/* --------------------------------------------------------------------------- Open Asset Import Library (ASSIMP) --------------------------------------------------------------------------- Copyright (c) 2006-2008, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file Implementation of the 3ds importer class */ #include "AssimpPCH.h" // internal headers #include "3DSLoader.h" #include "TextureTransform.h" using namespace Assimp; // ------------------------------------------------------------------------------------------------ // Setup final material indices, generae a default material if necessary void Discreet3DSImporter::ReplaceDefaultMaterial() { // ******************************************************************* // try to find an existing material that matches the // typical default material setting: // - no textures // - diffuse color (in grey!) // NOTE: This is here to workaround the fact that some // exporters are writing a default material, too. // ******************************************************************* unsigned int idx = 0xcdcdcdcd; for (unsigned int i = 0; i < mScene->mMaterials.size();++i) { std::string s = mScene->mMaterials[i].mName; for (std::string::iterator it = s.begin(); it != s.end(); ++it) *it = ::tolower(*it); if (std::string::npos == s.find("default"))continue; if (mScene->mMaterials[i].mDiffuse.r != mScene->mMaterials[i].mDiffuse.g || mScene->mMaterials[i].mDiffuse.r != mScene->mMaterials[i].mDiffuse.b)continue; if (mScene->mMaterials[i].sTexDiffuse.mMapName.length() != 0 || mScene->mMaterials[i].sTexBump.mMapName.length() != 0 || mScene->mMaterials[i].sTexOpacity.mMapName.length() != 0 || mScene->mMaterials[i].sTexEmissive.mMapName.length() != 0 || mScene->mMaterials[i].sTexSpecular.mMapName.length() != 0 || mScene->mMaterials[i].sTexShininess.mMapName.length() != 0 ) { continue; } idx = i; } if (0xcdcdcdcd == idx)idx = (unsigned int)mScene->mMaterials.size(); // now iterate through all meshes and through all faces and // find all faces that are using the default material unsigned int cnt = 0; for (std::vector::iterator i = mScene->mMeshes.begin(); i != mScene->mMeshes.end();++i) { for (std::vector::iterator a = (*i).mFaceMaterials.begin(); a != (*i).mFaceMaterials.end();++a) { // NOTE: The additional check seems to be necessary, // some exporters seem to generate invalid data here if (0xcdcdcdcd == (*a)) { (*a) = idx; ++cnt; } else if ( (*a) >= mScene->mMaterials.size()) { (*a) = idx; DefaultLogger::get()->warn("Material index overflow in 3DS file. Using default material"); ++cnt; } } } if (cnt && idx == mScene->mMaterials.size()) { // We need to create our own default material D3DS::Material sMat; sMat.mDiffuse = aiColor3D(0.3f,0.3f,0.3f); sMat.mName = "%%%DEFAULT"; mScene->mMaterials.push_back(sMat); DefaultLogger::get()->info("3DS: Generating default material"); } return; } // ------------------------------------------------------------------------------------------------ // Check whether all indices are valid. Otherwise we'd crash before the validation step was reached