/* --------------------------------------------------------------------------- Open Asset Import Library (ASSIMP) --------------------------------------------------------------------------- Copyright (c) 2006-2008, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file Implementation of the ASE importer class */ #include "AssimpPCH.h" // internal headers #include "ASELoader.h" #include "MaterialSystem.h" #include "StringComparison.h" #include "TextureTransform.h" // utilities #include "fast_atof.h" #include "qnan.h" using namespace Assimp; using namespace Assimp::ASE; // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer ASEImporter::ASEImporter() { } // ------------------------------------------------------------------------------------------------ // Destructor, private as well ASEImporter::~ASEImporter() { } // ------------------------------------------------------------------------------------------------ // Returns whether the class can handle the format of the given file. bool ASEImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler) const { // simple check of file extension is enough for the moment std::string::size_type pos = pFile.find_last_of('.'); // no file extension - can't read if( pos == std::string::npos) return false; std::string extension = pFile.substr( pos); // Either ASE or ASK return !(extension.length() < 4 || extension[0] != '.' || extension[1] != 'a' && extension[1] != 'A' || extension[2] != 's' && extension[2] != 'S' || extension[3] != 'e' && extension[3] != 'E' && extension[3] != 'k' && extension[3] != 'K'); } // ------------------------------------------------------------------------------------------------ // Setup configuration options void ASEImporter::SetupProperties(const Importer* pImp) { configRecomputeNormals = (pImp->GetPropertyInteger( AI_CONFIG_IMPORT_ASE_RECONSTRUCT_NORMALS,0) ? true : false); } // ------------------------------------------------------------------------------------------------ // Imports the given file into the given scene structure. void ASEImporter::InternReadFile( const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler) { boost::scoped_ptr file( pIOHandler->Open( pFile, "rb")); // Check whether we can read from the file if( file.get() == NULL) throw new ImportErrorException( "Failed to open ASE file " + pFile + "."); size_t fileSize = file->FileSize(); // allocate storage and copy the contents of the file to a memory buffer // (terminate it with zero) std::vector mBuffer2(fileSize+1); file->Read( &mBuffer2[0], 1, fileSize); mBuffer2[fileSize] = '\0'; this->mBuffer = &mBuffer2[0]; this->pcScene = pScene; // construct an ASE parser and parse the file // TODO: clean this up, mParser should be a reference, not a pointer ... ASE::Parser parser(this->mBuffer); mParser = &parser; mParser->Parse(); // if absolutely no material has been loaded from the file // we need to generate a default material GenerateDefaultMaterial(); // process all meshes bool tookNormals = false; std::vector avOutMeshes; avOutMeshes.reserve(mParser->m_vMeshes.size()*2); for (std::vector::iterator i = mParser->m_vMeshes.begin(); i != mParser->m_vMeshes.end();++i) { if ((*i).bSkip)continue; TransformVertices(*i); // now we need to create proper meshes from the import we need to // split them by materials, build valid vertex/face lists ... BuildUniqueRepresentation(*i); // need to generate proper vertex normals if necessary if(GenerateNormals(*i))tookNormals = true; // convert all meshes to aiMesh objects ConvertMeshes(*i,avOutMeshes); } if (tookNormals) { DefaultLogger::get()->debug("ASE: Taking normals from the file. Use " "the AI_CONFIG_IMPORT_ASE_RECONSTRUCT_NORMALS option if you " "experience problems"); } // now build the output mesh list. remove dummies pScene->mNumMeshes = (unsigned int)avOutMeshes.size(); aiMesh** pp = pScene->mMeshes = new aiMesh*[pScene->mNumMeshes]; for (std::vector::const_iterator i = avOutMeshes.begin(); i != avOutMeshes.end();++i) { if (!