedInt(szCurrent, &szCurrent, end, iTime) || configFrameID != (unsigned int)iTime) { break; } SkipLine(szCurrent,&szCurrent, end); } else { if(0 == iCurIndex) { asTriangles.emplace_back(); } if (++iCurIndex == 3) { iCurIndex = 0; } ParseVertex(szCurrent,&szCurrent, end, asTriangles.back().avVertices[iCurIndex],true); } } if (iCurIndex != 2 && !asTriangles.empty()) { // we want to no degenerates, so throw this triangle away asTriangles.pop_back(); } SkipSpacesAndLineEnd(szCurrent,&szCurrent, end); *szCurrentOut = szCurrent; } // ------------------------------------------------------------------------------------------------ // Parse the skeleton section of the file void SMDImporter::ParseSkeletonSection(const char *szCurrent, const char **szCurrentOut, const char *end) { int iTime = 0; for ( ;; ) { if (!SkipSpacesAndLineEnd(szCurrent,&szCurrent, end)) { break; } // "end\n" - Ends the skeleton section if (TokenMatch(szCurrent,"end",3)) { break; } else if (TokenMatch(szCurrent,"time",4)) { // "time \n" - Specifies the current animation frame if (!ParseSignedInt(szCurrent, &szCurrent, end, iTime)) { break; } iSmallestFrame = std::min(iSmallestFrame,iTime); SkipLine(szCurrent, &szCurrent, end); } else { ParseSkeletonElement(szCurrent, &szCurrent, end, iTime); } } *szCurrentOut = szCurrent; } // ------------------------------------------------------------------------------------------------ #define SMDI_PARSE_RETURN { \ SkipLine(szCurrent,&szCurrent, end); \ *szCurrentOut = szCurrent; \ return; \ } // ------------------------------------------------------------------------------------------------ // Parse a node line void SMDImporter::ParseNodeInfo(const char *szCurrent, const char **szCurrentOut, const char *end) { unsigned int iBone = 0; SkipSpacesAndLineEnd(szCurrent, &szCurrent, end); if ( !ParseUnsignedInt(szCurrent, &szCurrent, end, iBone) || !SkipSpaces(szCurrent,&szCurrent, end)) { throw DeadlyImportError("Unexpected EOF/EOL while parsing bone index"); } if (iBone == UINT_MAX) { LogErrorNoThrow("Invalid bone number while parsing bone index"); SMDI_PARSE_RETURN; } // add our bone to the list if (iBone >= asBones.size()) { asBones.resize(iBone+1); } SMD::Bone& bone = asBones[iBone]; bool bQuota = true; if ('\"' != *szCurrent) { LogWarning("Bone name is expected to be enclosed in " "double quotation marks. "); bQuota = false; } else { ++szCurrent; } const char* szEnd = szCurrent; for ( ;; ) { if (bQuota && '\"' == *szEnd) { iBone = (unsigned int)(szEnd - szCurrent); ++szEnd; break; } else if (!bQuota && IsSpaceOrNewLine(*szEnd)) { iBone = (unsigned int)(szEnd - szCurrent); break; } else if (!(*szEnd)) { LogErrorNoThrow("Unexpected EOF/EOL while parsing bone name"); SMDI_PARSE_RETURN; } ++szEnd; } bone.mName = std::string(szCurrent,iBone); szCurrent = szEnd; // the only negative bone parent index that could occur is -1 AFAIK if(!ParseSignedInt(szCurrent, &szCurrent, end, (int&)bone.iParent)) { LogErrorNoThrow("Unexpected EOF/EOL while parsing bone parent index. Assuming -1"); SMDI_PARSE_RETURN; } // go to the beginning of the next line