/* --------------------------------------------------------------------------- Open Asset Import Library (assimp) --------------------------------------------------------------------------- Copyright (c) 2006-2021, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /// \file AMFImporter_Postprocess.cpp /// \brief Convert built scenegraph and objects to Assimp scenegraph. /// \date 2016 /// \author smal.root@gmail.com #ifndef ASSIMP_BUILD_NO_AMF_IMPORTER #include "AMFImporter.hpp" #include #include #include #include namespace Assimp { aiColor4D AMFImporter::SPP_Material::GetColor(const float /*pX*/, const float /*pY*/, const float /*pZ*/) const { aiColor4D tcol; // Check if stored data are supported. if (!Composition.empty()) { throw DeadlyImportError("IME. GetColor for composition"); } else if (Color->Composed) { throw DeadlyImportError("IME. GetColor, composed color"); } else { tcol = Color->Color; } // Check if default color must be used if ((tcol.r == 0) && (tcol.g == 0) && (tcol.b == 0) && (tcol.a == 0)) { tcol.r = 0.5f; tcol.g = 0.5f; tcol.b = 0.5f; tcol.a = 1; } return tcol; } void AMFImporter::PostprocessHelper_CreateMeshDataArray(const AMFMesh &pNodeElement, std::vector &pVertexCoordinateArray, std::vector &pVertexColorArray) const { AMFVertices *vn = nullptr; size_t col_idx; // All data stored in "vertices", search for it. for (AMFNodeElementBase *ne_child : pNodeElement.Child) { if (ne_child->Type == AMFNodeElementBase::ENET_Vertices) { vn = (AMFVertices*)ne_child; } } // If "vertices" not found then no work for us. if (vn == nullptr) { return; } // all coordinates stored as child and we need to reserve space for future push_back's. pVertexCoordinateArray.reserve(vn->Child.size()); // colors count equal vertices count. pVertexColorArray.resize(vn->Child.size()); col_idx = 0; // Inside vertices collect all data and place to arrays for (AMFNodeElementBase *vn_child : vn->Child) { // vertices, colors if (vn_child->Type == AMFNodeElementBase::ENET_Vertex) { // by default clear color for current vertex pVertexColorArray[col_idx] = nullptr; for (AMFNodeElementBase *vtx : vn_child->Child) { if (vtx->Type == AMFNodeElementBase::ENET_Coordinates) { pVertexCoordinateArray.push_back(((AMFCoordinates *)vtx)->Coordinate); continue; } if (vtx->Type == AMFNodeElementBase::ENET_Color) { pVertexColorArray[col_idx] = (AMFColor *)vtx; continue; } } ++col_idx; } } } size_t AMFImporter::PostprocessHelper_GetTextureID_Or_Create(const std::string &r, const std::string &g, const std::string &b, const std::string &a) { if (r.empty() && g.empty() && b.empty() && a.empty()) { throw DeadlyImportError("PostprocessHelper_GetTextureID_Or_Create. At least one texture ID must be defined."); } std::string TextureConverted_ID = r + "_" + g + "_" + b + "_" + a; size_t TextureConverted_Index = 0; for (const SPP_Texture &tex_convd : mTexture_Converted) { if (tex_convd.ID == TextureConverted_ID) { return TextureConverted_Index; } else { ++TextureConverted_Index; } } // Converted texture not found, create it. AMFTexture *src_texture[4] { nullptr }; std::vector src_texture_4check; SPP_Texture converted_texture; { // find all specified source textures AMFNodeElementBase *t_tex = nullptr; // R if (!r.empty()) { if (!Find_NodeElement(r, AMFNodeElementBase::EType::ENET_Texture, &t_tex)) { Throw_ID_NotFound(r); } src_texture[0] = (AMFTexture *)t_tex; src_texture_4check.push_back((AMFTexture *)t_tex); } else { src_texture[0] = nullptr; } // G if (!g.empty()) { if (!Find_NodeElement(g, AMFNodeElementBase::ENET_Texture, &t_tex)) { Throw_ID_NotFound(g); } src_texture[1] = (AMFTexture *)t_tex; src_texture_4check.push_back((AMFTexture *)t_tex); } else { src_texture[1] = nullptr; } // B if (!b.empty()) { if (!Find_NodeElement(b, AMFNodeElementBase::ENET_Texture, &t_tex)) { Throw_ID_NotFound(b); } src_texture[2] = (AMFTexture *)t_tex; src_texture_4check.push_back((AMFTexture *)t_tex); } else { src_texture[2] = nullptr; } // A if (!a.empty()) { if (!Find_NodeElement(a, AMFNodeElementBase::ENET_Texture, &t_tex)) { Throw_ID_NotFound(a); } src_texture[3] = (AMFTexture *)t_tex; src_texture_4check.push_back((AMFTexture *)t_tex); } else { src_texture[3] = nullptr; } } // END: find all specified source textures // check that all textures has same size if (src_texture_4check.size() > 1) { for (size_t i = 0, i_e = (src_texture_4check.size() - 1); i < i_e; i++) { if ((src_texture_4check[i]->Width != src_texture_4check[i + 1]->Width) || (src_texture_4check[i]->Height != src_texture_4check[i + 1]->Height) || (src_texture_4check[i]->Depth != src_texture_4check[i + 1]->Depth)) { throw DeadlyImportError("PostprocessHelper_GetTextureID_Or_Create. Source texture must has the same size."); } } } // if(src_texture_4check.size() > 1) // set texture attributes converted_texture.Width = src_texture_4check[0]->Width; converted_texture.Height = src_texture_4check[0]->Height; converted_texture.Depth = src_texture_4check[0]->Depth; // if one of source texture is tiled then converted texture is tiled too. converted_texture.Tiled = false; for (uint8_t i = 0; i < src_texture_4check.size(); ++i) { converted_texture.Tiled |= src_texture_4check[i]->Tiled; } // Create format hint. strcpy(converted_texture.FormatHint, "rgba0000"); // copy initial string. if (!r.empty()) converted_texture.FormatHint[4] = '8'; if (!g.empty()) converted_texture.FormatHint[5] = '8'; if (!b.empty()) converted_texture.FormatHint[6] = '8'; if (!a.empty()) converted_texture.FormatHint[7] = '8'; // Сopy data of textures. size_t tex_size = 0; size_t step = 0; size_t off_g = 0; size_t off_b = 0; // Calculate size of the target array and rule how data will be copied. if (!r.empty() && nullptr != src_texture[0]) { tex_size += src_texture[0]->Data.size(); step++, off_g++, off_b++; } if (!g.empty() && nullptr != src_texture[1]) { tex_size += src_texture[1]->Data.size(); step++, off_b++; } if (!b.empty() && nullptr != src_texture[2]) { tex_size += src_texture[2]->Data.size(); step++; } if (!a.empty() && nullptr != src_texture[3]) { tex_size += src_texture[3]->Data.size(); step++; } // Create target array. converted_texture.Data = new uint8_t[tex_size]; // And copy data auto CopyTextureData = [&](const std::string &pID, const size_t pOffset, const size_t pStep, const uint8_t pSrcTexNum) -> void { if (!pID.empty()) { for (size_t idx_target = pOffset, idx_src = 0; idx_target < tex_size; idx_target += pStep, idx_src++) { AMFTexture *tex = src_texture[pSrcTexNum]; ai_assert(tex); converted_texture.Data[idx_target] = tex->Data.at(idx_src); } } }; // auto CopyTextureData = [&](const size_t pOffset, const size_t pStep, const uint8_t pSrcTexNum) -> void CopyTextureData(r, 0, step, 0); CopyTextureData(g, off_g, step, 1); CopyTextureData(b, off_b, step, 2); CopyTextureData(a, step - 1, step, 3); // Store new converted texture ID converted_texture.ID = TextureConverted_ID; // Store new converted texture mTexture_Converted.push_back(converted_texture); return TextureConverted_Index; } void AMFImporter::PostprocessHelper_SplitFacesByTextureID(std::list &pInputList, std::list> &pOutputList_Separated) { auto texmap_is_equal = [](const AMFTexMap *pTexMap1, const AMFTexMap *pTexMap2) -> bool { if ((pTexMap1 == nullptr) && (pTexMap2 == nullptr)) return true; if (pTexMap1 == nullptr) return false; if (pTexMap2 == nullptr) return false; if (pTexMap1->TextureID_R != pTexMap2->TextureID_R) return false; if (pTexMap1->TextureID_G != pTexMap2->TextureID_G) return false; if (pTexMap1->TextureID_B != pTexMap2->TextureID_B) return false; if (pTexMap1->TextureID_A != pTexMap2->TextureID_A) return false; return true; }; pOutputList_Separated.clear(); if (pInputList.empty()) return; do { SComplexFace face_start = pInputList.front(); std::list face_list_cur; for (std::list::iterator it = pInputList.begin(), it_end = pInputList.end(); it != it_end;) { if (texmap_is_equal(face_start.TexMap, it->TexMap)) { auto it_old = it; ++it; face_list_cur.push_back(*it_old); pInputList.erase(it_old); } else { ++it; } } if (!face_list_cur.empty()) pOutputList_Separated.push_back(face_list_cur); } while (!pInputList.empty()); } void AMFImporter::Postprocess_AddMetadata(const AMFMetaDataArray &metadataList, aiNode &sceneNode) const { if (metadataList.empty()) { return; } if (sceneNode.mMetaData != nullptr) { throw DeadlyImportError("Postprocess. MetaData member in node are not nullptr. Something went wrong."); } // copy collected metadata to output node. sceneNode.mMetaData = aiMetadata::Alloc(static_cast(metadataList.size())); size_t meta_idx(0); for (const AMFMetadata *metadata : metadataList) { sceneNode.mMetaData->Set(static_cast(meta_idx++), metadata->Type, aiString(metadata->Value)); } } void AMFImporter::Postprocess_BuildNodeAndObject(const AMFObject &pNodeElement, MeshArray &meshList, aiNode **pSceneNode) { AMFColor *object_color = nullptr; // create new aiNode and set name as has. *pSceneNode = new aiNode; (*pSceneNode)->mName = pNodeElement.ID; // read mesh and color for (const AMFNodeElementBase *ne_child : pNodeElement.Child) { std::vector vertex_arr; std::vector color_arr; // color for object if (ne_child->Type == AMFNodeElementBase::ENET_Color) { object_color = (AMFColor *) ne_child; } if (ne_child->Type == AMFNodeElementBase::ENET_Mesh) { // Create arrays from children of mesh: vertices. PostprocessHelper_CreateMeshDataArray(*((AMFMesh *)ne_child), vertex_arr, color_arr); // Use this arrays as a source when creating every aiMesh Postprocess_BuildMeshSet(*((AMFMesh *)ne_child), vertex_arr, color_arr, object_color, meshList, **pSceneNode); } } // for(const CAMFImporter_NodeElement* ne_child: pNodeElement) } void AMFImporter::Postprocess_BuildMeshSet(const AMFMesh &pNodeElement, const std::vector &pVertexCoordinateArray, const std::vector &pVertexColorArray, const AMFColor *pObjectColor, MeshArray &pMeshList, aiNode &pSceneNode) { std::list mesh_idx; // all data stored in "volume", search for it. for (const AMFNodeElementBase *ne_child : pNodeElement.Child) { const AMFColor *ne_volume_color = nullptr; const SPP_Material *cur_mat = nullptr; if (ne_child->Type == AMFNodeElementBase::ENET_Volume) { /******************* Get faces *******************/ const AMFVolume *ne_volume = reinterpret_cast(ne_child); std::list complex_faces_list; // List of the faces of the volume. std::list> complex_faces_toplist; // List of the face list for every mesh. // check if volume use material if (!ne_volume->MaterialID.empty()) { if (!Find_ConvertedMaterial(ne_volume->MaterialID, &cur_mat)) { Throw_ID_NotFound(ne_volume->MaterialID); } } // inside "volume" collect all data and place to arrays or create new objects for (const AMFNodeElementBase *ne_volume_child : ne_volume->Child) { // color for volume if (ne_volume_child->Type == AMFNodeElementBase::ENET_Color) { ne_volume_color = reinterpret_cast(ne_volume_child); } else if (ne_volume_child->Type == AMFNodeElementBase::ENET_Triangle) // triangles, triangles colors { const AMFTriangle &tri_al = *reinterpret_cast(ne_volume_child); SComplexFace complex_face; // initialize