void Discreet3DSImporter::CheckIndices(D3DS::Mesh& sMesh) { for (std::vector< D3DS::Face >::iterator i = sMesh.mFaces.begin(); i != sMesh.mFaces.end();++i) { // check whether all indices are in range for (unsigned int a = 0; a < 3;++a) { if ((*i).mIndices[a] >= sMesh.mPositions.size()) { DefaultLogger::get()->warn("3DS: Vertex index overflow)"); (*i).mIndices[a] = (uint32_t)sMesh.mPositions.size()-1; } if ( !sMesh.mTexCoords.empty() && (*i).mIndices[a] >= sMesh.mTexCoords.size()) { DefaultLogger::get()->warn("3DS: Texture coordinate index overflow)"); (*i).mIndices[a] = (uint32_t)sMesh.mTexCoords.size()-1; } } } return; } // ------------------------------------------------------------------------------------------------ // Generate out unique verbose format representation void Discreet3DSImporter::MakeUnique(D3DS::Mesh& sMesh) { unsigned int iBase = 0; // Allocate output storage std::vector vNew (sMesh.mFaces.size() * 3); std::vector vNew2; if (sMesh.mTexCoords.size())vNew2.resize(sMesh.mFaces.size() * 3); for (unsigned int i = 0; i < sMesh.mFaces.size();++i) { uint32_t iTemp1,iTemp2; // positions vNew[iBase] = sMesh.mPositions[sMesh.mFaces[i].mIndices[2]]; iTemp1 = iBase++; vNew[iBase] = sMesh.mPositions[sMesh.mFaces[i].mIndices[1]]; iTemp2 = iBase++; vNew[iBase] = sMesh.mPositions[sMesh.mFaces[i].mIndices[0]]; // texture coordinates if (sMesh.mTexCoords.size()) { vNew2[iTemp1] = sMesh.mTexCoords[sMesh.mFaces[i].mIndices[2]]; vNew2[iTemp2] = sMesh.mTexCoords[sMesh.mFaces[i].mIndices[1]]; vNew2[iBase] = sMesh.mTexCoords[sMesh.mFaces[i].mIndices[0]]; } sMesh.mFaces[i].mIndices[2] = iBase++; sMesh.mFaces[i].mIndices[0] = iTemp1; sMesh.mFaces[i].mIndices[1] = iTemp2; } sMesh.mPositions = vNew; sMesh.mTexCoords = vNew2; return; } // ------------------------------------------------------------------------------------------------ // Convert a 3DS material to an aiMaterial void Discreet3DSImporter::ConvertMaterial(D3DS::Material& oldMat, MaterialHelper& mat) { // NOTE: Pass the background image to the viewer by bypassing the // material system. This is an evil hack, never do it again! if (0 != mBackgroundImage.length() && bHasBG) { aiString tex; tex.Set( mBackgroundImage); mat.AddProperty( &tex, AI_MATKEY_GLOBAL_BACKGROUND_IMAGE); // be sure this is only done for the first material mBackgroundImage = std::string(""); } // At first add the base ambient color of the // scene to the material oldMat.mAmbient.r += mClrAmbient.r; oldMat.mAmbient.g += mClrAmbient.g; oldMat.mAmbient.b += mClrAmbient.b; aiString name; name.Set( oldMat.mName); mat.AddProperty( &name, AI_MATKEY_NAME); // material colors mat.AddProperty( &oldMat.mAmbient, 1, AI_MATKEY_COLOR_AMBIENT); mat.AddProperty( &oldMat.mDiffuse, 1, AI_MATKEY_COLOR_DIFFUSE); mat.AddProperty( &oldMat.mSpecular, 1, AI_MATKEY_COLOR_SPECULAR); mat.AddProperty( &oldMat.mEmissive, 1, AI_MATKEY_COLOR_EMISSIVE); // phong shininess and shininess strength if (D3DS::Discreet3DS::Phong == oldMat.mShading || D3DS::Discreet3DS::Metal == oldMat.mShading) { if (!oldMat.mSpecularExponent || !oldMat.mShininessStrength) { oldMat.mShading = D3DS::Discreet3DS::Gouraud; } else { mat.AddProperty( &oldMat.mSpecularExponent, 1, AI_MATKEY_SHININESS); mat.AddProperty( &oldMat.mShininessStrength, 1, AI_MATKEY_SHININESS_STRENGTH); } } // opacity mat.AddProperty( &oldMat.mTransparency,1,AI_MATKEY_OPACITY); // bump height scaling mat.AddProperty( &oldMat.mBumpHeight,1,AI_MATKEY_BUMPSCALING); // two sided rendering? if (oldMat.mTwoSided) { int i = 1; mat.AddProperty(&i,1,AI_MATKEY_TWOSIDED); } // shading mode aiShadingMode eShading = aiShadingMode_NoShading; switch (oldMat.mShading) { case D3DS::Discreet3DS::Flat: eShading = aiShadingMode_Flat; break; // I don't know what "Wire" shading should be, // assume it is simple lambertian diffuse (L dot N) shading case D3DS::Discreet3DS::Wire: case D3DS::Discreet3DS::Gouraud: eShading = aiShadingMode_Gouraud; break; // assume cook-torrance shading for metals. case D3DS::Discreet3DS::Phong : eShading = aiShadingMode_Phong; break; case D3DS::Discreet3DS::Metal : eShading = aiShadingMode_CookTorrance; break; // FIX to workaround a warning with GCC 4 who complained // about a missing case Blinn: here - Blinn isn't a valid // value in the 3DS Loader, it is just needed for ASE case D3DS::Discreet3DS::Blinn : eShading = aiShadingMode_Blinn; break; } mat.AddProperty( (int*)&eShading,1,AI_MATKEY_SHADING_MODEL); if (D3DS::Discreet3DS::Wire == oldMat.mShading) { // set the wireframe flag unsigned int iWire = 1; mat.AddProperty( (int*)&iWire,1,AI_MATKEY_ENABLE_WIREFRAME); } // texture, if there is one // DIFFUSE texture if( oldMat.sTexDiffuse.mMapName.length() > 0) { aiString tex; tex.Set( oldMat.sTexDiffuse.mMapName); mat.AddProperty( &tex, AI_MATKEY_TEXTURE_DIFFUSE(0)); if (is_not_qnan(oldMat.sTexDiffuse.mTextureBlend)) mat.AddProperty( &oldMat.sTexDiffuse.mTextureBlend, 1, AI_MATKEY_TEXBLEND_DIFFUSE(0)); if (aiTextureMapMode_Clamp != oldMat.sTexDiffuse.mMapMode) { int i = (int)oldMat.sTexSpecular.mMapMode; mat.AddProperty(&i,1,AI_MATKEY_MAPPINGMODE_U_DIFFUSE(0)); mat.AddProperty(&i,1,AI_MATKEY_MAPPINGMODE_V_DIFFUSE(0)); } } // SPECULAR texture if( oldMat.sTexSpecular.mMapName.length() > 0) { aiString tex; tex.Set( oldMat.sTexSpecular.mMapName); mat.AddProperty( &tex, AI_MATKEY_TEXTURE_SPECULAR(0)); if (is_not_qnan(oldMat.sTexSpecular.mTextureBlend)) mat.AddProperty( &oldMat.sTexSpecular.mTextureBlend, 1, AI_MATKEY_TEXBLEND_SPECULAR(0)); if (aiTextureMapMode_Clamp != oldMat.sTexSpecular.mMapMode) { int i = (int)oldMat.sTexSpecular.mMapMode; mat.AddProperty(&i,1,AI_MATKEY_MAPPINGMODE_U_SPECULAR(0)); mat.AddProperty(&i,1,AI_MATKEY_MAPPINGMODE_V_SPECULAR(0)); } } // OPACITY texture if( oldMat.sTexOpacity.mMapName.length() > 0) { aiString tex; tex.Set( oldMat.sTexOpacity.mMapName); mat.AddProperty( &tex, AI_MATKEY_TEXTURE_OPACITY(0)); if (is_not_qnan(oldMat.sTexOpacity.mTextureBlend)) mat.AddProperty( &oldMat.sTexOpacity.mTextureBlend, 1,AI_MATKEY_TEXBLEND_OPACITY(0)); if (aiTextureMapMode_Clamp != oldMat.sTexOpacity.mMapMode) { int i = (int)oldMat.sTexOpacity.mMapMode; mat.AddProperty(&i,1,AI_MATKEY_MAPPINGMODE_U_OPACITY(0)); mat.AddProperty(&i,1,AI_MATKEY_MAPPINGMODE_V_OPACITY(0)); } } // EMISSIVE texture if( oldMat.sTexEmissive.mMapName.length() > 0) { aiString tex; tex.Set( oldMat.sTexEmissive.mMapName); mat.AddProperty( &tex, AI_MATKEY_TEXTURE_EMISSIVE(0)); if (is_not_qnan(oldMat.sTexEmissive.mTextureBlend)) mat.AddProperty( &oldMat.sTexEmissive.mTextureBlend, 1, AI_MATKEY_TEXBLEND_EMISSIVE(0)); if (aiTextureMapMode_Clamp != oldMat.sTexEmissive.mMapMode) { int i = (int)oldMat.sTexEmissive.mMapMode; mat.AddProperty(&i,1,AI_MATKEY_MAPPINGMODE_U_EMISSIVE(0)); mat.AddProperty(&i,1,AI_MATKEY_MAPPINGMODE_V_EMISSIVE(0)); } } // BUMP texturee if( oldMat.sTexBump.mMapName.length() > 0) { aiString tex; tex.Set( oldMat.sTexBump.mMapName); mat.AddProperty( &tex, AI_MATKEY_TEXTURE_HEIGHT(0)); if (is_not_qnan(oldMat.sTexBump.mTextureBlend)) mat.AddProperty( &oldMat.sTexBump.mTextureBlend, 1, AI_MATKEY_TEXBLEND_HEIGHT(0)); if (aiTextureMapMode_Clamp != oldMat.sTexBump.mMapMode) { int i = (int)oldMat.sTexBump.mMapMode; mat.AddProperty(&i,1,AI_MATKEY_MAPPINGMODE_U_HEIGHT(0)); mat.AddProperty(&i,1,AI_MATKEY_MAPPINGMODE_V_HEIGHT(0)); } } // SHININESS texture if( oldMat.sTexShininess.mMapName.length() > 0) { aiString tex; tex.Set( oldMat.sTexShininess.mMapName); mat.AddProperty( &tex, AI_MATKEY_TEXTURE_SHININESS(0)); if (is_not_qnan(oldMat.sTexShininess.mTextureBlend)) mat.AddProperty( &oldMat.sTexShininess.mTextureBlend, 1, AI_MATKEY_TEXBLEND_SHININESS(0)); if (aiTextureMapMode_Clamp != oldMat.sTexShininess.mMapMode) { int i = (int)oldMat.sTexShininess.mMapMode; mat.AddProperty(&i,1,AI_MATKEY_MAPPINGMODE_U_SHININESS(0)); mat.AddProperty(&i,1,AI_MATKEY_MAPPINGMODE_V_SHININESS(0)); } } // Store the name of the material itself, too if( oldMat.mName.length()) { aiString tex; tex.Set( oldMat.mName); mat.AddProperty( &tex, AI_MATKEY_NAME); } return; } // ------------------------------------------------------------------------------------------------ // Split meshes by their materials and generate output aiMesh'es void Discreet3DSImporter::ConvertMeshes(aiScene* pcOut) { std::vector avOutMeshes; avOutMeshes.reserve(mScene->mMeshes.size() * 2); unsigned int iFaceCnt = 0; // we need to split all meshes by their materials for (std::vector::iterator i = mScene->mMeshes.begin(); i != mScene->mMeshes.end();++i) { std::vector* aiSplit = new std::vector[ mScene->mMaterials.size()]; unsigned int iNum = 0; for (std::vector::const_iterator a = (*i).mFaceMaterials.begin(); a != (*i).mFaceMaterials.end();++a,++iNum) { aiSplit[*a].push_back(iNum); } // now generate submeshes for (unsigned int p = 0; p < mScene->mMaterials.size();++p) { if (aiSplit[p].size() != 0) { aiMesh* p_pcOut = new aiMesh(); p_pcOut->mPrimitiveTypes = aiPrimitiveType_TRIANGLE; // be sure to setup the correct material index p_pcOut->mMaterialIndex = p; // use the color data as temporary storage p_pcOut->mColors[0] = (aiColor4D*)(&*i); avOutMeshes.push_back(p_pcOut); // convert vertices p_pcOut->mNumFaces = (unsigned int)aiSplit[p].size(); p_pcOut->mNumVertices = p_pcOut->mNumFaces*3; // allocate enough storage for faces p_pcOut->mFaces = new aiFace[p_pcOut->mNumFaces]; iFaceCnt += p_pcOut->mNumFaces; if (p_pcOut->mNumVertices) { p_pcOut->mVertices = new aiVector3D[p_pcOut->mNumVertices]; p_pcOut->mNormals = new aiVector3D[p_pcOut->mNumVertices]; unsigned int iBase = 0; for (unsigned int q = 0; q < aiSplit[p].size();++q) { unsigned int iIndex = aiSplit[p][q]; p_pcOut->mFaces[q].mIndices = new unsigned int[3]; p_pcOut->mFaces[q].mNumIndices = 3; p_pcOut->mFaces[q].mIndices[2] = iBase; p_pcOut->mVertices[iBase] = (*i).mPositions[(*i).mFaces[iIndex].mIndices[0]]; p_pcOut->mNormals[iBase++] = (*i).mNormals[(*i).mFaces[iIndex].mIndices[0]]; p_pcOut->mFaces[q].mIndices[1] = iBase; p_pcOut->mVertices[iBase] = (*i).mPositions[(*i).mFaces[iIndex].mIndices[1]]; p_pcOut->mNormals[iBase++] = (*i).mNormals[(*i).mFaces[iIndex].mIndices[1]]; p_pcOut->mFaces[q].mIndices[0] = iBase; p_pcOut->mVertices[iBase] = (*i).mPositions[(*i).mFaces[iIndex].mIndices[2]]; p_pcOut->mNormals[iBase++] = (*i).mNormals[(*i).mFaces[iIndex].mIndices[2]]; } } // convert texture coordinates if ((*i).mTexCoords.size()) { p_pcOut->mTextureCoords[0] = new aiVector3D[p_pcOut->mNumVertices]; unsigned int iBase = 0; for (unsigned int q = 0; q < aiSplit[p].size();++q) { unsigned int iIndex2 = aiSplit[p][q]; aiVector2D* pc = &(*i).mTexCoords[(*i).mFaces[iIndex2].mIndices[0]]; p_pcOut->mTextureCoords[0][iBase++] = aiVector3D(pc->x,pc->y,0.0f); pc = &(*i).mTexCoords[(*i).mFaces[iIndex2].mIndices[1]]; p_pcOut->mTextureCoords[0][iBase++] = aiVector3D(pc->x,pc->y,0.0f); pc = &(*i).mTexCoords[(*i).mFaces[iIndex2].mIndices[2]]; p_pcOut->mTextureCoords[0][iBase++] = aiVector3D(pc->x,pc->y,0.0f); } // apply texture coordinate scalings TextureTransform::BakeScaleNOffset ( p_pcOut, &mScene->mMaterials[ p_pcOut->mMaterialIndex] ); } } } delete[] aiSplit; } // Copy them to the output array pcOut->mNumMeshes = (unsigned int)avOutMeshes.size(); pcOut->mMeshes = new aiMesh*[pcOut->mNumMeshes](); for (unsigned int a = 0; a < pcOut->mNumMeshes;++a) pcOut->mMeshes[a] = avOutMeshes[a]; // We should have at least one face here if (!iFaceCnt) throw new ImportErrorException("No faces loaded. The mesh is empty"); // for each material in the scene we need to setup the UV source // set for each texture for (unsigned int a = 0; a < pcOut->mNumMaterials;++a) { TextureTransform::SetupMatUVSrc( pcOut->mMaterials[a], &mScene->mMaterials[a] ); } return; } // ------------------------------------------------------------------------------------------------ // Add a node to the scenegraph and setup its final transformation void Discreet3DSImporter::AddNodeToGraph(aiScene* pcSOut,aiNode* pcOut,D3DS::Node* pcIn, aiMatrix4x4& absTrafo) { std::vector iArray; iArray.reserve(3); aiMatrix4x4 abs; if (pcIn->mName == "$$$DUMMY") { // append the "real" name of the dummy to the string pcIn->mName.append(pcIn->mDummyName); } else // if (pcIn->mName != "$$$DUMMY") { for (unsigned int a = 0; a < pcSOut->mNumMeshes;++a) { const D3DS::Mesh* pcMesh = (const D3DS::Mesh*)pcSOut->mMeshes[a]->mColors[0]; ai_assert(NULL != pcMesh); // do case independent comparisons here, just for safety if (!ASSIMP_stricmp(pcIn->mName,pcMesh->mName)) iArray.push_back(a); } if (!iArray.empty()) { // The matrix should be identical for all meshes. // It HAS to be identical for all meshes ........ aiMatrix4x4& mTrafo = ((D3DS::Mesh*)pcSOut->mMeshes[iArray[0]]->mColors[0])->mMat; aiMatrix4x4 mInv = mTrafo; if (!configSkipPivot) mInv.Inverse(); /* abs = mTrafo; pcOut->mTransformation = absTrafo; pcOut->mTransformation = pcOut->mTransformation.Inverse() * mTrafo; const aiVector3D& pivot = pcIn->vPivot; aiMatrix4x4 trans; */ const aiVector3D& pivot = pcIn->vPivot; pcOut->mNumMeshes = (unsigned int)iArray.size(); pcOut->mMeshes = new unsigned int[iArray.size()]; for (unsigned int i = 0;i < iArray.size();++i) { const unsigned int iIndex = iArray[i]; aiMesh* const mesh = pcSOut->mMeshes[iIndex]; // http://www.zfx.info/DisplayThread.php?MID=235690#235690 const aiVector3D* const pvEnd = mesh->mVertices+mesh->mNumVertices; aiVector3D* pvCurrent = mesh->mVertices; if(pivot.x || pivot.y || pivot.z && !configSkipPivot) { while (pvCurrent != pvEnd) { *pvCurrent = mInv * (*pvCurrent); pvCurrent->x -= pivot.x; pvCurrent->y -= pivot.y; pvCurrent->z -= pivot.z; *pvCurrent = mTrafo * (*pvCurrent); ++pvCurrent; } } #if 0 else { while (pvCurrent != pvEnd) { *pvCurrent = mInv * (*pvCurrent); ++pvCurrent; } } #endif // Setup the mesh index pcOut->mMeshes[i] = iIndex; } } } // Generate animation channels for the node if (pcIn->aPositionKeys.size() > 0 || pcIn->aRotationKeys.size() > 0 || pcIn->aScalingKeys.size() > 0 || pcIn->aCameraRollKeys.size() > 0 || pcIn->aTargetPositionKeys.size() > 0) { aiAnimation* anim = pcSOut->mAnimations[0]; ai_assert(NULL != anim); // Allocate a new channel, increment the channel index aiNodeAnim* channel = anim->mChannels[anim->mNumChannels++] = new aiNodeAnim(); // POSITION keys if (pcIn->aPositionKeys.size() > 0) { // Sort all keys with ascending time values std::sort(pcIn->aPositionKeys.begin(),pcIn->aPositionKeys.end()); channel->mNumPositionKeys = (unsigned int)pcIn->aPositionKeys.size(); channel->mPositionKeys = new aiVectorKey[channel->mNumPositionKeys]; ::memcpy(channel->mPositionKeys,&pcIn->aPositionKeys[0], sizeof(aiVectorKey)*channel->mNumPositionKeys); // Get the maximum key anim->mDuration = std::max(anim->mDuration,channel-> mPositionKeys[channel->mNumPositionKeys-1].mTime); } // ROTATION keys if (pcIn->aRotationKeys.size() > 0) { // Sort all keys with ascending time values std::sort(pcIn->aRotationKeys.begin(),pcIn->aRotationKeys.end()); channel->mNumRotationKeys = (unsigned int)pcIn->aRotationKeys.size(); channel->mRotationKeys = new aiQuatKey[channel->mNumRotationKeys]; ::memcpy(channel->mRotationKeys,&pcIn->aRotationKeys[0], sizeof(aiQuatKey)*channel->mNumRotationKeys); // Get the maximum key anim->mDuration = std::max(anim->mDuration,channel-> mRotationKeys[channel->mNumRotationKeys-1].mTime); } // SCALING keys if (pcIn->aScalingKeys.size() > 0) { // Sort all keys with ascending