SMDI_PARSE_RETURN; } // ------------------------------------------------------------------------------------------------ // Parse a skeleton element void SMDImporter::ParseSkeletonElement(const char *szCurrent, const char **szCurrentOut, const char *end, int iTime) { aiVector3D vPos; aiVector3D vRot; unsigned int iBone = 0; if (!ParseUnsignedInt(szCurrent, &szCurrent, end, iBone)) { ASSIMP_LOG_ERROR("Unexpected EOF/EOL while parsing bone index"); SMDI_PARSE_RETURN; } if (iBone >= asBones.size()) { LogErrorNoThrow("Bone index in skeleton section is out of range"); SMDI_PARSE_RETURN; } SMD::Bone& bone = asBones[iBone]; bone.sAnim.asKeys.emplace_back(); SMD::Bone::Animation::MatrixKey& key = bone.sAnim.asKeys.back(); key.dTime = (double)iTime; if(!ParseFloat(szCurrent, &szCurrent, end, (float&)vPos.x)) { LogErrorNoThrow("Unexpected EOF/EOL while parsing bone.pos.x"); SMDI_PARSE_RETURN; } if(!ParseFloat(szCurrent, &szCurrent, end, (float&)vPos.y)) { LogErrorNoThrow("Unexpected EOF/EOL while parsing bone.pos.y"); SMDI_PARSE_RETURN; } if(!ParseFloat(szCurrent, &szCurrent, end, (float&)vPos.z)) { LogErrorNoThrow("Unexpected EOF/EOL while parsing bone.pos.z"); SMDI_PARSE_RETURN; } if(!ParseFloat(szCurrent, &szCurrent, end, (float&)vRot.x)) { LogErrorNoThrow("Unexpected EOF/EOL while parsing bone.rot.x"); SMDI_PARSE_RETURN; } if(!ParseFloat(szCurrent, &szCurrent, end, (float&)vRot.y)) { LogErrorNoThrow("Unexpected EOF/EOL while parsing bone.rot.y"); SMDI_PARSE_RETURN; } if(!ParseFloat(szCurrent, &szCurrent, end, (float&)vRot.z)) { LogErrorNoThrow("Unexpected EOF/EOL while parsing bone.rot.z"); SMDI_PARSE_RETURN; } // build the transformation matrix of the key key.matrix.FromEulerAnglesXYZ(vRot.x,vRot.y,vRot.z); { aiMatrix4x4 mTemp; mTemp.a4 = vPos.x; mTemp.b4 = vPos.y; mTemp.c4 = vPos.z; key.matrix = mTemp * key.matrix; } key.vPos = vPos; key.vRot = vRot; // go to the beginning of the next line SMDI_PARSE_RETURN; } // ------------------------------------------------------------------------------------------------ // Parse a triangle void SMDImporter::ParseTriangle(const char *szCurrent, const char **szCurrentOut, const char *end) { asTriangles.emplace_back(); SMD::Face& face = asTriangles.back(); if(!SkipSpaces(szCurrent, &szCurrent, end)) { LogErrorNoThrow("Unexpected EOF/EOL while parsing a triangle"); return; } // read the texture file name const char* szLast = szCurrent; while (!IsSpaceOrNewLine(*++szCurrent)); // ... and get the index that belongs to this file name face.iTexture = GetTextureIndex(std::string(szLast,(uintptr_t)szCurrent-(uintptr_t)szLast)); SkipSpacesAndLineEnd(szCurrent, &szCurrent, end); // load three vertices for (auto &avVertex : face.avVertices) { ParseVertex(szCurrent, &szCurrent, end, avVertex); } *szCurrentOut = szCurrent; } // ------------------------------------------------------------------------------------------------ // Parse a float bool SMDImporter::ParseFloat(const char *szCurrent, const char **szCurrentOut, const char *end, float &out) { if (!SkipSpaces(&szCurrent, end)) { return false; } *szCurrentOut = fast_atoreal_move(szCurrent,out); return true; } // ------------------------------------------------------------------------------------------------ // Parse