(*i)->mNumFaces)continue; *pp++ = *i; } pScene->mNumMeshes = (unsigned int)(pp - pScene->mMeshes); // buil final material indices (remove submaterials and make the final list) BuildMaterialIndices(); // build the final node graph BuildNodes(); // build output animations BuildAnimations(); // build output cameras BuildCameras(); // build output lights BuildLights(); } // ------------------------------------------------------------------------------------------------ void ASEImporter::GenerateDefaultMaterial() { ai_assert(NULL != mParser); bool bHas = false; for (std::vector::iterator i = mParser->m_vMeshes.begin(); i != mParser->m_vMeshes.end();++i) { if ((*i).bSkip)continue; if (ASE::Face::DEFAULT_MATINDEX == (*i).iMaterialIndex) { (*i).iMaterialIndex = (unsigned int)mParser->m_vMaterials.size(); bHas = true; } } if (bHas || mParser->m_vMaterials.empty()) { // add a simple material without submaterials to the parser's list mParser->m_vMaterials.push_back ( ASE::Material() ); ASE::Material& mat = mParser->m_vMaterials.back(); mat.mDiffuse = aiColor3D(0.6f,0.6f,0.6f); mat.mSpecular = aiColor3D(1.0f,1.0f,1.0f); mat.mAmbient = aiColor3D(0.05f,0.05f,0.05f); mat.mShading = Dot3DSFile::Gouraud; mat.mName = AI_DEFAULT_MATERIAL_NAME; } } // ------------------------------------------------------------------------------------------------ void ASEImporter::BuildAnimations() { // check whether we have at least one mesh which has animations std::vector::iterator i = mParser->m_vMeshes.begin(); unsigned int iNum = 0; for (;i != mParser->m_vMeshes.end();++i) { if ((*i).bSkip)continue; if ((*i).mAnim.akeyPositions.size() > 1 || (*i).mAnim.akeyRotations.size() > 1) ++iNum; } if (iNum) { // Generate a new animation channel and setup everything for it pcScene->mNumAnimations = 1; pcScene->mAnimations = new aiAnimation*[1]; aiAnimation* pcAnim = pcScene->mAnimations[0] = new aiAnimation(); pcAnim->mNumChannels = iNum; pcAnim->mChannels = new aiNodeAnim*[iNum]; pcAnim->mTicksPerSecond = mParser->iFrameSpeed * mParser->iTicksPerFrame; iNum = 0; i = mParser->m_vMeshes.begin(); // Now iterate through all meshes and collect all data we can find for (;i != mParser->m_vMeshes.end();++i) { if ((*i).bSkip)continue; // mesh unreferenced? if ((*i).mAnim.akeyPositions.size() > 1 || (*i).mAnim.akeyRotations.size() > 1) { // Begin a new node animation channel for this node aiNodeAnim* pcNodeAnim = pcAnim->mChannels[iNum++] = new aiNodeAnim(); pcNodeAnim->mNodeName.Set((*i).mName); // copy position keys if ((*i).mAnim.akeyPositions.size() > 1 ) { // Allocate the key array and fill it pcNodeAnim->mNumPositionKeys = (unsigned int) (*i).mAnim.akeyPositions.size(); pcNodeAnim->mPositionKeys = new aiVectorKey[pcNodeAnim->mNumPositionKeys]; ::memcpy(pcNodeAnim->mPositionKeys,&(*i).mAnim.akeyPositions[0], pcNodeAnim->mNumPositionKeys * sizeof(aiVectorKey)); // get the longest node anim here for (unsigned int qq = 0; qq < pcNodeAnim->mNumPositionKeys;++qq) { pcAnim->mDuration = std::max(pcAnim->mDuration, pcNodeAnim->mPositionKeys[qq].mTime); } } // copy rotation keys if ((*i).mAnim.akeyRotations.size() > 1 ) { // Allocate the key array and fill it pcNodeAnim->mNumRotationKeys = (unsigned int) (*i).mAnim.akeyPositions.size(); pcNodeAnim->mRotationKeys = new aiQuatKey[pcNodeAnim->mNumPositionKeys]; ::memcpy(pcNodeAnim->mRotationKeys,&(*i).mAnim.akeyRotations[0], pcNodeAnim->mNumRotationKeys * sizeof(aiQuatKey)); // get the longest node anim here for (unsigned int qq = 0; qq < pcNodeAnim->mNumRotationKeys;++qq) { pcAnim->mDuration = std::max(pcAnim->mDuration, pcNodeAnim->mRotationKeys[qq].mTime); } } // there are no scaling keys } } } } // ------------------------------------------------------------------------------------------------ void ASEImporter::BuildCameras() { if (!mParser->m_vCameras.empty()) { pcScene->mNumCameras = (unsigned int)mParser->m_vCameras.size(); pcScene->mCameras = new aiCamera*[pcScene->mNumCameras]; for (unsigned int i = 0; i < pcScene->mNumCameras;++i) { aiCamera* out = pcScene->mCameras[i] = new aiCamera(); ASE::Camera& in = mParser->m_vCameras[i]; // copy members out->mClipPlaneFar = in.mFar; out->mClipPlaneNear = (in.mNear ? in.mNear : 0.1f); out->mHorizontalFOV = in.mFOV; out->mName.Set(in.mName); } } } // ------------------------------------------------------------------------------------------------ void ASEImporter::BuildLights() { if (!mParser->m_vLights.empty()) { pcScene->mNumLights = (unsigned int)mParser->m_vLights.size(); pcScene->mLights = new aiLight*[pcScene->mNumLights]; for (unsigned int i = 0; i < pcScene->mNumLights;++i) { aiLight* out = pcScene->mLights[i] = new aiLight(); ASE::Light& in = mParser->m_vLights[i]; out->mName.Set(in.mName); out->mType = aiLightSource_POINT; out->mColorDiffuse = out->mColorSpecular = in.mColor * in.mIntensity; } } } // ------------------------------------------------------------------------------------------------ void ASEImporter::AddNodes(std::vector& nodes, aiNode* pcParent,const char* szName) { aiMatrix4x4 m; this->AddNodes(nodes,pcParent,szName,m); } // ------------------------------------------------------------------------------------------------ void ASEImporter::AddMeshes(const ASE::BaseNode* snode,aiNode* node) { for (unsigned int i = 0; i < pcScene->mNumMeshes;++i) { // Get the name of the mesh (the mesh instance has been temporarily // stored in the third vertex color) const aiMesh* pcMesh = pcScene->mMeshes[i]; const ASE::Mesh* mesh = (const ASE::Mesh*)pcMesh->mColors[2]; if (mesh == snode)++node->mNumMeshes; } if(node->mNumMeshes) { node->mMeshes = new unsigned int[node->mNumMeshes]; for (unsigned int i = 0, p = 0; i < pcScene->mNumMeshes;++i) { const aiMesh* pcMesh = pcScene->mMeshes[i]; const ASE::Mesh* mesh = (const ASE::Mesh*)pcMesh->mColors[2]; if (mesh == snode) { node->mMeshes[p++] = i; // Transform all vertices of the mesh back into their local space -> // at the moment they are pretransformed aiMatrix4x4 m = mesh->mTransform; m.Inverse(); aiVector3D* pvCurPtr = pcMesh->mVertices; const aiVector3D* pvEndPtr = pvCurPtr + pcMesh->mNumVertices; while (pvCurPtr != pvEndPtr) { *pvCurPtr = m * (*pvCurPtr); pvCurPtr++; } // Do the same for the normal vectors if we have them // Here we need to use the (Inverse)Transpose of a 3x3 // matrix without the translational component. if (pcMesh->mNormals) { aiMatrix3x3 m3 = aiMatrix3x3( mesh->mTransform ); m3.Transpose(); pvCurPtr = pcMesh->mNormals; pvEndPtr = pvCurPtr + pcMesh->mNumVertices; while (pvCurPtr != pvEndPtr) { *pvCurPtr = m3 * (*pvCurPtr); pvCurPtr++; } } } } } } // ------------------------------------------------------------------------------------------------ void ASEImporter::AddNodes (std::vector& nodes, aiNode* pcParent, const char* szName, const aiMatrix4x4& mat) { const size_t len = szName ? ::strlen(szName) : 0; ai_assert(4 <= AI_MAX_NUMBER_OF_COLOR_SETS); // Receives child nodes for the pcParent node std::vector apcNodes; // Now iterate through all nodes in the scene and search for one // which has *us* as parent. for (std::vector::const_iterator it = nodes.begin(), end = nodes.end(); it != end; ++it) { const BaseNode* snode = *it; if (szName) { if (len != snode->mParent.length() || ::strcmp(szName,snode->mParent.c_str())) continue; } else if (snode->mParent.length()) continue; (*it)->mProcessed = true; // Allocate a new node and add it to the output data structure apcNodes.push_back(new aiNode()); aiNode* node = apcNodes.back(); node->mName.Set((snode->mName.length() ? snode->mName.c_str() : "Unnamed_Node")); node->mParent = pcParent; // Setup the transformation matrix of the node aiMatrix4x4 mParentAdjust = mat; mParentAdjust.Inverse(); node->mTransformation = mParentAdjust*snode->mTransform; // If the type of this node is "Mesh" we need to search // the list of output meshes in the data structure for // all those that belonged to this node once. This is // slightly inconvinient here and a better solution should // be used when this code is refactored next. if (snode->mType == BaseNode::Mesh) { AddMeshes(snode,node); } // add sub nodes aiMatrix4x4 mNewAbs = mat * node->mTransformation; // prevent stack overflow if (node->mName != node->mParent->mName) { AddNodes(nodes,node,node->mName.data,mNewAbs); } } // allocate enough space for the child nodes pcParent->mNumChildren = (unsigned int)apcNodes.size(); pcParent->mChildren = new aiNode*[apcNodes.size()]; // now build all nodes for our nice new children for (unsigned int p = 0; p < apcNodes.size();++p) { pcParent->mChildren[p] = apcNodes[p]; } return; } // ------------------------------------------------------------------------------------------------ void ASEImporter::BuildNodes() { ai_assert(NULL != pcScene); // allocate the one and only root node pcScene->mRootNode = new aiNode(); pcScene->mRootNode->mNumMeshes = 0; pcScene->mRootNode->mMeshes = 0; pcScene->mRootNode->mName.Set(""); // generate a full list of all scenegraph elements we have std::vector nodes; nodes.reserve(mParser->m_vMeshes.size() +mParser->m_vLights.size() + mParser->m_vCameras.size()); for (std::vector::iterator it = mParser->m_vLights.begin(), end = mParser->m_vLights.end();it != end; ++it)nodes.push_back(&(*it)); for (std::vector::iterator it = mParser->m_vCameras.begin(), end = mParser->m_vCameras.end();it != end; ++it)nodes.push_back(&(*it)); for (std::vector::iterator it = mParser->m_vMeshes.begin(), end = mParser->m_vMeshes.end();it != end; ++it)nodes.push_back(&(*it)); // add all nodes AddNodes(nodes,pcScene->mRootNode,NULL); // now iterate through al nodes and find those that have not yet // been added to the nodegraph (= their parent could not be recognized) std::vector aiList; for (std::vector::iterator it = nodes.begin(), end = nodes.end(); it != end; ++it) { if ((*it)->mProcessed)continue; // check whether our parent is known bool bKnowParent = false; // research the list, beginning from now and try to find out whether // there is a node that references *us* as a parent for (std::vector::const_iterator it2 = nodes.begin(); it2 != end; ++it2) { if (it2 == it)continue; if ((*it2)->mName == (*it)->mParent) { bKnowParent = true; break; } } if (!bKnowParent) { aiList.push_back(*it); } } // Are there ane orphaned nodes? if (!aiList.empty()) { std::vector apcNodes; apcNodes.reserve(aiList.size() + pcScene->mRootNode->mNumChildren); for (unsigned int i = 0; i < pcScene->mRootNode->mNumChildren;++i) apcNodes.push_back(pcScene->mRootNode->mChildren[i]); delete[] pcScene->mRootNode->mChildren; for (std::vector::/*const_*/iterator i = aiList.begin(); i != aiList.end();++i) { const ASE::BaseNode* src = *i; // the parent is not known, so we can assume that we must add // this node to the root node of the whole scene aiNode* pcNode = new aiNode(); pcNode->mParent = pcScene->mRootNode; pcNode->mName.Set(src->mName); AddMeshes(src,pcNode); AddNodes(nodes,pcNode,pcNode->mName.data); apcNodes.push_back(pcNode); } // Regenerate