time values std::sort(pcIn->aScalingKeys.begin(),pcIn->aScalingKeys.end()); channel->mNumScalingKeys = (unsigned int)pcIn->aScalingKeys.size(); channel->mScalingKeys = new aiVectorKey[channel->mNumScalingKeys]; ::memcpy(channel->mScalingKeys,&pcIn->aScalingKeys[0], sizeof(aiVectorKey)*channel->mNumScalingKeys); // Get the maximum key anim->mDuration = std::max(anim->mDuration,channel-> mScalingKeys[channel->mNumScalingKeys-1].mTime); } } // Setup the name of the node pcOut->mName.Set(pcIn->mName); // Allocate storage for children pcOut->mNumChildren = (unsigned int)pcIn->mChildren.size(); pcOut->mChildren = new aiNode*[pcIn->mChildren.size()]; // Recursively process all children for (unsigned int i = 0; i < pcIn->mChildren.size();++i) { pcOut->mChildren[i] = new aiNode(); pcOut->mChildren[i]->mParent = pcOut; AddNodeToGraph(pcSOut,pcOut->mChildren[i],pcIn->mChildren[i],abs); } return; } // ------------------------------------------------------------------------------------------------ // Find out how many node animation channels we'll have finally void CountTracks(D3DS::Node* node, unsigned int& cnt) { // We will never generate more than one channel for a node, so // this is rather easy here. if (node->aPositionKeys.size() > 0 || node->aRotationKeys.size() > 0 || node->aScalingKeys.size() > 0 || node->aCameraRollKeys.size() > 0 || node->aTargetPositionKeys.size() > 0) { ++cnt; } // Recursively process all children for (unsigned int i = 0; i < node->mChildren.size();++i) CountTracks(node->mChildren[i],cnt); } // ------------------------------------------------------------------------------------------------ // Generate the output node graph void Discreet3DSImporter::GenerateNodeGraph(aiScene* pcOut) { pcOut->mRootNode = new aiNode(); if (0 == mRootNode->mChildren.size()) { // seems the file has not even a hierarchy. // generate a flat hiearachy which looks like this: // // ROOT_NODE // | // ---------------------------------------- // | | | | | // MESH_0 MESH_1 MESH_2 ... MESH_N CAMERA_0 .... // DefaultLogger::get()->warn("No hierarchy information has been found in the file. "); pcOut->mRootNode->mNumChildren = pcOut->mNumMeshes + mScene->mCameras.size() + mScene->mLights.size(); pcOut->mRootNode->mChildren = new aiNode* [ pcOut->mRootNode->mNumChildren ]; pcOut->mRootNode->mName.Set("<3DSDummyRoot>"); // Build dummy nodes for all meshes unsigned int a = 0; for (unsigned int i = 0; i < pcOut->mNumMeshes;++i,++a) { aiNode* pcNode = pcOut->mRootNode->mChildren[a] = new aiNode(); pcNode->mParent = pcOut->mRootNode; pcNode->mMeshes = new unsigned int[1]; pcNode->mMeshes[0] = i; pcNode->mNumMeshes = 1; // Build a name for the node pcNode->mName.length = sprintf(pcNode->mName.data,"3DSMesh_%i",i); } // Build dummy nodes for all cameras for (unsigned int i = 0; i < (unsigned int )mScene->mCameras.size();++i,++a) { aiNode* pcNode = pcOut->mRootNode->mChildren[a] = new aiNode(); pcNode->mParent = pcOut->mRootNode; // Build a name for the node pcNode->mName = mScene->mCameras[i]->mName; } // Build dummy nodes for all lights