an unsigned int bool SMDImporter::ParseUnsignedInt(const char *szCurrent, const char **szCurrentOut, const char *end, unsigned int &out) { if(!SkipSpaces(&szCurrent, end)) { return false; } out = strtoul10(szCurrent,szCurrentOut); return true; } // ------------------------------------------------------------------------------------------------ // Parse a signed int bool SMDImporter::ParseSignedInt(const char *szCurrent, const char **szCurrentOut, const char *end, int &out) { if(!SkipSpaces(&szCurrent, end)) { return false; } out = strtol10(szCurrent,szCurrentOut); return true; } // ------------------------------------------------------------------------------------------------ // Parse a vertex void SMDImporter::ParseVertex(const char* szCurrent, const char **szCurrentOut, const char *end, SMD::Vertex &vertex, bool bVASection /*= false*/) { if (SkipSpaces(&szCurrent, end) && IsLineEnd(*szCurrent)) { SkipSpacesAndLineEnd(szCurrent,&szCurrent, end); return ParseVertex(szCurrent, szCurrentOut, end, vertex, bVASection); } if(!ParseSignedInt(szCurrent, &szCurrent, end, (int&)vertex.iParentNode)) { LogErrorNoThrow("Unexpected EOF/EOL while parsing vertex.parent"); SMDI_PARSE_RETURN; } if(!ParseFloat(szCurrent, &szCurrent, end, (float&)vertex.pos.x)) { LogErrorNoThrow("Unexpected EOF/EOL while parsing vertex.pos.x"); SMDI_PARSE_RETURN; } if(!ParseFloat(szCurrent, &szCurrent, end, (float&)vertex.pos.y)) { LogErrorNoThrow("Unexpected EOF/EOL while parsing vertex.pos.y"); SMDI_PARSE_RETURN; } if(!ParseFloat(szCurrent, &szCurrent, end, (float&)vertex.pos.z)) { LogErrorNoThrow("Unexpected EOF/EOL while parsing vertex.pos.z"); SMDI_PARSE_RETURN; } if(!ParseFloat(szCurrent,&szCurrent,end, (float&)vertex.nor.x)) { LogErrorNoThrow("Unexpected EOF/EOL while parsing vertex.nor.x"); SMDI_PARSE_RETURN; } if(!ParseFloat(szCurrent,&szCurrent, end, (float&)vertex.nor.y)) { LogErrorNoThrow("Unexpected EOF/EOL while parsing vertex.nor.y"); SMDI_PARSE_RETURN; } if(!ParseFloat(szCurrent, &szCurrent, end, (float&)vertex.nor.z)) { LogErrorNoThrow("Unexpected EOF/EOL while parsing vertex.nor.z"); SMDI_PARSE_RETURN; } if (bVASection) { SMDI_PARSE_RETURN; } if(!ParseFloat(szCurrent, &szCurrent, end, (float&)vertex.uv.x)) { LogErrorNoThrow("Unexpected EOF/EOL while parsing vertex.uv.x"); SMDI_PARSE_RETURN; } if(!ParseFloat(szCurrent, &szCurrent, end, (float&)vertex.uv.y)) { LogErrorNoThrow("Unexpected EOF/EOL while parsing vertex.uv.y"); SMDI_PARSE_RETURN; } // now read the number of bones affecting this vertex // all elements from now are fully optional, we don't need them unsigned int iSize = 0; if(!ParseUnsignedInt(szCurrent, &szCurrent, end, iSize)) { SMDI_PARSE_RETURN; } vertex.aiBoneLinks.resize(iSize,std::pair(0,0.0f)); for (auto &aiBoneLink : vertex.aiBoneLinks) { if(!ParseUnsignedInt(szCurrent, &szCurrent, end, aiBoneLink.first)) { SMDI_PARSE_RETURN; } if(!ParseFloat(szCurrent, &szCurrent, end, aiBoneLink.second)) { SMDI_PARSE_RETURN; } } // go to the beginning of the next line SMDI_PARSE_RETURN; } } // namespace Assimp #endif // !! ASSIMP_BUILD_NO_SMD_IMPORTER