our output array pcScene->mRootNode->mChildren = new aiNode*[apcNodes.size()]; for (unsigned int i = 0; i < apcNodes.size();++i) pcScene->mRootNode->mChildren[i] = apcNodes[i]; pcScene->mRootNode->mNumChildren = (unsigned int)apcNodes.size(); } // Reset the third color set to NULL - we used this field to // store a temporary pointer for (unsigned int i = 0; i < pcScene->mNumMeshes;++i) pcScene->mMeshes[i]->mColors[2] = NULL; // if there is only one subnode, set it as root node if (1 == pcScene->mRootNode->mNumChildren) { aiNode* pc = pcScene->mRootNode; pcScene->mRootNode = pcScene->mRootNode->mChildren[0]; pcScene->mRootNode->mParent = NULL; // make sure the destructor won't delete us ... delete[] pc->mChildren; pc->mChildren = NULL; pc->mNumChildren = 0; delete pc; } // The root node should not have at least one child or the file is invalid else if (!pcScene->mRootNode->mNumChildren) { throw new ImportErrorException("No nodes loaded. The ASE/ASK file is either empty or corrupt"); } return; } // ------------------------------------------------------------------------------------------------ void ASEImporter::TransformVertices(ASE::Mesh& mesh) { // the matrix data is stored in column-major format, // but we need row major mesh.mTransform.Transpose(); } // ------------------------------------------------------------------------------------------------ void ASEImporter::BuildUniqueRepresentation(ASE::Mesh& mesh) { // allocate output storage std::vector mPositions; std::vector amTexCoords[AI_MAX_NUMBER_OF_TEXTURECOORDS]; std::vector mVertexColors; std::vector mNormals; std::vector mBoneVertices; unsigned int iSize = (unsigned int)mesh.mFaces.size() * 3; mPositions.resize(iSize); // optional texture coordinates for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS;++i) { if (!mesh.amTexCoords[i].empty()) { amTexCoords[i].resize(iSize); } } // optional vertex colors if (!mesh.mVertexColors.empty()) { mVertexColors.resize(iSize); } // optional vertex normals (vertex normals can simply be copied) if (!mesh.mNormals.empty()) { mNormals.resize(iSize); } // bone vertices. There is no need to change the bone list if (!mesh.mBoneVertices.empty()) { mBoneVertices.resize(iSize); } // iterate through all faces in the mesh unsigned int iCurrent = 0; for (std::vector::iterator i = mesh.mFaces.begin(); i != mesh.mFaces.end();++i) { for (unsigned int n = 0; n < 3;++n,++iCurrent) { mPositions[iCurrent] = mesh.mPositions[(*i).mIndices[n]]; //std::swap((float&)mPositions[iCurrent].z,(float&)mPositions[iCurrent].y); // DX-to-OGL mPositions[iCurrent].y *= -1.f; // add texture coordinates for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c) { if (!mesh.amTexCoords[c].empty()) { amTexCoords[c][iCurrent] = mesh.amTexCoords[c][(*i).amUVIndices[c][n]]; amTexCoords[c][iCurrent].y = 1.0f - amTexCoords[c][iCurrent].y; // DX-to-OGL } } // add vertex colors if (!mesh.mVertexColors.empty()) { mVertexColors[iCurrent] = mesh.mVertexColors[(*i).mColorIndices[n]]; } // add normal vectors if (!mesh.mNormals.empty()) { mNormals[iCurrent] = mesh.mNormals[(*i).mIndices[n]]; mNormals[iCurrent].Normalize(); //std::swap((float&)mNormals[iCurrent].z,(float&)mNormals[iCurrent].y); // DX-to-OGL mNormals[iCurrent].y *= -1.0f; } // handle bone vertices if ((*i).mIndices[n] < mesh.mBoneVertices.size()) { // (sometimes this will cause bone verts to be duplicated // however, I' quite sure Schrompf' JoinVerticesStep // will fix that again ...) mBoneVertices[iCurrent] = mesh.mBoneVertices[(*i).mIndices[n]]; } } // we need to flip the order of the indices (*i).mIndices[0] = iCurrent-1; (*i).mIndices[1] = iCurrent-2; (*i).mIndices[2] = iCurrent-3; } // replace the