/* --------------------------------------------------------------------------- Open Asset Import Library (ASSIMP) --------------------------------------------------------------------------- Copyright (c) 2006-2008, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file Implementation of the 3ds importer class */ #include "3DSLoader.h" #include "MaterialSystem.h" #include "TextureTransform.h" #include "../include/DefaultLogger.h" #include "../include/IOStream.h" #include "../include/IOSystem.h" #include "../include/aiMesh.h" #include "../include/aiScene.h" #include "../include/aiAssert.h" #include using namespace Assimp; #define ASSIMP_3DS_WARN_CHUNK_OVERFLOW_MSG \ "WARNING: Size of chunk data plus size of " \ "subordinate chunks is larger than the size " \ "specified in the higher-level chunk header." \ // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer Dot3DSImporter::Dot3DSImporter() { } // ------------------------------------------------------------------------------------------------ // Destructor, private as well Dot3DSImporter::~Dot3DSImporter() { } // ------------------------------------------------------------------------------------------------ // Returns whether the class can handle the format of the given file. bool Dot3DSImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler) const { // simple check of file extension is enough for the moment std::string::size_type pos = pFile.find_last_of('.'); // no file extension - can't read if( pos == std::string::npos) return false; std::string extension = pFile.substr( pos); // not brilliant but working ;-) if( extension == ".3ds" || extension == ".3DS" || extension == ".3Ds" || extension == ".3dS") return true; return false; } // ------------------------------------------------------------------------------------------------ // recursively delete a given node void DeleteNodeRecursively (aiNode* p_piNode) { if (!p_piNode)return; if (p_piNode->mChildren) { for (unsigned int i = 0 ; i < p_piNode->mNumChildren;++i) { DeleteNodeRecursively(p_piNode->mChildren[i]); } } delete p_piNode; return; } // ------------------------------------------------------------------------------------------------ // Imports the given file into the given scene structure. void Dot3DSImporter::InternReadFile( const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler) { boost::scoped_ptr file( pIOHandler->Open( pFile)); // Check whether we can read from the file if( file.get() == NULL) { throw new ImportErrorException( "Failed to open file " + pFile + "."); } // check whether the .3ds file is large enough to contain // at least one chunk. size_t fileSize = file->FileSize(); if( fileSize < 16) { throw new ImportErrorException( ".3ds File is too small."); } this->mScene = new Dot3DS::Scene(); // allocate storage and copy the contents of the file to a memory buffer this->mBuffer = new unsigned char[fileSize]; file->Read( mBuffer, 1, fileSize); this->mCurrent = this->mBuffer; this->mLast = this->mBuffer+fileSize; // initialize members this->mLastNodeIndex = -1; this->mCurrentNode = new Dot3DS::Node(); this->mRootNode = this->mCurrentNode; this->mRootNode->mHierarchyPos = -1; this->mRootNode->mHierarchyIndex = -1; this->mRootNode->mParent = NULL; this->mMasterScale = 1.0f; this->mBackgroundImage = ""; this->bHasBG = false; int iRemaining = (unsigned int)fileSize; this->ParseMainChunk(&iRemaining); // Generate an unique set of vertices/indices for // all meshes contained in the file for (std::vector::iterator i = this->mScene->mMeshes.begin(); i != this->mScene->mMeshes.end();++i) { // TODO: see function body this->CheckIndices(&(*i)); this->MakeUnique(&(*i)); // first generate normals for the mesh this->GenNormals(&(*i)); } // Apply scaling and offsets to all texture coordinates TextureTransform::ApplyScaleNOffset(this->mScene->mMaterials); // Replace all occurences of the default material with a valid material. // Generate it if no material containing DEFAULT in its name has been // found in the file this->ReplaceDefaultMaterial(); // Convert the scene from our internal representation to an aiScene object this->ConvertScene(pScene); // Generate the node graph for the scene. This is a little bit // tricky since we'll need to split some meshes into submeshes this->GenerateNodeGraph(pScene); // Now apply a master scaling factor to the scene this->ApplyMasterScale(pScene); delete[] this->mBuffer; delete