pointers complex_face.Color = nullptr; complex_face.TexMap = nullptr; // get data from triangle children: color, texture coordinates. if (tri_al.Child.size()) { for (const AMFNodeElementBase *ne_triangle_child : tri_al.Child) { if (ne_triangle_child->Type == AMFNodeElementBase::ENET_Color) complex_face.Color = reinterpret_cast(ne_triangle_child); else if (ne_triangle_child->Type == AMFNodeElementBase::ENET_TexMap) complex_face.TexMap = reinterpret_cast(ne_triangle_child); } } // if(tri_al.Child.size()) // create new face and store it. complex_face.Face.mNumIndices = 3; complex_face.Face.mIndices = new unsigned int[3]; complex_face.Face.mIndices[0] = static_cast(tri_al.V[0]); complex_face.Face.mIndices[1] = static_cast(tri_al.V[1]); complex_face.Face.mIndices[2] = static_cast(tri_al.V[2]); complex_faces_list.push_back(complex_face); } } // for(const CAMFImporter_NodeElement* ne_volume_child: ne_volume->Child) /**** Split faces list: one list per mesh ****/ PostprocessHelper_SplitFacesByTextureID(complex_faces_list, complex_faces_toplist); /***** Create mesh for every faces list ******/ for (std::list &face_list_cur : complex_faces_toplist) { auto VertexIndex_GetMinimal = [](const std::list &pFaceList, const size_t *pBiggerThan) -> size_t { size_t rv = 0; if (pBiggerThan != nullptr) { bool found = false; for (const SComplexFace &face : pFaceList) { for (size_t idx_vert = 0; idx_vert < face.Face.mNumIndices; idx_vert++) { if (face.Face.mIndices[idx_vert] > *pBiggerThan) { rv = face.Face.mIndices[idx_vert]; found = true; break; } } if (found) { break; } } if (!found) { return *pBiggerThan; } } else { rv = pFaceList.front().Face.mIndices[0]; } // if(pBiggerThan != nullptr) else for (const SComplexFace &face : pFaceList) { for (size_t vi = 0; vi < face.Face.mNumIndices; vi++) { if (face.Face.mIndices[vi] < rv) { if (pBiggerThan != nullptr) { if (face.Face.mIndices[vi] > *pBiggerThan) rv = face.Face.mIndices[vi]; } else { rv = face.Face.mIndices[vi]; } } } } // for(const SComplexFace& face: pFaceList) return rv; }; // auto VertexIndex_GetMinimal = [](const std::list& pFaceList, const size_t* pBiggerThan) -> size_t auto VertexIndex_Replace = [](std::list &pFaceList, const size_t pIdx_From, const size_t pIdx_To) -> void { for (const SComplexFace &face : pFaceList) { for (size_t vi = 0; vi < face.Face.mNumIndices; vi++) { if (face.Face.mIndices[vi] == pIdx_From) face.Face.mIndices[vi] = static_cast(pIdx_To); } } }; // auto VertexIndex_Replace = [](std::list& pFaceList, const size_t pIdx_From, const size_t pIdx_To) -> void auto Vertex_CalculateColor = [&](const size_t pIdx) -> aiColor4D { // Color priorities(In descending order): // 1. triangle color; // 2. vertex color; // 3. volume color; // 4. object color; // 5. material; // 6. default - invisible coat. // // Fill vertices colors in color priority list above that's points from 1 to 6. if ((pIdx < pVertexColorArray.size()) && (pVertexColorArray[pIdx] != nullptr)) // check for vertex color { if (pVertexColorArray[pIdx]->Composed) throw DeadlyImportError("IME: vertex color composed"); else return pVertexColorArray[pIdx]->Color; } else if (ne_volume_color != nullptr) // check for volume color { if (ne_volume_color->Composed) throw DeadlyImportError("IME: volume color composed"); else return ne_volume_color->Color; } else if (pObjectColor != nullptr) // check for object color { if (pObjectColor->Composed) throw DeadlyImportError("IME: object color composed"); else return pObjectColor->Color; } else if (cur_mat != nullptr) // check for material { return cur_mat->GetColor(pVertexCoordinateArray.at(pIdx).x, pVertexCoordinateArray.at(pIdx).y, pVertexCoordinateArray.at(pIdx).z); } else // set