/** @file aiMatrix3x3.inl * @brief Inline implementation of the 3x3 matrix operators */ #ifndef AI_MATRIX3x3_INL_INC #define AI_MATRIX3x3_INL_INC #include "aiMatrix3x3.h" #ifdef __cplusplus #include "aiMatrix4x4.h" #include // ------------------------------------------------------------------------------------------------ // Construction from a 4x4 matrix. The remaining parts of the matrix are ignored. inline aiMatrix3x3::aiMatrix3x3( const aiMatrix4x4& pMatrix) { a1 = pMatrix.a1; a2 = pMatrix.a2; a3 = pMatrix.a3; b1 = pMatrix.b1; b2 = pMatrix.b2; b3 = pMatrix.b3; c1 = pMatrix.c1; c2 = pMatrix.c2; c3 = pMatrix.c3; } // ------------------------------------------------------------------------------------------------ inline aiMatrix3x3& aiMatrix3x3::operator *= (const aiMatrix3x3& m) { *this = aiMatrix3x3(m.a1 * a1 + m.b1 * a2 + m.c1 * a3, m.a2 * a1 + m.b2 * a2 + m.c2 * a3, m.a3 * a1 + m.b3 * a2 + m.c3 * a3, m.a1 * b1 + m.b1 * b2 + m.c1 * b3, m.a2 * b1 + m.b2 * b2 + m.c2 * b3, m.a3 * b1 + m.b3 * b2 + m.c3 * b3, m.a1 * c1 + m.b1 * c2 + m.c1 * c3, m.a2 * c1 + m.b2 * c2 + m.c2 * c3, m.a3 * c1 + m.b3 * c2 + m.c3 * c3); return *this; } // ------------------------------------------------------------------------------------------------ inline aiMatrix3x3 aiMatrix3x3::operator* (const aiMatrix3x3& m) const { aiMatrix3x3 temp( *this); temp *= m; return temp; } // ------------------------------------------------------------------------------------------------ inline float* aiMatrix3x3::operator[] (unsigned int p_iIndex) { return &this->a1 + p_iIndex * 3; } // ------------------------------------------------------------------------------------------------ inline const float* aiMatrix3x3::operator[] (unsigned int p_iIndex) const { return &this->a1 + p_iIndex * 3; } // ------------------------------------------------------------------------------------------------ inline bool aiMatrix3x3::operator== (const aiMatrix4x4 m) const { return a1 == m.a1 && a2 == m.a2 && a3 == m.a3 && b1 == m.b1 && b2 == m.b2 && b3 == m.b3 && c1 == m.c1 && c2 == m.c2 && c3 == m.c3; } // ------------------------------------------------------------------------------------------------ inline bool aiMatrix3x3::operator!= (const aiMatrix4x4 m) const { return !(*this == m); } // ------------------------------------------------------------------------------------------------ inline aiMatrix3x3& aiMatrix3x3::Transpose() { // (float&) don't remove, GCC complains cause of packed fields std::swap( (float&)a2, (float&)b1); std::swap( (float&)a3, (float&)c1); std::swap( (float&)b3, (float&)c2); return *this; } // ------------------------------------------------------------------------------------------------ inline aiMatrix3x3& aiMatrix3x3::RotationZ(float a, aiMatrix3x3& out) { out.a1 = out.b2 = ::cos(a); out.b1 = ::sin(a); out.a2 = - out.b1; out.a3 = out.b3 = out.c1 = out.c2 = 0.f; out.c3 = 1.f; return out; } // ------------------------------------------------------------------------------------------------ // Returns a rotation matrix for a rotation around an arbitrary axis. inline aiMatrix3x3& aiMatrix3x3::Rotation( float a, const aiVector3D& axis, aiMatrix3x3& out) { float c = cos( a), s = sin( a), t = 1 - c; float x = axis.x, y = axis.y, z = axis.z; // Many thanks to MathWorld and Wikipedia out.a1 = t*x*x + c; out.a2 = t*x*y - s*z; out.a3 = t*x*z + s*y; out.b1 = t*x*y + s*z; out.b2 = t*y*y + c; out.b3 = t*y*z - s*x; out.c1 = t*x*z - s*y; out.c2 = t*y*z + s*x; out.c3 = t*z*z + c; return out; } // ------------------------------------------------------------------------------------------------ inline aiMatrix3x3& aiMatrix3x3::Translation( const aiVector2D& v, aiMatrix3x3& out) { out = aiMatrix3x3(); out.a3 = v.x; out.b3 = v.y; return out; } // ---------------------------------------------------------------------------------------- /** A function for creating a rotation matrix that rotates a vector called * "from" into another vector called "to". * Input : from[3], to[3] which both must be *normalized* non-zero vectors * Output: mtx[3][3] -- a 3x3 matrix in colum-major form * Authors: Tomas Möller, John Hughes * "Efficiently Building a Matrix to Rotate One Vector to Another" * Journal of Graphics Tools, 4(4):1-4, 1999 */ // ---------------------------------------------------------------------------------------- inline aiMatrix3x3& aiMatrix3x3::FromToMatrix(const aiVector3D& from, const aiVector3D& to, aiMatrix3x3& mtx) { const aiVector3D v = from ^ to; const float e = from * to; const float f = (e < 0)? -e:e; if (f > 1.0 - 0.00001f) /* "from" and "to"-vector almost parallel */ { aiVector3D u,v; /* temporary storage vectors */ aiVector3D x; /* vector most nearly orthogonal to "from" */ x.x = (from.x > 0.0)? from.x : -from.x; x.y = (from.y > 0.0)? from.y : -from.y; x.z = (from.z > 0.0)? from.z : -from.z; if (x.x < x.y) { if (x.x < x.z) { x.x = 1.0; x.y = x.z = 0.0; } else { x.z = 1.0; x.y = x.z = 0.0; } } else { if (x.y < x.z) { x.y = 1.0; x.x = x.z = 0.0; } else { x.z = 1.0; x.x = x.y = 0.0; } } u.x = x.x - from.x; u.y = x.y - from.y; u.z = x.z - from.z; v.x = x.x - to.x; v.y = x.y - to.y; v.z = x.z - to.z; const float c1 = 2.0f / (u * u); const float c2 = 2.0f / (v * v); const float c3 = c1 * c2 * (u * v); for (unsigned int i = 0; i < 3; i++) { for (unsigned int j = 0; j < 3; j++) { mtx[i][j] = - c1 * u[i] * u[j] - c2 * v[i] * v[j] + c3 * v[i] * u[j]; } mtx[i][i] += 1.0; } } else /* the most common case, unless "from"="to", or "from"=-"to" */ { /* ... use this hand optimized version (9 mults less) */ const float h = 1.0f/(1.0f + e); /* optimization by Gottfried Chen */ const float hvx = h * v.x; const float hvz = h * v.z; const float hvxy = hvx * v.y; const float hvxz = hvx * v.z; const float hvyz = hvz * v.y; mtx[0][0] = e + hvx * v.x; mtx[0][1] = hvxy - v.z; mtx[0][2] = hvxz + v.y; mtx[1][0] = hvxy + v.z; mtx[1][1] = e + h * v.y * v.y; mtx[1][2] = hvyz - v.x; mtx[2][0] = hvxz - v.y; mtx[2][1] = hvyz + v.x; mtx[2][2] = e + hvz * v.z; } return mtx; } #endif // __cplusplus #endif // AI_MATRIX3x3_INL_INC