this->mScene; return; } // ------------------------------------------------------------------------------------------------ void Dot3DSImporter::ApplyMasterScale(aiScene* pScene) { // NOTE: Some invalid files have masterscale set to 0.0 if (0.0f == this->mMasterScale) { this->mMasterScale = 1.0f; } else this->mMasterScale = 1.0f / this->mMasterScale; // construct an uniform scaling matrix and multiply with it pScene->mRootNode->mTransformation *= aiMatrix4x4( this->mMasterScale,0.0f, 0.0f, 0.0f, 0.0f, this->mMasterScale,0.0f, 0.0f, 0.0f, 0.0f, this->mMasterScale,0.0f, 0.0f, 0.0f, 0.0f, 1.0f); } // ------------------------------------------------------------------------------------------------ void Dot3DSImporter::ReadChunk(const Dot3DSFile::Chunk** p_ppcOut) { ai_assert(p_ppcOut != NULL); // read chunk if (this->mCurrent >= this->mLast) { *p_ppcOut = NULL; return; } const uintptr_t iDiff = this->mLast - this->mCurrent; if (iDiff < sizeof(Dot3DSFile::Chunk)) { *p_ppcOut = NULL; return; } *p_ppcOut = (const Dot3DSFile::Chunk*) this->mCurrent; this->mCurrent += sizeof(Dot3DSFile::Chunk); return; } // ------------------------------------------------------------------------------------------------ void Dot3DSImporter::ParseMainChunk(int* piRemaining) { const Dot3DSFile::Chunk* psChunk; this->ReadChunk(&psChunk); if (NULL == psChunk)return; const unsigned char* pcCur = this->mCurrent; const unsigned char* pcCurNext = pcCur + (psChunk->Size - sizeof(Dot3DSFile::Chunk)); // get chunk type int iRemaining = (psChunk->Size - sizeof(Dot3DSFile::Chunk)); switch (psChunk->Flag) { case Dot3DSFile::CHUNK_MAIN: //case 0x444d: // bugfix this->ParseEditorChunk(&iRemaining); break; }; if (pcCurNext < this->mCurrent) { // place an error message. If we crash the programmer // will be able to find it DefaultLogger::get()->warn(ASSIMP_3DS_WARN_CHUNK_OVERFLOW_MSG); pcCurNext = this->mCurrent; } // Go to the starting position of the next top-level chunk this->mCurrent = pcCurNext; *piRemaining -= psChunk->Size; if (0 >= *piRemaining)return; return this->ParseMainChunk(piRemaining); } // ------------------------------------------------------------------------------------------------ void Dot3DSImporter::ParseEditorChunk(int* piRemaining) { const Dot3DSFile::Chunk* psChunk; this->ReadChunk(&psChunk); if (NULL == psChunk)return; const unsigned char* pcCur = this->mCurrent; const unsigned char* pcCurNext = pcCur + (psChunk->Size - sizeof(Dot3DSFile::Chunk)); // get chunk type int iRemaining = (psChunk->Size - sizeof(Dot3DSFile::Chunk)); switch (psChunk->Flag) { case Dot3DSFile::CHUNK_OBJMESH: this->ParseObjectChunk(&iRemaining); break; // NOTE: In several documentations in the internet this // chunk appears at different locations case Dot3DSFile::CHUNK_KEYFRAMER: this->ParseKeyframeChunk(&iRemaining); break; }; if (pcCurNext < this->mCurrent) { // place an error message. If we crash the programmer // will be able to find it DefaultLogger::get()->warn(ASSIMP_3DS_WARN_CHUNK_OVERFLOW_MSG); pcCurNext = this->mCurrent; } // Go to the starting position of the next top-level chunk this->mCurrent = pcCurNext; *piRemaining -= psChunk->Size; if (0 >= *piRemaining)return; return this->ParseEditorChunk(piRemaining); } // ------------------------------------------------------------------------------------------------ void Dot3DSImporter::ParseObjectChunk(int* piRemaining) { const Dot3DSFile::Chunk* psChunk; this->ReadChunk(&psChunk); if (NULL == psChunk)return; const unsigned char* pcCur = this->mCurrent; const unsigned char* pcCurNext = pcCur + (psChunk->Size - sizeof(Dot3DSFile::Chunk)); const unsigned char* sz = this->mCurrent; unsigned int iCnt = 0; // get chunk type int iRemaining = (psChunk->Size - sizeof(Dot3DSFile::Chunk)); switch (psChunk->Flag) { case Dot3DSFile::CHUNK_OBJBLOCK: this->mScene->mMeshes.push_back(Dot3DS::Mesh()); // at first we need to parse the name of the // geometry object while (*sz++ != '\0') { if (sz > pcCurNext-1)break; ++iCnt; } this->mScene->mMeshes.back().mName = std::string( (const char*)this->mCurrent,iCnt); ++iCnt; this->mCurrent += iCnt; iRemaining -= iCnt; this->ParseChunk(&iRemaining); break; case Dot3DSFile::CHUNK_MAT_MATERIAL: this->mScene->mMaterials.push_back(Dot3DS::Material()); this->ParseMaterialChunk(&iRemaining); break; case Dot3DSFile::CHUNK_AMBCOLOR: // This is the ambient base color of the scene. // We add it to the ambient color of all materials this->ParseColorChunk(&this->mClrAmbient,true); if (is_qnan(this->mClrAmbient.r)) { this->mClrAmbient.r = 0.0f; this->mClrAmbient.g = 0.0f; this->mClrAmbient.b = 0.0f; } break; case Dot3DSFile::CHUNK_BIT_MAP: this->mBackgroundImage = std::string((const char*)this->mCurrent); break; case Dot3DSFile::CHUNK_BIT_MAP_EXISTS: bHasBG = true; break; case Dot3DSFile::CHUNK_MASTER_SCALE: this->mMasterScale = *((float*)this->mCurrent); this->mCurrent += sizeof(float); break; // NOTE: In several documentations in the internet this // chunk appears at different locations case Dot3DSFile::CHUNK_KEYFRAMER: this->ParseKeyframeChunk(&iRemaining); break; }; if (pcCurNext < this->mCurrent) { // place an error message. If we crash the programmer // will be able to find it DefaultLogger::get()->warn(ASSIMP_3DS_WARN_CHUNK_OVERFLOW_MSG); pcCurNext = this->mCurrent; } // Go to the starting position of the next top-level chunk this->mCurrent = pcCurNext; *piRemaining -= psChunk->Size; if (0 >= *piRemaining)return; return this->ParseObjectChunk(piRemaining); } // ------------------------------------------------------------------------------------------------ void Dot3DSImporter::SkipChunk() { const Dot3DSFile::Chunk* psChunk; this->ReadChunk(&psChunk); if (NULL == psChunk)return; this->mCurrent += psChunk->Size - sizeof(Dot3DSFile::Chunk); return; } // ------------------------------------------------------------------------------------------------ void Dot3DSImporter::ParseChunk(int* piRemaining) { const Dot3DSFile::Chunk* psChunk; this->ReadChunk(&psChunk); if (NULL == psChunk)return; const unsigned char* pcCur = this->mCurrent; const unsigned char* pcCurNext = pcCur + (psChunk->Size - sizeof(Dot3DSFile::Chunk)); // get chunk type int iRemaining = (psChunk->Size - sizeof(Dot3DSFile::Chunk)); switch (psChunk->Flag) { case Dot3DSFile::CHUNK_TRIMESH: // this starts a new mesh this->ParseMeshChunk(&iRemaining); break; }; if (pcCurNext < this->mCurrent) { // place an error message. If we crash the programmer // will be able to find it DefaultLogger::get()->warn(ASSIMP_3DS_WARN_CHUNK_OVERFLOW_MSG); pcCurNext = this->mCurrent; } // Go to the starting position of the next top-level chunk this->mCurrent = pcCurNext; *piRemaining -= psChunk->Size; if (0 >= *piRemaining)return; return this->ParseChunk(piRemaining); } // ------------------------------------------------------------------------------------------------ void Dot3DSImporter::ParseKeyframeChunk(int* piRemaining) { const Dot3DSFile::Chunk* psChunk; this->ReadChunk(&psChunk); if (NULL == psChunk)return; const unsigned char* pcCur = this->mCurrent; const unsigned char* pcCurNext = pcCur + (psChunk->Size - sizeof(Dot3DSFile::Chunk)); // get chunk type int iRemaining = (psChunk->Size - sizeof(Dot3DSFile::Chunk)); switch (psChunk->Flag) { case Dot3DSFile::CHUNK_TRACKINFO: // this starts a new mesh this->ParseHierarchyChunk(&iRemaining); break; }; if (pcCurNext < this->mCurrent) { // place an error message. If we crash the programmer // will be able to find it DefaultLogger::get()->warn(ASSIMP_3DS_WARN_CHUNK_OVERFLOW_MSG); pcCurNext = this->mCurrent; } // Go to the starting position of the next top-level chunk this->mCurrent = pcCurNext; *piRemaining -= psChunk->Size; if (0 >= *piRemaining)return; return this->ParseKeyframeChunk(piRemaining); } // ------------------------------------------------------------------------------------------------ void Dot3DSImporter::InverseNodeSearch(Dot3DS::Node* pcNode,Dot3DS::Node* pcCurrent) { if (NULL == pcCurrent) { this->mRootNode->push_back(pcNode); return; } if (pcCurrent->mHierarchyPos == pcNode->mHierarchyPos) { if(NULL != pcCurrent->mParent) pcCurrent->mParent->push_back(pcNode); else pcCurrent->push_back(pcNode); return; } return this->InverseNodeSearch(pcNode,pcCurrent->mParent); } // ------------------------------------------------------------------------------------------------ void Dot3DSImporter::ParseHierarchyChunk(int* piRemaining) { const Dot3DSFile::Chunk* psChunk; this->ReadChunk(&psChunk); if (NULL == psChunk)return; const unsigned char* pcCur = this->mCurrent; const unsigned char* pcCurNext = pcCur + (psChunk->Size - sizeof(Dot3DSFile::Chunk)); // get chunk type const unsigned char* sz = (unsigned char*)this->mCurrent; unsigned int iCnt = 0; uint16_t iHierarchy; // uint16_t iTemp; Dot3DS::Node* pcNode; switch (psChunk->Flag) { case Dot3DSFile::CHUNK_TRACKOBJNAME: // get object name while (*sz++ != '\0') { if (sz > pcCurNext-1)break; ++iCnt; } pcNode = new Dot3DS::Node(); pcNode->mName = std::string((const char*)this->mCurrent,iCnt); iCnt++; // there are two unknown values which we can safely ignore this->mCurrent += iCnt + sizeof(uint16_t)*2; iHierarchy = *((uint16_t*)this->mCurrent); iHierarchy++; pcNode->mHierarchyPos = iHierarchy; pcNode->mHierarchyIndex = this->mLastNodeIndex; if (this->mCurrentNode && this->mCurrentNode->mHierarchyPos == iHierarchy) { // add to the parent of the last touched node this->mCurrentNode->mParent->push_back(pcNode); this->mLastNodeIndex++; } else if(iHierarchy >= this->mLastNodeIndex) { // place it at the current position in the hierarchy this->mCurrentNode->push_back(pcNode); this->mLastNodeIndex = iHierarchy; } else { // need to go back to the specified position in the hierarchy. this->InverseNodeSearch(pcNode,this->mCurrentNode); this->mLastNodeIndex++; } this->mCurrentNode = pcNode; break; // (code for keyframe animation. however, this is currently not supported by Assimp) #if 0 case Dot3DSFile::CHUNK_TRACKPIVOT: this->mCurrentNode->vPivot = *((aiVector3D*)this->mCurrent); this->mCurrent += sizeof(aiVector3D); break; case Dot3DSFile::CHUNK_TRACKPOS: /* +2 short flags; +8 short unknown[4]; +2 short keys; +2 short unknown; struct { +2 short framenum; +4 long unknown; float pos_x, pos_y, pos_z; } pos[keys]; */ this->mCurrent += 10; iTemp = *((uint16_t*)mCurrent); this->mCurrent += sizeof(uint16_t) * 2; if (0 != iTemp) { for (unsigned int i = 0; i < (unsigned int)iTemp;++i) { uint16_t sNum = *((uint16_t*)mCurrent); this->mCurrent += sizeof(uint16_t); if (0 == sNum) { this->mCurrent += sizeof(uint32_t); this->mCurrentNode->vPosition = *((aiVector3D*)this->mCurrent); this->mCurrent += sizeof(aiVector3D); } else this->mCurrent += sizeof(uint32_t) + sizeof(aiVector3D); } } break; case Dot3DSFile::CHUNK_TRACKROTATE: /* +2 short flags; +8 short unknown[4]; +2 short keys; +2 short unknown; struct { +2 short framenum; +4 long unknown; float rad , pos_x, pos_y, pos_z; } pos[keys]; */ this->mCurrent += 10; iTemp = *((uint16_t*)mCurrent); this->mCurrent += sizeof(uint16_t) * 2; if (0 != iTemp) { bool neg = false; unsigned int iNum0 = 0; for (unsigned int i = 0; i < (unsigned int)iTemp;++i) { uint16_t sNum = *((uint16_t*)mCurrent); this->mCurrent += sizeof(uint16_t); if (0 == sNum) { this->mCurrent += sizeof(uint32_t); float fRadians = *((float*)this->mCurrent); this->mCurrent += sizeof(float); aiVector3D vAxis = *((aiVector3D*)this->mCurrent); this->mCurrent += sizeof(aiVector3D); // some idiotic files have rotations with fRadians = 0 ... if (0.0f != fRadians) { // get the rotation matrix around the axis const float fSin = sinf(-fRadians); const float fCos = cosf(-fRadians); const float fOneMinusCos = 1.0f - fCos; std::swap(vAxis.z,vAxis.y); //vAxis.z *= -1.0f; //vAxis.Normalize(); aiMatrix4x4 mRot = aiMatrix4x4( (vAxis.x * vAxis.x) * fOneMinusCos + fCos, (vAxis.x * vAxis.y) * fOneMinusCos /*-*/- (vAxis.z * fSin), (vAxis.x * vAxis.z) * fOneMinusCos /*+*/+ (vAxis.y * fSin), 0.0f, (vAxis.y * vAxis.x) * fOneMinusCos /*+*/+ (vAxis.z * fSin), (vAxis.y * vAxis.y) * fOneMinusCos + fCos, (vAxis.y * vAxis.z) * fOneMinusCos /*-*/- (vAxis.x * fSin), 0.0f, (vAxis.z * vAxis.x) * fOneMinusCos /*-*/- (vAxis.y * fSin), (vAxis.z * vAxis.y) * fOneMinusCos /*+*/+ (vAxis.x * fSin), (vAxis.z * vAxis.z) * fOneMinusCos + fCos, 0.0f,0.0f,0.0f,0.0f,1.0f); mRot.Transpose(); // build a chain of concatenated rotation matrix' // if there are multiple track chunks for the same frame // (there are some silly files usinf this ...) if (0 != iNum0) { this->mCurrentNode->mRotation = this->mCurrentNode->mRotation * mRot; } else { // for the first time simply set the rotation matrix this->mCurrentNode->mRotation = mRot; } iNum0++; } } else this->mCurrent += sizeof(uint32_t) + sizeof(aiVector3D) + sizeof(float); } } break; case Dot3DSFile::CHUNK_TRACKSCALE: /* +2 short flags; +8 short unknown[4]; +2 short keys; +2 short unknown; struct { +2 short framenum; +4 long unknown; float pos_x, pos_y, pos_z; } pos[keys]; */ this->mCurrent += 10; iTemp = *((uint16_t*)mCurrent); this->mCurrent += sizeof(uint16_t) * 2; if (0 != iTemp) { for (unsigned int i = 0; i < (unsigned int)iTemp;++i) { uint16_t sNum = *((uint16_t*)mCurrent); this->mCurrent += sizeof(uint16_t); if (0 == sNum) { this->mCurrent += sizeof(uint32_t); aiVector3D vMe = *((aiVector3D*)this->mCurrent); // ignore zero scalings if (0.0f != vMe.x && 0.0f != vMe.y && 0.0f != vMe.z) { this->mCurrentNode->vScaling.x *= vMe.x; this->mCurrentNode->vScaling.y *= vMe.y; this->mCurrentNode->vScaling.z *= vMe.z; } else { DefaultLogger::get()->warn("Found zero scaling factors. " "This will be ignored."); } this->mCurrent += sizeof(aiVector3D); } else this->mCurrent += sizeof(uint32_t) + sizeof(aiVector3D); } } break; #endif // end keyframe animation code }; if (pcCurNext < this->mCurrent) { // place an error message. If we crash the programmer // will be able to find it DefaultLogger::get()->warn(ASSIMP_3DS_WARN_CHUNK_OVERFLOW_MSG); pcCurNext = this->mCurrent; } // Go to the starting position of the next top-level chunk this->mCurrent = pcCurNext; *piRemaining -= psChunk->Size; if (0 >= *piRemaining)return; return this->ParseHierarchyChunk(piRemaining); } // ------------------------------------------------------------------------------------------------ void Dot3DSImporter::ParseFaceChunk(int* piRemaining) { const Dot3DSFile::Chunk* psChunk; Dot3DS::Mesh& mMesh = this->mScene->mMeshes.back(); this->ReadChunk(&psChunk); if (NULL == psChunk)return; const unsigned char* pcCur = this->mCurrent; const unsigned char* pcCurNext = pcCur + (psChunk->Size - sizeof(Dot3DSFile::Chunk)); // get chunk type const unsigned char* sz = this->mCurrent; uint32_t iCnt = 0,iTemp; switch (psChunk->Flag) { case Dot3DSFile::CHUNK_SMOOLIST: // one int32 for each face for (std::vector::iterator i = mMesh.mFaces.begin(); i != mMesh.mFaces.end();++i) { // nth bit is set for nth smoothing group (*i).iSmoothGroup = *((uint32_t*)this->mCurrent); this->mCurrent += sizeof(uint32_t); } break; case Dot3DSFile::CHUNK_FACEMAT: // at fist an asciiz with the material name while (*sz++ != '\0') { if (sz > pcCurNext-1)break; } // find the index of the material unsigned int iIndex = 0xFFFFFFFF; iCnt = 0; for (std::vector::const_iterator i = this->mScene->mMaterials.begin(); i != this->mScene->mMaterials.end();++i,++iCnt) { // compare case-independent to be sure it works if (0 == ASSIMP_stricmp((const char*)this->mCurrent, (const char*)((*i).mName.c_str()))) { iIndex = iCnt; break; } } if (iIndex == 0xFFFFFFFF) { // this material is not known. Ignore this. We will later // assign the default material to all faces using *this* // material. Use 0xcdcdcdcd as special value to indicate // this. iIndex = 0xcdcdcdcd; } this->mCurrent = sz; iCnt = (int)(*((uint16_t*)this->mCurrent)); this->mCurrent += sizeof(uint16_t); for (unsigned int i = 0; i < iCnt;++i) { iTemp = (uint16_t)*((uint16_t*)this->mCurrent); // check range if (iTemp >= mMesh.mFaceMaterials.size()) { mMesh.mFaceMaterials[mMesh.mFaceMaterials.size()-1] = iIndex; } else { mMesh.mFaceMaterials[iTemp] = iIndex; } this->mCurrent += sizeof(uint16_t); } break; }; if (pcCurNext < this->mCurrent) { // place an error message. If we crash the programmer // will be able to find it DefaultLogger::get()->warn(ASSIMP_3DS_WARN_CHUNK_OVERFLOW_MSG); pcCurNext = this->mCurrent; } // Go to the starting position of the next chunk on this level this->mCurrent = pcCurNext; *piRemaining -= psChunk->Size; if (0 >= *piRemaining)return; return ParseFaceChunk(piRemaining); } // ------------------------------------------------------------------------------------------------ void Dot3DSImporter::ParseMeshChunk(int* piRemaining) { const Dot3DSFile::Chunk* psChunk; Dot3DS::Mesh& mMesh = this->mScene->mMeshes.back(); this->ReadChunk(&psChunk); if (NULL == psChunk)return; const unsigned char* pcCur = this->mCurrent; const unsigned char* pcCurNext = pcCur + (psChunk->Size - sizeof(Dot3DSFile::Chunk)); // get chunk type const unsigned char* sz = this->mCurrent; unsigned int iCnt = 0; int iRemaining; uint16_t iNum = 0; float* pf; switch (psChunk->Flag) { case Dot3DSFile::CHUNK_VERTLIST: iNum = *((short*)this->mCurrent); this->mCurrent += sizeof(short); while (iNum-- > 0) { mMesh.mPositions.push_back(*((aiVector3D*)this->mCurrent)); mMesh.mPositions.back().z *= -1.0f; this->mCurrent += sizeof(aiVector3D); } break; case Dot3DSFile::CHUNK_TRMATRIX: { // http://www.gamedev.net/community/forums/topic.asp?topic_id=263063 // http://www.gamedev.net/community/forums/topic.asp?topic_id=392310 pf = (float*)this->mCurrent; this->mCurrent += 12 * sizeof(float); mMesh.mMat.a1 = pf[0]; mMesh.mMat.a2 = pf[1]; mMesh.mMat.a3 = pf[2]; mMesh.mMat.b1 = pf[3]; mMesh.mMat.b2 = pf[4]; mMesh.mMat.b3 = pf[5]; mMesh.mMat.c1 = pf[6]; mMesh.mMat.c2 = pf[7]; mMesh.mMat.c3 = pf[8]; mMesh.mMat.d1 = pf[9]; mMesh.mMat.d2 = pf[10]; mMesh.mMat.d3 = pf[11]; std::swap((float&)mMesh.mMat.d2, (float&)mMesh.mMat.d3); std::swap((float&)mMesh.mMat.a2, (float&)mMesh.mMat.a3); std::swap((float&)mMesh.mMat.b1, (float&)mMesh.mMat.c1); std::swap((float&)mMesh.mMat.c2, (float&)mMesh.mMat.b3); std::swap((float&)mMesh.mMat.b2, (float&)mMesh.mMat.c3); mMesh.mMat.Transpose(); //aiMatrix4x4 mInv = mMesh.mMat; //mInv.Inverse(); //// invert the matrix and transform all vertices with it //// (the origin of all vertices is 0|0|0 now) //for (register unsigned int i = 0; i < mMesh.mPositions.size();++i) // { // aiVector3D a,c; // a = mMesh.mPositions[i]; // c[0]= mInv[0][0]*a[0] + mInv[1][0]*a[1] + mInv[2][0]*a[2] + mInv[3][0]; // c[1]= mInv[0][1]*a[0] + mInv[1][1]*a[1] + mInv[2][1]*a[2] + mInv[3][1]; // c[2]= mInv[0][2]*a[0] + mInv[1][2]*a[1] + mInv[2][2]*a[2] + mInv[3][2]; // mMesh.mPositions[i] = c; // } // now check whether the matrix has got a negative determinant // If yes, we need to flip all vertices x axis .... // From lib3ds, mesh.c if (mMesh.mMat.Determinant() < 0.0f) { aiMatrix4x4 mInv = mMesh.mMat; mInv.Inverse(); aiMatrix4x4 mMe = mMesh.mMat; mMe.a1 *= -1.0f; mMe.b1 *= -1.0f; mMe.c1 *= -1.0f; mMe.d1 *= -1.0f; mInv = mInv * mMe; for (register unsigned int i = 0; i < mMesh.mPositions.size();++i) { aiVector3D a,c; a = mMesh.mPositions[i]; c[0]= mInv[0][0]*a[0] + mInv[1][0]*a[1] + mInv[2][0]*a[2] + mInv[3][0]; c[1]= mInv[0][1]*a[0] + mInv[1][1]*a[1] + mInv[2][1]*a[2] + mInv[3][1]; c[2]= mInv[0][2]*a[0] + mInv[1][2]*a[1] + mInv[2][2]*a[2] + mInv[3][2]; mMesh.mPositions[i] = c; } } } break; case Dot3DSFile::CHUNK_MAPLIST: iNum = *((uint16_t*)this->mCurrent); this->mCurrent += sizeof(uint16_t); while (iNum-- > 0) { mMesh.mTexCoords.push_back(*((aiVector2D*)this->mCurrent)); this->mCurrent += sizeof(aiVector2D); } break; #if (defined _DEBUG) case Dot3DSFile::CHUNK_TXTINFO: // for debugging purposes. Read two bytes to determine the mapping type iNum = *((uint16_t*)this->mCurrent); this->mCurrent += sizeof(uint16_t); break; #endif case Dot3DSFile::CHUNK_FACELIST: iNum = *((uint16_t*)this->mCurrent); this->mCurrent += sizeof(uint16_t); while (iNum-- > 0) { Dot3DS::Face sFace; sFace.mIndices[0] = *((uint16_t*)this->mCurrent); this->mCurrent += sizeof(uint16_t); sFace.mIndices[1] = *((uint16_t*)this->mCurrent); this->mCurrent += sizeof(uint16_t); sFace.mIndices[2] = *((uint16_t*)this->mCurrent); this->mCurrent += 2*sizeof(uint16_t); mMesh.mFaces.push_back(sFace); } // resize the material array (0xcdcdcdcd marks the // default material; so if a face is not referenced // by a material $$DEFAULT will be assigned to it) mMesh.mFaceMaterials.resize(mMesh.mFaces.size(),0xcdcdcdcd); iRemaining = (int)(pcCurNext - this->mCurrent); if (iRemaining > 0)this->ParseFaceChunk(&iRemaining); break; }; if (pcCurNext < this->mCurrent) { // place an error message. If we crash the programmer // will be able to find it DefaultLogger::get()->warn(ASSIMP_3DS_WARN_CHUNK_OVERFLOW_MSG); pcCurNext = this->mCurrent; } // Go to the starting position of the next chunk on this level this->mCurrent = pcCurNext; *piRemaining -= psChunk->Size; if (0 >= *piRemaining)return; return ParseMeshChunk(piRemaining); } // ------------------------------------------------------------------------------------------------ void Dot3DSImporter::ParseMaterialChunk(int* piRemaining) { const Dot3DSFile::Chunk* psChunk; this->ReadChunk(&psChunk); if (NULL == psChunk)return; const unsigned char* pcCur = this->mCurrent; const unsigned char* pcCurNext = pcCur + (psChunk->Size - sizeof(Dot3DSFile::Chunk)); // get chunk type const unsigned char* sz = this->mCurrent; unsigned int iCnt = 0; int iRemaining; aiColor3D* pc; float* pcf; switch (psChunk->Flag) { case Dot3DSFile::CHUNK_MAT_MATNAME: // string in file is zero-terminated, // this should be no problem. However, validate whether // it overlaps the end of the chunk, if yes we should // truncate it. while (*sz++ != '\0') { if (sz > pcCurNext-1)break; ++iCnt; } this->mScene->mMaterials.back().mName = std::string( (const char*)this->mCurrent,iCnt); break; case Dot3DSFile::CHUNK_MAT_DIFFUSE: pc = &this->mScene->mMaterials.back().mDiffuse; this->ParseColorChunk(pc); if (is_qnan(pc->r)) { // color chunk is invalid. Simply ignore it pc->r = pc->g = pc->b = 1.0f; } break; case Dot3DSFile::CHUNK_MAT_SPECULAR: pc = &this->mScene->mMaterials.back().mSpecular; this->ParseColorChunk(pc); if (is_qnan(pc->r)) { // color chunk is invalid. Simply ignore it pc->r = pc->g = pc->b = 1.0f; } break; case Dot3DSFile::CHUNK_MAT_AMBIENT: pc = &this->mScene->mMaterials.back().mAmbient; this->ParseColorChunk(pc); if (is_qnan(pc->r)) { // color chunk is invalid. Simply ignore it pc->r = pc->g = pc->b = 1.0f; } break; case Dot3DSFile::CHUNK_MAT_SELF_ILLUM: pc = &this->mScene->mMaterials.back().mEmissive; this->ParseColorChunk(pc); if (is_qnan(pc->r)) { // color chunk is invalid. Simply ignore it // EMISSSIVE TO 0|0|0 pc->r = pc->g = pc->b = 0.0f; } break; case Dot3DSFile::CHUNK_MAT_TRANSPARENCY: pcf = &this->mScene->mMaterials.back().mTransparency; *pcf = this->ParsePercentageChunk(); // NOTE: transparency, not opacity if (is_qnan(*pcf)) *pcf = 1.0f; else *pcf = 1.0f - *pcf * (float)0xFFFF / 100.0f; break; case Dot3DSFile::CHUNK_MAT_SHADING: this->mScene->mMaterials.back().mShading = (Dot3DS::Dot3DSFile::shadetype3ds)*((uint16_t*)this->mCurrent); this->mCurrent += sizeof(uint16_t); break; case Dot3DSFile::CHUNK_MAT_TWO_SIDE: this->mScene->mMaterials.back().mTwoSided = true; break; case Dot3DSFile::CHUNK_MAT_SHININESS: pcf = &this->mScene->mMaterials.back().mSpecularExponent; *pcf = this->ParsePercentageChunk(); if (is_qnan(*pcf)) *pcf = 0.0f; else *pcf *= (float)0xFFFF; break; case Dot3DSFile::CHUNK_MAT_SHININESS_PERCENT: pcf = &this->mScene->mMaterials.back().mShininessStrength; *pcf = this->ParsePercentageChunk(); if (is_qnan(*pcf)) *pcf = 0.0f; else *pcf *= (float)0xffff / 100.0f; break; case Dot3DSFile::CHUNK_MAT_SELF_ILPCT: // TODO: need to multiply with emissive base color? pcf = &this->mScene->mMaterials.back().sTexEmissive.mTextureBlend; *pcf = this->ParsePercentageChunk(); if (is_qnan(*pcf)) *pcf = 0.0f; else *pcf = *pcf * (float)0xFFFF / 100.0f; break; // parse texture chunks case Dot3DSFile::CHUNK_MAT_TEXTURE: iRemaining = (psChunk->Size - sizeof(Dot3DSFile::Chunk)); this->ParseTextureChunk(&iRemaining,&this->mScene->mMaterials.back().sTexDiffuse); break; case Dot3DSFile::CHUNK_MAT_BUMPMAP: iRemaining = (psChunk->Size - sizeof(Dot3DSFile::Chunk)); this->ParseTextureChunk(&iRemaining,&this->mScene->mMaterials.back().sTexBump); break; case Dot3DSFile::CHUNK_MAT_OPACMAP: iRemaining = (psChunk->Size - sizeof(Dot3DSFile::Chunk)); this->ParseTextureChunk(&iRemaining,&this->mScene->mMaterials.back().sTexOpacity); break; case Dot3DSFile::CHUNK_MAT_MAT_SHINMAP: iRemaining = (psChunk->Size - sizeof(Dot3DSFile::Chunk)); this->ParseTextureChunk(&iRemaining,&this->mScene->mMaterials.back().sTexShininess); break; case Dot3DSFile::CHUNK_MAT_SPECMAP: iRemaining = (psChunk->Size - sizeof(Dot3DSFile::Chunk)); this->ParseTextureChunk(&iRemaining,&this->mScene->mMaterials.back().sTexSpecular); break; case Dot3DSFile::CHUNK_MAT_SELFIMAP: iRemaining = (psChunk->Size - sizeof(Dot3DSFile::Chunk)); this->ParseTextureChunk(&iRemaining,&this->mScene->mMaterials.back().sTexEmissive); break; }; if (pcCurNext < this->mCurrent) { // place an error message. If we crash the programmer // will be able to find it DefaultLogger::get()->warn(ASSIMP_3DS_WARN_CHUNK_OVERFLOW_MSG); pcCurNext = this->mCurrent; } // Go to the starting position of the next chunk on this level this->mCurrent = pcCurNext; *piRemaining -= psChunk->Size; if (0 >= *piRemaining)return; return ParseMaterialChunk(piRemaining); } // ------------------------------------------------------------------------------------------------ void Dot3DSImporter::ParseTextureChunk(int* piRemaining,Dot3DS::Texture* pcOut) { const Dot3DSFile::Chunk* psChunk; this->ReadChunk(&psChunk); if (NULL == psChunk)return; const unsigned char* pcCur = this->mCurrent; const unsigned char* pcCurNext = pcCur + (psChunk->Size - sizeof(Dot3DSFile::Chunk)); // get chunk type const unsigned char* sz = this->mCurrent; unsigned int iCnt = 0; switch (psChunk->Flag) { case Dot3DSFile::CHUNK_MAPFILE: // string in file is zero-terminated, // this should be no problem. However, validate whether // it overlaps the end of the chunk, if yes we should // truncate it. while (*sz++ != '\0') { if (sz > pcCurNext-1)break; ++iCnt; } pcOut->mMapName = std::string((const char*)this->mCurrent,iCnt); break; // manually parse the blend factor case Dot3DSFile::CHUNK_PERCENTF: pcOut->mTextureBlend = *((float*)this->mCurrent); break; // manually parse the blend factor case Dot3DSFile::CHUNK_PERCENTW: pcOut->mTextureBlend = (float)(*((short*)this->mCurrent)) / 100.0f; break; case