/* --------------------------------------------------------------------------- Open Asset Import Library (assimp) --------------------------------------------------------------------------- Copyright (c) 2006-2022, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file Implementation of the post processing step to join identical vertices * for all imported meshes */ #ifndef ASSIMP_BUILD_NO_JOINVERTICES_PROCESS #include "JoinVerticesProcess.h" #include "ProcessHelper.h" #include #include #include #include #include using namespace Assimp; // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer JoinVerticesProcess::JoinVerticesProcess() = default; // ------------------------------------------------------------------------------------------------ // Destructor, private as well JoinVerticesProcess::~JoinVerticesProcess() = default; // ------------------------------------------------------------------------------------------------ // Returns whether the processing step is present in the given flag field. bool JoinVerticesProcess::IsActive( unsigned int pFlags) const { return (pFlags & aiProcess_JoinIdenticalVertices) != 0; } // ------------------------------------------------------------------------------------------------ // Executes the post processing step on the given imported data. void JoinVerticesProcess::Execute( aiScene* pScene) { ASSIMP_LOG_DEBUG("JoinVerticesProcess begin"); // get the total number of vertices BEFORE the step is executed int iNumOldVertices = 0; if (!DefaultLogger::isNullLogger()) { for( unsigned int a = 0; a < pScene->mNumMeshes; a++) { iNumOldVertices += pScene->mMeshes[a]->mNumVertices; } } // execute the step int iNumVertices = 0; for( unsigned int a = 0; a < pScene->mNumMeshes; a++) { iNumVertices += ProcessMesh( pScene->mMeshes[a],a); } pScene->mFlags |= AI_SCENE_FLAGS_NON_VERBOSE_FORMAT; // if logging is active, print detailed statistics if (!DefaultLogger::isNullLogger()) { if (iNumOldVertices == iNumVertices) { ASSIMP_LOG_DEBUG("JoinVerticesProcess finished "); return; } // Show statistics ASSIMP_LOG_INFO("JoinVerticesProcess finished | Verts in: ", iNumOldVertices, " out: ", iNumVertices, " | ~", ((iNumOldVertices - iNumVertices) / (float)iNumOldVertices) * 100.f ); } } namespace { bool areVerticesEqual(const Vertex &lhs, const Vertex &rhs, bool complex) { // A little helper to find locally close vertices faster. // Try to reuse the lookup table from the last step. const static float epsilon = 1e-5f; // Squared because we check against squared length of the vector difference static const float squareEpsilon = epsilon * epsilon; // Square compare is useful for animeshes vertices compare if ((lhs.position - rhs.position).SquareLength() > squareEpsilon) { return false; } // We just test the other attributes even if they're not present in the mesh. // In this case they're initialized to 0 so the comparison succeeds. // By this method the non-present attributes are effectively ignored in the comparison. if ((lhs.normal - rhs.normal).SquareLength() > squareEpsilon) { return false; } if ((lhs.texcoords[0] - rhs.texcoords[0]).SquareLength() > squareEpsilon) { return false; } if ((lhs.tangent - rhs.tangent).SquareLength() > squareEpsilon) { return false; } if ((lhs.bitangent - rhs.bitangent).SquareLength() > squareEpsilon) { return false; } // Usually we won't have vertex colors or multiple UVs, so we can skip from here // Actually this increases runtime performance slightly, at least if branch // prediction is on our side. if (complex) { for (int i = 0; i < 8; i++) { if (i > 0 && (lhs.texcoords[i] - rhs.texcoords[i]).SquareLength() > squareEpsilon) { return false; } if (GetColorDifference(lhs.colors[i], rhs.colors[i]) > squareEpsilon) { return false; } } } return true; } template void updateXMeshVertices(XMesh *pMesh, std::vector &uniqueVertices) { // replace vertex data with the unique data sets pMesh->mNumVertices = (unsigned int)uniqueVertices.size(); // ---------------------------------------------------------------------------- // NOTE - we're *not* calling Vertex::SortBack() because it would check for // presence of every single vertex component once PER