for (unsigned int i = 0; i < (unsigned int )mScene->mLights.size();++i,++a) { aiNode* pcNode = pcOut->mRootNode->mChildren[a] = new aiNode(); pcNode->mParent = pcOut->mRootNode; // Build a name for the node pcNode->mName = mScene->mLights[i]->mName; } } else { // First of all: find out how many scaling, rotation and translation // animation tracks we'll have afterwards unsigned int numChannel = 0; CountTracks(mRootNode,numChannel); if (numChannel) { // Allocate a primary animation channel pcOut->mNumAnimations = 1; pcOut->mAnimations = new aiAnimation*[1]; aiAnimation* anim = pcOut->mAnimations[0] = new aiAnimation(); anim->mName.Set("3DSMasterAnim"); // Allocate enough storage for all node animation channels, // but don't set the mNumChannels member - we'll use it to // index into the array anim->mChannels = new aiNodeAnim*[numChannel]; } aiMatrix4x4 m; AddNodeToGraph(pcOut, pcOut->mRootNode, mRootNode,m); } // We used the first vertex color set to store some // temporary values, so we need to cleanup here for (unsigned int a = 0; a < pcOut->mNumMeshes;++a) pcOut->mMeshes[a]->mColors[0] = NULL; // if the root node has only one child ... set the child as root node if (1 == pcOut->mRootNode->mNumChildren) { aiNode* pcOld = pcOut->mRootNode; pcOut->mRootNode = pcOut->mRootNode->mChildren[0]; pcOut->mRootNode->mParent = NULL; pcOld->mChildren[0] = NULL; delete pcOld; } // if the root node is a default node setup a name for it if (pcOut->mRootNode->mName.data[0] == '$' && pcOut->mRootNode->mName.data[1] == '$') pcOut->mRootNode->mName.Set(""); #if 0 // modify the transformation of the root node to change // the coordinate system of the whole scene from Max' to OpenGL pcOut->mRootNode->mTransformation.a3 *= -1.f; pcOut->mRootNode->mTransformation.b3 *= -1.f; pcOut->mRootNode->mTransformation.c3 *= -1.f; #endif } // ------------------------------------------------------------------------------------------------ // Convert all meshes in the scene and generate the final output scene. void Discreet3DSImporter::ConvertScene(aiScene* pcOut) { // Allocate enough storage for all output materials pcOut->mNumMaterials = (unsigned int)mScene->mMaterials.size(); pcOut->mMaterials = new aiMaterial*[pcOut->mNumMaterials]; // ... and convert the 3DS materials to aiMaterial's for (unsigned int i = 0; i < pcOut->mNumMaterials;++i) { MaterialHelper* pcNew = new MaterialHelper(); ConvertMaterial(mScene->mMaterials[i],*pcNew); pcOut->mMaterials[i] = pcNew; } // Generate the output mesh list ConvertMeshes(pcOut); // Now copy all light sources to the output scene pcOut->mNumLights = (unsigned int)mScene->mLights.size(); if (pcOut->mNumLights) { pcOut->mLights = new aiLight*[pcOut->mNumLights]; ::memcpy(pcOut->mLights,&mScene->mLights[0],sizeof(void*)*pcOut->mNumLights); } // Now copy all cameras to the output scene pcOut->mNumCameras = (unsigned int)mScene->mCameras.size(); if (pcOut->mNumCameras) { pcOut->mCameras = new aiCamera*[pcOut->mNumCameras]; ::memcpy(pcOut->mCameras,&mScene->mCameras[0],sizeof(void*)*pcOut->mNumCameras); } return; }