/* Open Asset Import Library (assimp) ---------------------------------------------------------------------- Copyright (c) 2006-2021, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------- */ #ifndef ASSIMP_BUILD_NO_3MF_IMPORTER #include "D3MFImporter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "3MFXmlTags.h" #include "D3MFOpcPackage.h" #include #include namespace Assimp { namespace D3MF { enum class ResourceType { RT_Object, RT_BaseMaterials, RT_Unknown }; // To be extended with other resource types (eg. material extension resources like Texture2d, Texture2dGroup...) class Resource { public: int mId; Resource(int id) : mId(id) { // empty } virtual ~Resource() { // empty } virtual ResourceType getType() const { return ResourceType::RT_Unknown; } }; class BaseMaterials : public Resource { public: std::vector mMaterials; std::vector mMaterialIndex; BaseMaterials(int id) : Resource(id), mMaterials(), mMaterialIndex() { // empty } ~BaseMaterials() = default; ResourceType getType() const override { return ResourceType::RT_BaseMaterials; } }; struct Component { int mObjectId; aiMatrix4x4 mTransformation; }; class Object : public Resource { public: std::vector mMeshes; std::vector mMeshIndex; std::vector mComponents; std::string mName; Object(int id) : Resource(id), mName(std::string("Object_") + ai_to_string(id)) { // empty } ~Object() = default; ResourceType getType() const override { return ResourceType::RT_Object; } }; class XmlSerializer { public: XmlSerializer(XmlParser *xmlParser) : mResourcesDictionnary(), mMaterialCount(0), mMeshCount(0), mXmlParser(xmlParser) { // empty } ~XmlSerializer() { for (auto it = mResourcesDictionnary.begin(); it != mResourcesDictionnary.end(); ++it ) { delete it->second; } } void ImportXml(aiScene *scene) { if (nullptr == scene) { return; } scene->mRootNode = new aiNode(XmlTag::RootTag); XmlNode node = mXmlParser->getRootNode().child(XmlTag::model); if (node.empty()) { return; } XmlNode resNode = node.child(XmlTag::resources); for (auto ¤tNode : resNode.children()) { const std::string ¤tNodeName = currentNode.name(); if (currentNodeName == XmlTag::object) { ReadObject(currentNode); } else if (currentNodeName == XmlTag::basematerials) { ReadBaseMaterials(currentNode); } else if (currentNodeName == XmlTag::meta) { ReadMetadata(currentNode); } } for (auto ¤tNode : resNode.children()) { const std::string ¤tNodeName = currentNode.name(); if (currentNodeName == XmlTag::item) { int objectId = -1; std::string transformationMatrixStr; aiMatrix4x4 transformationMatrix; getNodeAttribute(currentNode, D3MF::XmlTag::objectid, objectId); bool hasTransform = getNodeAttribute(currentNode, D3MF::XmlTag::transform, transformationMatrixStr); auto it = mResourcesDictionnary.find(objectId); if (it != mResourcesDictionnary.end() && it->second->getType() == ResourceType::RT_Object) { Object *obj = static_cast(it->second); if (hasTransform) { transformationMatrix = parseTransformMatrix(transformationMatrixStr); } addObjectToNode(scene->mRootNode, obj, transformationMatrix); } } } // import the metadata if (!mMetaData.empty()) { const size_t numMeta(mMetaData.size()); scene->mMetaData = aiMetadata::Alloc(static_cast(numMeta)); for (size_t i = 0; i < numMeta; ++i) { aiString val(mMetaData[i].value); scene->mMetaData->Set(static_cast(i), mMetaData[i].name, val); } } // import the meshes scene->mNumMeshes = static_cast(mMeshCount); if (scene->mNumMeshes != 0) { scene->mMeshes = new aiMesh *[scene->mNumMeshes](); for (auto it = mResourcesDictionnary.begin(); it != mResourcesDictionnary.end(); ++it) { if (it->second->getType() == ResourceType::RT_Object) { Object *obj = static_cast(it->second); for (unsigned int i = 0; i < obj->mMeshes.size(); ++i) { scene->mMeshes[obj->mMeshIndex[i]] = obj->mMeshes[i]; } } } } // import the materials scene->mNumMaterials = mMaterialCount; if (scene->mNumMaterials != 0) { scene->mMaterials = new aiMaterial *[scene->mNumMaterials]; for (auto it = mResourcesDictionnary.begin(); it != mResourcesDictionnary.end(); ++it) { if (it->second->getType() == ResourceType::RT_BaseMaterials) { BaseMaterials *baseMaterials = static_cast(it->second); for (unsigned int i = 0; i < baseMaterials->mMaterials.size(); ++i) { scene->mMaterials[baseMaterials->mMaterialIndex[i]] = baseMaterials->mMaterials[i]; } } } } } private: void addObjectToNode(aiNode *parent, Object *obj, aiMatrix4x4 nodeTransform) { ai_assert(nullptr != obj); aiNode *sceneNode = new aiNode(obj->mName); sceneNode->mNumMeshes = static_cast(obj->mMeshes.size()); sceneNode->mMeshes = new unsigned int[sceneNode->mNumMeshes]; std::copy(obj->mMeshIndex.begin(), obj->mMeshIndex.end(), sceneNode->mMeshes); sceneNode->mTransformation = nodeTransform; if (nullptr != parent) { parent->addChildren(1, &sceneNode); } for (size_t i = 0; i < obj->mComponents.size(); ++i) { Component c = obj->mComponents[i]; auto it = mResourcesDictionnary.find(c.mObjectId); if (it != mResourcesDictionnary.end() && it->second->getType() == ResourceType::RT_Object) { addObjectToNode(sceneNode, static_cast(it->second), c.mTransformation); } } } bool getNodeAttribute(const XmlNode &node, const std::string &attribute, std::string &value) { pugi::xml_attribute objectAttribute = node.attribute(attribute.c_str()); if (!objectAttribute.empty()) { value = objectAttribute.as_string(); return true; } return false; } bool getNodeAttribute(const XmlNode &node, const std::string &attribute, int &value) { std::string strValue; bool ret = getNodeAttribute(node, attribute, strValue); if (ret) { value = std::atoi(strValue.c_str()); return true; } return false; } aiMatrix4x4 parseTransformMatrix(std::string matrixStr) { // split the string std::vector numbers; std::string currentNumber; for (size_t i = 0; i < matrixStr.size(); ++i) { const char c = matrixStr[i]; if (c == ' ') { if (currentNumber.size() > 0) { float f = std::stof(currentNumber); numbers.push_back(f); currentNumber.clear(); } } else { currentNumber.push_back(c); } } if (currentNumber.size() > 0) { const float f = std::stof(currentNumber); numbers.push_back(f); } aiMatrix4x4 transformMatrix; transformMatrix.a1 = numbers[0]; transformMatrix.b1 = numbers[1]; transformMatrix.c1 = numbers[2]; transformMatrix.d1 = 0; transformMatrix.a2 = numbers[3]; transformMatrix.b2 = numbers[4]; transformMatrix.c2 = numbers[5]; transformMatrix.d2 = 0; transformMatrix.a3 = numbers[6]; transformMatrix.b3 = numbers[7]; transformMatrix.c3 = numbers[8]; transformMatrix.d3 = 0; transformMatrix.a4 = numbers[9]; transformMatrix.b4 = numbers[10]; transformMatrix.c4 = numbers[11]; transformMatrix.d4 = 1; return transformMatrix; } void ReadObject(XmlNode &node) { int id = -1, pid = -1, pindex = -1; bool hasId = getNodeAttribute(node, XmlTag::id, id); bool hasPid = getNodeAttribute(node, XmlTag::pid, pid); bool hasPindex = getNodeAttribute(node, XmlTag::pindex, pindex); if (!hasId) { return; } Object *obj = new Object(id); for (XmlNode ¤tNode : node.children()) { const std::string ¤tName = currentNode.name(); if (currentName == D3MF::XmlTag::mesh) { auto mesh = ReadMesh(currentNode); mesh->mName.Set(ai_to_string(id)); if (hasPid) { auto it = mResourcesDictionnary.find(pid); if (hasPindex && it != mResourcesDictionnary.end() && it->second->getType() == ResourceType::RT_BaseMaterials) { BaseMaterials *materials = static_cast(it->second); mesh->mMaterialIndex = materials->mMaterialIndex[pindex]; } } obj->mMeshes.push_back(mesh); obj->mMeshIndex.push_back(mMeshCount); mMeshCount++; } else if (currentName == D3MF::XmlTag::components) { for (XmlNode ¤tSubNode : currentNode.children()) { if (currentSubNode.name() == D3MF::XmlTag::component) { int objectId = -1; std::string componentTransformStr; aiMatrix4x4 componentTransform; if (getNodeAttribute(currentSubNode, D3MF::XmlTag::transform, componentTransformStr)) { componentTransform = parseTransformMatrix(componentTransformStr); } if (getNodeAttribute(currentSubNode, D3MF::XmlTag::objectid, objectId)) obj->mComponents.push_back({ objectId, componentTransform }); } } } } mResourcesDictionnary.insert(std::make_pair(id, obj)); } aiMesh *ReadMesh(XmlNode &node) { aiMesh *mesh = new aiMesh(); for (XmlNode ¤tNode : node.children()) { const std::string ¤tName = currentNode.name(); if (currentName == XmlTag::vertices) { ImportVertices(currentNode, mesh); } else if (currentName == XmlTag::triangles) { ImportTriangles(currentNode, mesh); } } return mesh; } void ReadMetadata(XmlNode &node) { pugi::xml_attribute attribute = node.attribute(D3MF::XmlTag::meta_name); const std::string name = attribute.as_string(); const std::string value = node.value(); if (name.empty()) { return; } MetaEntry entry; entry.name = name; entry.value = value; mMetaData.push_back(entry); } void ImportVertices(XmlNode &node, aiMesh *mesh) { std::vector vertices; for (XmlNode ¤tNode : node.children()) { const std::string ¤tName = currentNode.name(); if (currentName == D3MF::XmlTag::vertex) { vertices.push_back(ReadVertex(currentNode)); } } mesh->mNumVertices = static_cast(vertices.size()); mesh->mVertices = new aiVector3D[mesh->mNumVertices]; std::copy(vertices.begin(), vertices.end(), mesh->mVertices); } aiVector3D ReadVertex(XmlNode &node) { aiVector3D vertex; vertex.x = ai_strtof(node.attribute(D3MF::XmlTag::x).as_string(), nullptr); vertex.y = ai_strtof(node.attribute(D3MF::XmlTag::y).as_string(), nullptr); vertex.z = ai_strtof(node.attribute(D3MF::XmlTag::z).as_string(), nullptr); return vertex; } void ImportTriangles(XmlNode &node, aiMesh *mesh) { std::vector faces; for (XmlNode currentNode = node.first_child(); currentNode; currentNode = currentNode.next_sibling()) { const std::string ¤tName = currentNode.name(); if (currentName == D3MF::XmlTag::triangle) { aiFace face = ReadTriangle(currentNode); faces.push_back(face); int pid = 0, p1; bool hasPid = getNodeAttribute(currentNode, D3MF::XmlTag::pid, pid); bool hasP1 = getNodeAttribute(currentNode, D3MF::XmlTag::p1, p1); if (hasPid && hasP1) { auto it = mResourcesDictionnary.find(pid); if (it != mResourcesDictionnary.end()) { if (it->second->getType() == ResourceType::RT_BaseMaterials) { BaseMaterials *baseMaterials = static_cast(it->second); mesh->mMaterialIndex = baseMaterials->mMaterialIndex[p1]; } // TODO: manage the separation into several meshes if the triangles of the mesh do not all refer to the same material } } } } mesh->mNumFaces = static_cast(faces.size()); mesh->mFaces = new aiFace[mesh->mNumFaces]; mesh->mPrimitiveTypes = aiPrimitiveType_TRIANGLE; std::copy(faces.begin(), faces.end(), mesh->mFaces); } aiFace ReadTriangle(XmlNode &node) { aiFace face; face.mNumIndices = 3; face.mIndices = new unsigned int[face.mNumIndices]; face.mIndices[0] = static_cast(std::atoi(node.attribute(XmlTag::v1).as_string())); face.mIndices[1] = static_cast(std::atoi(node.attribute(XmlTag::v2).as_string())); face.mIndices[2] = static_cast(std::atoi(node.attribute(XmlTag::v3).as_string())); return