VERTEX. And our CPU // dislikes branches, even if they're easily predictable. // ---------------------------------------------------------------------------- // Position, if present (check made for aiAnimMesh) if (pMesh->mVertices) { delete [] pMesh->mVertices; pMesh->mVertices = new aiVector3D[pMesh->mNumVertices]; for (unsigned int a = 0; a < pMesh->mNumVertices; a++) { pMesh->mVertices[a] = uniqueVertices[a].position; } } // Normals, if present if (pMesh->mNormals) { delete [] pMesh->mNormals; pMesh->mNormals = new aiVector3D[pMesh->mNumVertices]; for( unsigned int a = 0; a < pMesh->mNumVertices; a++) { pMesh->mNormals[a] = uniqueVertices[a].normal; } } // Tangents, if present if (pMesh->mTangents) { delete [] pMesh->mTangents; pMesh->mTangents = new aiVector3D[pMesh->mNumVertices]; for (unsigned int a = 0; a < pMesh->mNumVertices; a++) { pMesh->mTangents[a] = uniqueVertices[a].tangent; } } // Bitangents as well if (pMesh->mBitangents) { delete [] pMesh->mBitangents; pMesh->mBitangents = new aiVector3D[pMesh->mNumVertices]; for (unsigned int a = 0; a < pMesh->mNumVertices; a++) { pMesh->mBitangents[a] = uniqueVertices[a].bitangent; } } // Vertex colors for (unsigned int a = 0; pMesh->HasVertexColors(a); a++) { delete [] pMesh->mColors[a]; pMesh->mColors[a] = new aiColor4D[pMesh->mNumVertices]; for( unsigned int b = 0; b < pMesh->mNumVertices; b++) { pMesh->mColors[a][b] = uniqueVertices[b].colors[a]; } } // Texture coords for (unsigned int a = 0; pMesh->HasTextureCoords(a); a++) { delete [] pMesh->mTextureCoords[a]; pMesh->mTextureCoords[a] = new aiVector3D[pMesh->mNumVertices]; for (unsigned int b = 0; b < pMesh->mNumVertices; b++) { pMesh->mTextureCoords[a][b] = uniqueVertices[b].texcoords[a]; } } } } // namespace // ------------------------------------------------------------------------------------------------ // Unites identical vertices in the given mesh // combine hashes inline void hash_combine(std::size_t &) { // empty } template inline void hash_combine(std::size_t& seed, const T& v, Rest... rest) { std::hash hasher; seed ^= hasher(v) + 0x9e3779b9 + (seed<<6) + (seed>>2); hash_combine(seed, rest...); } //template specialization for std::hash for Vertex template<> struct std::hash { std::size_t operator()(Vertex const& v) const noexcept { size_t seed = 0; hash_combine(seed, v.position.x ,v.position.y,v.position.z); return seed; } }; //template specialization for std::equal_to for Vertex template<> struct std::equal_to { bool operator()(const Vertex &lhs, const Vertex &rhs) const { return areVerticesEqual(lhs, rhs, false); } }; // now start the JoinVerticesProcess int JoinVerticesProcess::ProcessMesh( aiMesh* pMesh, unsigned int meshIndex) { static_assert( AI_MAX_NUMBER_OF_COLOR_SETS == 8, "AI_MAX_NUMBER_OF_COLOR_SETS == 8"); static_assert( AI_MAX_NUMBER_OF_TEXTURECOORDS == 8, "AI_MAX_NUMBER_OF_TEXTURECOORDS == 8"); // Return early if we don't have any positions if (!pMesh->HasPositions() || !pMesh->HasFaces()) { return 0; } // We should care only about used vertices, not all of them // (this can happen due to original file vertices buffer being used by // multiple meshes) std::unordered_set usedVertexIndices; usedVertexIndices.reserve(pMesh->mNumVertices); for( unsigned int a = 0; a < pMesh->mNumFaces; a++) { aiFace& face = pMesh->mFaces[a]; for( unsigned int b = 0; b < face.mNumIndices; b++) { usedVertexIndices.insert(face.mIndices[b]); } } // We'll never have more vertices afterwards. std::vector uniqueVertices; uniqueVertices.reserve( pMesh->mNumVertices); // For each vertex the index of the vertex it was replaced by. // Since the maximal number of vertices is 2^31-1, the most significand bit can be used to mark // whether a new vertex was created for the index (true) or if it was replaced by an existing // unique vertex (false). This saves an additional std::vector and greatly enhances // branching performance. static_assert(AI_MAX_VERTICES == 0x7fffffff, "AI_MAX_VERTICES == 0x7fffffff"); std::vector replaceIndex( pMesh->mNumVertices, 0xffffffff); // float posEpsilonSqr; SpatialSort *vertexFinder = nullptr; SpatialSort _vertexFinder; typedef std::pair SpatPair; if (shared) { std::vector* avf; shared->GetProperty(AI_SPP_SPATIAL_SORT,avf); if (avf) { SpatPair& blubb = (*avf)[meshIndex]; vertexFinder = &blubb.first; // posEpsilonSqr = blubb.second; } } if (!vertexFinder) { // bad, need to compute it. _vertexFinder.Fill(pMesh->mVertices, pMesh->mNumVertices, sizeof( aiVector3D)); vertexFinder = &_vertexFinder; // posEpsilonSqr = ComputePositionEpsilon(pMesh); } // Again, better waste some bytes than a realloc ... std::vector verticesFound; verticesFound.reserve(10); // Run an optimized code path if we don't have multiple UVs or vertex colors. // This should yield false in more than 99% of all imports ... const bool hasAnimMeshes = pMesh->mNumAnimMeshes > 0; // We'll never have more vertices afterwards. std::vector> uniqueAnimatedVertices; if (hasAnimMeshes) { uniqueAnimatedVertices.resize(pMesh->mNumAnimMeshes); for (unsigned int animMeshIndex = 0; animMeshIndex < pMesh->mNumAnimMeshes; animMeshIndex++) { uniqueAnimatedVertices[animMeshIndex].reserve(pMesh->mNumVertices); } } // a map that maps a vertix to its new index std::unordered_map vertex2Index; // we can not end up with more vertices than we started with vertex2Index.reserve(pMesh->mNumVertices); // Now check each vertex if it brings something new to the table int newIndex = 0; for( unsigned int a = 0; a < pMesh->mNumVertices; a++) { // if the vertex is unused Do nothing if (usedVertexIndices.find(a) == usedVertexIndices.end()) { continue; } // collect the vertex data Vertex v(pMesh,a); // is the vertex already in the map? auto it = vertex2Index.find(v); // if the vertex is not in the map then it is a new vertex add it. if (it == vertex2Index.end()) { // this is a new vertex give it a new index vertex2Index[v] = newIndex; //keep track of its index and increment 1 replaceIndex[a] = newIndex++; // add the vertex to the unique vertices uniqueVertices.push_back(v); if (hasAnimMeshes) { for (unsigned int animMeshIndex = 0; animMeshIndex < pMesh->mNumAnimMeshes; animMeshIndex++) { Vertex aniMeshVertex(pMesh->mAnimMeshes[animMeshIndex], a); uniqueAnimatedVertices[animMeshIndex].push_back(v); } } } else{ // if the vertex is already there just find the replace index that is appropriate to it replaceIndex[a] = it->second; } } if (!DefaultLogger::isNullLogger() && DefaultLogger::get()->getLogSeverity() == Logger::VERBOSE) { ASSIMP_LOG_VERBOSE_DEBUG( "Mesh ",meshIndex, " (", (pMesh->mName.length ? pMesh->mName.data : "unnamed"), ") | Verts in: ",pMesh->mNumVertices, " out: ", uniqueVertices.size(), " | ~", ((pMesh->mNumVertices - uniqueVertices.size()) / (float)pMesh->mNumVertices) * 100.f, "%" ); } updateXMeshVertices(pMesh, uniqueVertices); if (hasAnimMeshes) { for (unsigned int animMeshIndex = 0; animMeshIndex < pMesh->mNumAnimMeshes; animMeshIndex++) { updateXMeshVertices(pMesh->mAnimMeshes[animMeshIndex], uniqueAnimatedVertices[animMeshIndex]); } } // adjust the indices in all faces for( unsigned int a = 0; a < pMesh->mNumFaces; a++) { aiFace& face = pMesh->mFaces[a]; for( unsigned int b = 0; b < face.mNumIndices; b++) { face.mIndices[b] = replaceIndex[face.mIndices[b]] & ~0x80000000; } } // adjust bone vertex weights. for( int a = 0; a < (int)pMesh->mNumBones; a++) { aiBone* bone = pMesh->mBones[a]; std::vector newWeights; newWeights.reserve( bone->mNumWeights); if (nullptr != bone->mWeights) { for ( unsigned int b = 0; b < bone->mNumWeights; b++ ) { const aiVertexWeight& ow = bone->mWeights[ b ]; // if the vertex is a unique one, translate it if ( !( replaceIndex[ ow.mVertexId ] & 0x80000000 ) ) { aiVertexWeight nw; nw.mVertexId = replaceIndex[ ow.mVertexId ]; nw.mWeight = ow.mWeight; newWeights.push_back( nw ); } } } else { ASSIMP_LOG_ERROR( "X-Export: aiBone shall contain weights, but pointer to them is nullptr." ); } if (newWeights.size() > 0) { // kill the old and replace them with the translated weights delete [] bone->mWeights; bone->mNumWeights = (unsigned int)newWeights.size(); bone->mWeights = new aiVertexWeight[bone->mNumWeights]; memcpy( bone->mWeights, &newWeights[0], bone->mNumWeights * sizeof( aiVertexWeight)); } } return pMesh->mNumVertices; } #endif // !! ASSIMP_BUILD_NO_JOINVERTICES_PROCESS