default color. { return { 0, 0, 0, 0 }; } // if((vi < pVertexColorArray.size()) && (pVertexColorArray[vi] != nullptr)) else }; // auto Vertex_CalculateColor = [&](const size_t pIdx) -> aiColor4D aiMesh *tmesh = new aiMesh; tmesh->mPrimitiveTypes = aiPrimitiveType_TRIANGLE; // Only triangles is supported by AMF. // // set geometry and colors (vertices) // // copy faces/triangles tmesh->mNumFaces = static_cast(face_list_cur.size()); tmesh->mFaces = new aiFace[tmesh->mNumFaces]; // Create vertices list and optimize indices. Optimization mean following.In AMF all volumes use one big list of vertices. And one volume // can use only part of vertices list, for example: vertices list contain few thousands of vertices and volume use vertices 1, 3, 10. // Do you need all this thousands of garbage? Of course no. So, optimization step transform sparse indices set to continuous. size_t VertexCount_Max = tmesh->mNumFaces * 3; // 3 - triangles. std::vector vert_arr, texcoord_arr; std::vector col_arr; vert_arr.reserve(VertexCount_Max * 2); // "* 2" - see below TODO. col_arr.reserve(VertexCount_Max * 2); { // fill arrays size_t vert_idx_from, vert_idx_to; // first iteration. vert_idx_to = 0; vert_idx_from = VertexIndex_GetMinimal(face_list_cur, nullptr); vert_arr.push_back(pVertexCoordinateArray.at(vert_idx_from)); col_arr.push_back(Vertex_CalculateColor(vert_idx_from)); if (vert_idx_from != vert_idx_to) VertexIndex_Replace(face_list_cur, vert_idx_from, vert_idx_to); // rest iterations do { vert_idx_from = VertexIndex_GetMinimal(face_list_cur, &vert_idx_to); if (vert_idx_from == vert_idx_to) break; // all indices are transferred, vert_arr.push_back(pVertexCoordinateArray.at(vert_idx_from)); col_arr.push_back(Vertex_CalculateColor(vert_idx_from)); vert_idx_to++; if (vert_idx_from != vert_idx_to) VertexIndex_Replace(face_list_cur, vert_idx_from, vert_idx_to); } while (true); } // fill arrays. END. // // check if triangle colors are used and create additional faces if needed. // for (const SComplexFace &face_cur : face_list_cur) { if (face_cur.Color != nullptr) { aiColor4D face_color; size_t vert_idx_new = vert_arr.size(); if (face_cur.Color->Composed) throw DeadlyImportError("IME: face color composed"); else face_color = face_cur.Color->Color; for (size_t idx_ind = 0; idx_ind < face_cur.Face.mNumIndices; idx_ind++) { vert_arr.push_back(vert_arr.at(face_cur.Face.mIndices[idx_ind])); col_arr.push_back(face_color); face_cur.Face.mIndices[idx_ind] = static_cast(vert_idx_new++); } } // if(face_cur.Color != nullptr) } // for(const SComplexFace& face_cur: face_list_cur) // // if texture is used then copy texture coordinates too. // if (face_list_cur.front().TexMap != nullptr) { size_t idx_vert_new = vert_arr.size(); ///TODO: clean unused vertices. "* 2": in certain cases - mesh full of triangle colors - vert_arr will contain duplicated vertices for /// colored triangles and initial vertices (for colored vertices) which in real became unused. This part need more thinking about /// optimization. bool *idx_vert_used; idx_vert_used = new bool[VertexCount_Max * 2]; for (size_t i = 0, i_e = VertexCount_Max * 2; i < i_e; i++) idx_vert_used[i] = false; // This ID's will be used when set materials ID in scene. tmesh->mMaterialIndex = static_cast(PostprocessHelper_GetTextureID_Or_Create(face_list_cur.front().TexMap->TextureID_R, face_list_cur.front().TexMap->TextureID_G, face_list_cur.front().TexMap->TextureID_B, face_list_cur.front().TexMap->TextureID_A)); texcoord_arr.resize(VertexCount_Max * 2); for (const SComplexFace &face_cur : face_list_cur) { for (size_t idx_ind = 0; idx_ind < face_cur.Face.mNumIndices; idx_ind++) { const size_t idx_vert = face_cur.Face.mIndices[idx_ind]; if (!idx_vert_used[idx_vert]) { texcoord_arr.at(idx_vert) = face_cur.TexMap->TextureCoordinate[idx_ind]; idx_vert_used[idx_vert] = true; } else if (texcoord_arr.at(idx_vert) != face_cur.TexMap->TextureCoordinate[idx_ind]) { // in that case one vertex is shared with many texture coordinates. We need to duplicate vertex with another texture // coordinates. vert_arr.push_back(vert_arr.at(idx_vert)); col_arr.push_back(col_arr.at(idx_vert)); texcoord_arr.at(idx_vert_new) = face_cur.TexMap->TextureCoordinate[idx_ind]; face_cur.Face.mIndices[idx_ind] = static_cast(idx_vert_new++); } } // for(size_t idx_ind = 0; idx_ind < face_cur.Face.mNumIndices; idx_ind++) } // for(const SComplexFace& face_cur: face_list_cur) delete[] idx_vert_used; // shrink array texcoord_arr.resize(idx_vert_new); } // if(face_list_cur.front().TexMap != nullptr) // // copy collected data to mesh // tmesh->mNumVertices = static_cast(vert_arr.size()); tmesh->mVertices = new aiVector3D[tmesh->mNumVertices]; tmesh->mColors[0] = new aiColor4D[tmesh->mNumVertices]; memcpy(tmesh->mVertices, vert_arr.data(), tmesh->mNumVertices * sizeof(aiVector3D)); memcpy(tmesh->mColors[0], col_arr.data(), tmesh->mNumVertices * sizeof(aiColor4D)); if (texcoord_arr.size() > 0) { tmesh->mTextureCoords[0] = new aiVector3D[tmesh->mNumVertices]; memcpy(tmesh->mTextureCoords[0], texcoord_arr.data(), tmesh->mNumVertices * sizeof(aiVector3D)); tmesh->mNumUVComponents[0] = 2; // U and V stored in "x", "y" of aiVector3D. } size_t idx_face = 0; for (const SComplexFace &face_cur : face_list_cur) tmesh->mFaces[idx_face++] = face_cur.Face; // store new aiMesh mesh_idx.push_back(static_cast(pMeshList.size())); pMeshList.push_back(tmesh); } // for(const std::list& face_list_cur: complex_faces_toplist) } // if(ne_child->Type == CAMFImporter_NodeElement::ENET_Volume) } // for(const CAMFImporter_NodeElement* ne_child: pNodeElement.Child) // if meshes was created then assign new indices with current aiNode if (!mesh_idx.empty()) { std::list::const_iterator mit = mesh_idx.begin(); pSceneNode.mNumMeshes = static_cast(mesh_idx.size()); pSceneNode.mMeshes = new unsigned int[pSceneNode.mNumMeshes]; for (size_t i = 0; i < pSceneNode.mNumMeshes; i++) pSceneNode.mMeshes[i] = *mit++; } // if(mesh_idx.size() > 0) } void AMFImporter::Postprocess_BuildMaterial(const AMFMaterial &pMaterial) { SPP_Material new_mat; new_mat.ID = pMaterial.ID; for (const AMFNodeElementBase *mat_child : pMaterial.Child) { if (mat_child->Type == AMFNodeElementBase::ENET_Color) { new_mat.Color = (AMFColor*)mat_child; } else if (mat_child->Type == AMFNodeElementBase::ENET_Metadata) { new_mat.Metadata.push_back((AMFMetadata *)mat_child); } } // for(const CAMFImporter_NodeElement* mat_child; pMaterial.Child) // place converted material to special list mMaterial_Converted.push_back(new_mat); } void AMFImporter::Postprocess_BuildConstellation(AMFConstellation &pConstellation, NodeArray &nodeArray) const { aiNode *con_node; std::list ch_node; // We will build next hierarchy: // aiNode as parent () for set of nodes as a children // |- aiNode for transformation ( -> , ) - aiNode for pointing to object ("objectid") // ... // \_ aiNode for transformation ( -> , ) - aiNode for pointing to object ("objectid") con_node = new aiNode; con_node->mName = pConstellation.ID; // Walk through children and search for instances of another objects, constellations. for (const AMFNodeElementBase *ne : pConstellation.Child) { aiMatrix4x4 tmat; aiNode *t_node; aiNode *found_node; if (ne->Type == AMFNodeElementBase::ENET_Metadata) continue; if (ne->Type != AMFNodeElementBase::ENET_Instance) throw DeadlyImportError("Only nodes can be in ."); // create alias for conveniance AMFInstance &als = *((AMFInstance *)ne); // find referenced object if (!Find_ConvertedNode(als.ObjectID, nodeArray, &found_node)) Throw_ID_NotFound(als.ObjectID); // create node for applying transformation t_node = new aiNode; t_node->mParent = con_node; // apply transformation aiMatrix4x4::Translation(als.Delta, tmat), t_node->mTransformation *= tmat; aiMatrix4x4::RotationX(als.Rotation.x, tmat), t_node->mTransformation *= tmat; aiMatrix4x4::RotationY(als.Rotation.y, tmat), t_node->mTransformation *= tmat; aiMatrix4x4::RotationZ(als.Rotation.z, tmat), t_node->mTransformation *= tmat; // create array for one child node t_node->mNumChildren = 1; t_node->mChildren = new aiNode *[t_node->mNumChildren]; SceneCombiner::Copy(&t_node->mChildren[0], found_node); t_node->mChildren[0]->mParent = t_node; ch_node.push_back(t_node); } // for(const CAMFImporter_NodeElement* ne: pConstellation.Child) // copy found aiNode's as children if (ch_node.empty()) throw DeadlyImportError(" must have at least one ."); size_t ch_idx = 0; con_node->mNumChildren = static_cast(ch_node.size()); con_node->mChildren = new aiNode *[con_node->mNumChildren]; for (aiNode *node : ch_node) con_node->mChildren[ch_idx++] = node; // and place "root" of node to node list nodeArray.push_back(con_node); } void AMFImporter::Postprocess_BuildScene(aiScene *pScene) { NodeArray nodeArray; MeshArray mesh_list; AMFMetaDataArray meta_list; // // Because for AMF "material" is just complex colors mixing so aiMaterial will not be used. // For building aiScene we are must to do few steps: // at first creating root node for aiScene. pScene->mRootNode = new aiNode; pScene->mRootNode->mParent = nullptr; pScene->mFlags |= AI_SCENE_FLAGS_ALLOW_SHARED; // search for root() element AMFNodeElementBase *root_el = nullptr; for (AMFNodeElementBase *ne : mNodeElement_List) { if (ne->Type != AMFNodeElementBase::ENET_Root) { continue; } root_el = ne; break; } // for(const CAMFImporter_NodeElement* ne: mNodeElement_List) // Check if root element are found. if (root_el == nullptr) { throw DeadlyImportError("Root() element not found."); } // after that walk through children of root and collect data. Five types of nodes can be placed at top level - in : , , , // and . But at first we must read and because they will be used in . can be read // at any moment. // // 1. // 2. will be converted later when processing triangles list. \sa Postprocess_BuildMeshSet for (const AMFNodeElementBase *root_child : root_el->Child) { if (root_child->Type == AMFNodeElementBase::ENET_Material) { Postprocess_BuildMaterial(*((AMFMaterial *)root_child)); } } // After "appearance" nodes we must read because it will be used in -> . // // 3. for (const AMFNodeElementBase *root_child : root_el->Child) { if (root_child->Type == AMFNodeElementBase::ENET_Object) { aiNode *tnode = nullptr; // for mesh and node must be built: object ID assigned to aiNode name and will be used in future for Postprocess_BuildNodeAndObject(*((AMFObject *)root_child), mesh_list, &tnode); if (tnode != nullptr) { nodeArray.push_back(tnode); } } } // for(const CAMFImporter_NodeElement* root_child: root_el->Child) // And finally read rest of nodes. // for (const AMFNodeElementBase *root_child : root_el->Child) { // 4. if (root_child->Type == AMFNodeElementBase::ENET_Constellation) { // and at top of self abstraction use aiNode. So we can use only aiNode list for creating new aiNode's. Postprocess_BuildConstellation(*((AMFConstellation *)root_child), nodeArray); } // 5, if (root_child->Type == AMFNodeElementBase::ENET_Metadata) meta_list.push_back((AMFMetadata *)root_child); } // for(const CAMFImporter_NodeElement* root_child: root_el->Child) // at now we can add collected metadata to root node Postprocess_AddMetadata(meta_list, *pScene->mRootNode); // // Check constellation children // // As said in specification: // "When multiple objects and constellations are defined in a single file, only the top level objects and constellations are available for printing." // What that means? For example: if some object is used in constellation then you must show only constellation but not original object. // And at this step we are checking that relations. nl_clean_loop: if (nodeArray.size() > 1) { // walk through all nodes for (NodeArray::iterator nl_it = nodeArray.begin(); nl_it != nodeArray.end(); ++nl_it) { // and try to find them in another top nodes. NodeArray::const_iterator next_it = nl_it; ++next_it; for (; next_it != nodeArray.end(); ++next_it) { if ((*next_it)->FindNode((*nl_it)->mName) != nullptr) { // if current top node(nl_it) found in another top node then erase it from node_list and restart search loop. nodeArray.erase(nl_it); goto nl_clean_loop; } } // for(; next_it != node_list.end(); next_it++) } // for(std::list::const_iterator nl_it = node_list.begin(); nl_it != node_list.end(); nl_it++) } // // move created objects to aiScene // // // Nodes if (!nodeArray.empty()) { NodeArray::const_iterator nl_it = nodeArray.begin(); pScene->mRootNode->mNumChildren = static_cast(nodeArray.size()); pScene->mRootNode->mChildren = new aiNode *[pScene->mRootNode->mNumChildren]; for (size_t i = 0; i < pScene->mRootNode->mNumChildren; i++) { // Objects and constellation that must be showed placed at top of hierarchy in node. So all aiNode's in node_list must have // mRootNode only as parent. (*nl_it)->mParent = pScene->mRootNode; pScene->mRootNode->mChildren[i] = *nl_it++; } } // if(node_list.size() > 0) // // Meshes if (!mesh_list.empty()) { MeshArray::const_iterator ml_it = mesh_list.begin(); pScene->mNumMeshes = static_cast(mesh_list.size()); pScene->mMeshes = new aiMesh *[pScene->mNumMeshes]; for (size_t i = 0; i < pScene->mNumMeshes; i++) pScene->mMeshes[i] = *ml_it++; } // if(mesh_list.size() > 0) // // Textures pScene->mNumTextures = static_cast(mTexture_Converted.size()); if (pScene->mNumTextures > 0) { size_t idx; idx = 0; pScene->mTextures = new aiTexture *[pScene->mNumTextures]; for (const SPP_Texture &tex_convd : mTexture_Converted) { pScene->mTextures[idx] = new aiTexture; pScene->mTextures[idx]->mWidth = static_cast(tex_convd.Width); pScene->mTextures[idx]->mHeight = static_cast(tex_convd.Height); pScene->mTextures[idx]->pcData = (aiTexel *)tex_convd.Data; // texture format description. strcpy(pScene->mTextures[idx]->achFormatHint, tex_convd.FormatHint); idx++; } // for(const SPP_Texture& tex_convd: mTexture_Converted) // Create materials for embedded textures. idx = 0; pScene->mNumMaterials = static_cast(mTexture_Converted.size()); pScene->mMaterials = new aiMaterial *[pScene->mNumMaterials]; for (const SPP_Texture &tex_convd : mTexture_Converted) { const aiString texture_id(AI_EMBEDDED_TEXNAME_PREFIX + to_string(idx)); const int mode = aiTextureOp_Multiply; const int repeat = tex_convd.Tiled ? 1 : 0; pScene->mMaterials[idx] = new aiMaterial; pScene->mMaterials[idx]->AddProperty(&texture_id, AI_MATKEY_TEXTURE_DIFFUSE(0)); pScene->mMaterials[idx]->AddProperty(&mode, 1, AI_MATKEY_TEXOP_DIFFUSE(0)); pScene->mMaterials[idx]->AddProperty(&repeat, 1, AI_MATKEY_MAPPINGMODE_U_DIFFUSE(0)); pScene->mMaterials[idx]->AddProperty(&repeat, 1, AI_MATKEY_MAPPINGMODE_V_DIFFUSE(0)); idx++; } } // if(pScene->mNumTextures > 0) } // END: after that walk through children of root and collect data } // namespace Assimp #endif // !ASSIMP_BUILD_NO_AMF_IMPORTER