face; } void ReadBaseMaterials(XmlNode &node) { int id = -1; if (getNodeAttribute(node, D3MF::XmlTag::basematerials_id, id)) { BaseMaterials *baseMaterials = new BaseMaterials(id); for (XmlNode ¤tNode : node.children()) { if (currentNode.name() == XmlTag::basematerials_base) { baseMaterials->mMaterialIndex.push_back(mMaterialCount); baseMaterials->mMaterials.push_back(readMaterialDef(currentNode, id)); mMaterialCount++; } } mResourcesDictionnary.insert(std::make_pair(id, baseMaterials)); } } bool parseColor(const char *color, aiColor4D &diffuse) { if (nullptr == color) { return false; } //format of the color string: #RRGGBBAA or #RRGGBB (3MF Core chapter 5.1.1) const size_t len = strlen(color); if (9 != len && 7 != len) { return false; } const char *buf(color); if ('#' != buf[0]) { return false; } char r[3] = { buf[1], buf[2], '\0' }; diffuse.r = static_cast(strtol(r, nullptr, 16)) / ai_real(255.0); char g[3] = { buf[3], buf[4], '\0' }; diffuse.g = static_cast(strtol(g, nullptr, 16)) / ai_real(255.0); char b[3] = { buf[5], buf[6], '\0' }; diffuse.b = static_cast(strtol(b, nullptr, 16)) / ai_real(255.0); if (7 == len) return true; char a[3] = { buf[7], buf[8], '\0' }; diffuse.a = static_cast(strtol(a, nullptr, 16)) / ai_real(255.0); return true; } void assignDiffuseColor(XmlNode &node, aiMaterial *mat) { const char *color = node.attribute(XmlTag::basematerials_displaycolor).as_string(); aiColor4D diffuse; if (parseColor(color, diffuse)) { mat->AddProperty(&diffuse, 1, AI_MATKEY_COLOR_DIFFUSE); } } aiMaterial *readMaterialDef(XmlNode &node, unsigned int basematerialsId) { aiMaterial *material = new aiMaterial(); material->mNumProperties = 0; std::string name; bool hasName = getNodeAttribute(node, D3MF::XmlTag::basematerials_name, name); std::string stdMaterialName; const std::string strId(ai_to_string(basematerialsId)); stdMaterialName += "id"; stdMaterialName += strId; stdMaterialName += "_"; if (hasName) { stdMaterialName += std::string(name); } else { stdMaterialName += "basemat_"; stdMaterialName += ai_to_string(mMaterialCount - basematerialsId); } aiString assimpMaterialName(stdMaterialName); material->AddProperty(&assimpMaterialName, AI_MATKEY_NAME); assignDiffuseColor(node, material); return material; } private: struct MetaEntry { std::string name; std::string value; }; std::vector mMetaData; std::map mResourcesDictionnary; unsigned int mMaterialCount, mMeshCount; XmlParser *mXmlParser; }; } //namespace D3MF static const aiImporterDesc desc = { "3mf Importer", "", "", "http://3mf.io/", aiImporterFlags_SupportBinaryFlavour | aiImporterFlags_SupportCompressedFlavour, 0, 0, 0, 0, "3mf" }; D3MFImporter::D3MFImporter() : BaseImporter() { // empty } D3MFImporter::~D3MFImporter() { // empty } bool D3MFImporter::CanRead(const std::string &filename, IOSystem *pIOHandler, bool /*checkSig*/) const { if (!ZipArchiveIOSystem::isZipArchive(pIOHandler, filename)) { return false; } D3MF::D3MFOpcPackage opcPackage(pIOHandler, filename); return opcPackage.validate(); } void D3MFImporter::SetupProperties(const Importer * /*pImp*/) { // empty } const aiImporterDesc *D3MFImporter::GetInfo() const { return &desc; } void D3MFImporter::InternReadFile(const std::string &filename, aiScene *pScene, IOSystem *pIOHandler) { D3MF::D3MFOpcPackage opcPackage(pIOHandler, filename); XmlParser xmlParser; if (xmlParser.parse(opcPackage.RootStream())) { D3MF::XmlSerializer xmlSerializer(&xmlParser); xmlSerializer.ImportXml(pScene); } } } // Namespace Assimp #endif // ASSIMP_BUILD_NO_3MF_IMPORTER