Dot3DSFile::CHUNK_MAT_MAP_USCALE: pcOut->mScaleU = *((float*)this->mCurrent); if (0.0f == pcOut->mScaleU) { DefaultLogger::get()->warn("Texture coordinate scaling in the " "x direction is zero. Assuming this should be 1.0 ... "); pcOut->mScaleU = 1.0f; } // NOTE: some docs state it is 1/u, others say it is u ... ARGHH! //pcOut->mScaleU = 1.0f / pcOut->mScaleU; break; case Dot3DSFile::CHUNK_MAT_MAP_VSCALE: pcOut->mScaleV = *((float*)this->mCurrent); if (0.0f == pcOut->mScaleV) { DefaultLogger::get()->warn("Texture coordinate scaling in the " "y direction is zero. Assuming this should be 1.0 ... "); pcOut->mScaleV = 1.0f; } // NOTE: some docs state it is 1/v, others say it is v ... ARGHH! //pcOut->mScaleV = 1.0f / pcOut->mScaleV; break; case Dot3DSFile::CHUNK_MAT_MAP_UOFFSET: pcOut->mOffsetU = *((float*)this->mCurrent); break; case Dot3DSFile::CHUNK_MAT_MAP_VOFFSET: pcOut->mOffsetV = *((float*)this->mCurrent); break; case Dot3DSFile::CHUNK_MAT_MAP_ANG: pcOut->mRotation = *((float*)this->mCurrent); break; case Dot3DSFile::CHUNK_MAT_MAP_TILING: uint16_t iFlags = *((uint16_t*)this->mCurrent); // check whether the mirror flag is set if (iFlags & 0x2u) { pcOut->mMapMode = aiTextureMapMode_Mirror; } // assume that "decal" means clamping ... else if (iFlags & 0x10u && iFlags & 0x1u) { pcOut->mMapMode = aiTextureMapMode_Clamp; } break; }; // Go to the starting position of the next chunk on this level this->mCurrent = pcCurNext; *piRemaining -= psChunk->Size; if (0 >= *piRemaining)return; return ParseTextureChunk(piRemaining,pcOut); } // ------------------------------------------------------------------------------------------------ float Dot3DSImporter::ParsePercentageChunk() { const Dot3DSFile::Chunk* psChunk; this->ReadChunk(&psChunk); if (NULL == psChunk)return std::numeric_limits::quiet_NaN(); if (Dot3DSFile::CHUNK_PERCENTF == psChunk->Flag) { if (sizeof(float) > psChunk->Size) return std::numeric_limits::quiet_NaN(); return *((float*)this->mCurrent); } else if (Dot3DSFile::CHUNK_PERCENTW == psChunk->Flag) { if (2 > psChunk->Size) return std::numeric_limits::quiet_NaN(); return (float)(*((short*)this->mCurrent)) / (float)0xFFFF; } this->mCurrent += psChunk->Size - sizeof(Dot3DSFile::Chunk); return std::numeric_limits::quiet_NaN(); } // ------------------------------------------------------------------------------------------------ void Dot3DSImporter::ParseColorChunk(aiColor3D* p_pcOut, bool p_bAcceptPercent) { ai_assert(p_pcOut != NULL); // error return value static const aiColor3D clrError = aiColor3D(std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN()); const Dot3DSFile::Chunk* psChunk; this->ReadChunk(&psChunk); if (NULL == psChunk) { *p_pcOut = clrError; return; } const unsigned char* pcCur = this->mCurrent; this->mCurrent += psChunk->Size - sizeof(Dot3DSFile::Chunk); bool bGamma = false; switch(psChunk->Flag) { case Dot3DSFile::CHUNK_LINRGBF: bGamma = true; case Dot3DSFile::CHUNK_RGBF: if (sizeof(float) * 3 > psChunk->Size - sizeof(Dot3DSFile::Chunk)) { *p_pcOut = clrError; return; } p_pcOut->r = ((float*)pcCur)[0]; p_pcOut->g = ((float*)pcCur)[1]; p_pcOut->b = ((float*)pcCur)[2]; break; case Dot3DSFile::CHUNK_LINRGBB: bGamma = true; case Dot3DSFile::CHUNK_RGBB: if (sizeof(char) * 3 > psChunk->Size - sizeof(Dot3DSFile::Chunk)) { *p_pcOut = clrError; return; } p_pcOut->r = (float)pcCur[0] / 255.0f; p_pcOut->g = (float)pcCur[1] / 255.0f; p_pcOut->b = (float)pcCur[2] / 255.0f; break; // percentage chunks: accepted to be compatible with various // .3ds files with very curious content case Dot3DSFile::CHUNK_PERCENTF: if (p_bAcceptPercent && 4 <= psChunk->Size - sizeof(Dot3DSFile::Chunk)) { p_pcOut->r = *((float*)pcCur); p_pcOut->g = *((float*)pcCur); p_pcOut->b = *((float*)pcCur); break; } *p_pcOut = clrError; return; case Dot3DSFile::CHUNK_PERCENTW: if (p_bAcceptPercent && 1 <= psChunk->Size - sizeof(Dot3DSFile::Chunk)) { p_pcOut->r = (float)pcCur[0] / 255.0f; p_pcOut->g = (float)pcCur[0] / 255.0f; p_pcOut->b = (float)pcCur[0] / 255.0f; break; } *p_pcOut = clrError; return; default: // skip unknown chunks, hope this won't cause any problems. return this->ParseColorChunk(p_pcOut,p_bAcceptPercent); }; // assume input gamma = 1.0, output gamma = 2.2 // Not sure whether this is correct, too tired to // think about it ;-) if (bGamma) { p_pcOut->r = powf(p_pcOut->r, 1.0f / 2.2f); p_pcOut->g = powf(p_pcOut->g, 1.0f / 2.2f); p_pcOut->b = powf(p_pcOut->b, 1.0f / 2.2f); } return; }