old arrays mesh.mNormals = mNormals; mesh.mPositions = mPositions; mesh.mVertexColors = mVertexColors; for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c) mesh.amTexCoords[c] = amTexCoords[c]; return; } // ------------------------------------------------------------------------------------------------ void ASEImporter::ConvertMaterial(ASE::Material& mat) { // allocate the output material mat.pcInstance = new MaterialHelper(); // At first add the base ambient color of the // scene to the material mat.mAmbient.r += this->mParser->m_clrAmbient.r; mat.mAmbient.g += this->mParser->m_clrAmbient.g; mat.mAmbient.b += this->mParser->m_clrAmbient.b; aiString name; name.Set( mat.mName); mat.pcInstance->AddProperty( &name, AI_MATKEY_NAME); // material colors mat.pcInstance->AddProperty( &mat.mAmbient, 1, AI_MATKEY_COLOR_AMBIENT); mat.pcInstance->AddProperty( &mat.mDiffuse, 1, AI_MATKEY_COLOR_DIFFUSE); mat.pcInstance->AddProperty( &mat.mSpecular, 1, AI_MATKEY_COLOR_SPECULAR); mat.pcInstance->AddProperty( &mat.mEmissive, 1, AI_MATKEY_COLOR_EMISSIVE); // shininess if (0.0f != mat.mSpecularExponent && 0.0f != mat.mShininessStrength) { mat.pcInstance->AddProperty( &mat.mSpecularExponent, 1, AI_MATKEY_SHININESS); mat.pcInstance->AddProperty( &mat.mShininessStrength, 1, AI_MATKEY_SHININESS_STRENGTH); } // if there is no shininess, we can disable phong lighting else if (Dot3DS::Dot3DSFile::Metal == mat.mShading || Dot3DS::Dot3DSFile::Phong == mat.mShading || Dot3DS::Dot3DSFile::Blinn == mat.mShading) { mat.mShading = Dot3DS::Dot3DSFile::Gouraud; } // opacity mat.pcInstance->AddProperty( &mat.mTransparency,1,AI_MATKEY_OPACITY); // shading mode aiShadingMode eShading = aiShadingMode_NoShading; switch (mat.mShading) { case Dot3DS::Dot3DSFile::Flat: eShading = aiShadingMode_Flat; break; case Dot3DS::Dot3DSFile::Phong : eShading = aiShadingMode_Phong; break; case Dot3DS::Dot3DSFile::Blinn : eShading = aiShadingMode_Blinn; break; // I don't know what "Wire" shading should be, // assume it is simple lambertian diffuse (L dot N) shading case Dot3DS::Dot3DSFile::Wire: case Dot3DS::Dot3DSFile::Gouraud: eShading = aiShadingMode_Gouraud; break; case Dot3DS::Dot3DSFile::Metal : eShading = aiShadingMode_CookTorrance; break; } mat.pcInstance->AddProperty( (int*)&eShading,1,AI_MATKEY_SHADING_MODEL); if (Dot3DS::Dot3DSFile::Wire == mat.mShading) { // set the wireframe flag unsigned int iWire = 1; mat.pcInstance->AddProperty( (int*)&iWire,1,AI_MATKEY_ENABLE_WIREFRAME); } // texture, if there is one if( mat.sTexDiffuse.mMapName.length() > 0) { aiString tex; tex.Set( mat.sTexDiffuse.mMapName); mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_DIFFUSE(0)); if (is_not_qnan(mat.sTexDiffuse.mTextureBlend)) mat.pcInstance->AddProperty( &mat.sTexDiffuse.mTextureBlend, 1, AI_MATKEY_TEXBLEND_DIFFUSE(0)); } if( mat.sTexSpecular.mMapName.length() > 0) { aiString tex; tex.Set( mat.sTexSpecular.mMapName); mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_SPECULAR(0)); if (is_not_qnan(mat.sTexSpecular.mTextureBlend)) mat.pcInstance->AddProperty( &mat.sTexSpecular.mTextureBlend, 1, AI_MATKEY_TEXBLEND_SPECULAR(0)); } if( mat.sTexOpacity.mMapName.length() > 0) { aiString tex; tex.Set( mat.sTexOpacity.mMapName); mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_OPACITY(0)); if (is_not_qnan(mat.sTexOpacity.mTextureBlend)) mat.pcInstance->AddProperty( &mat.sTexOpacity.mTextureBlend, 1, AI_MATKEY_TEXBLEND_OPACITY(0)); } if( mat.sTexEmissive.mMapName.length() > 0) { aiString tex; tex.Set( mat.sTexEmissive.mMapName); mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_EMISSIVE(0)); if (is_not_qnan(mat.sTexEmissive.mTextureBlend)) mat.pcInstance->AddProperty( &mat.sTexEmissive.mTextureBlend, 1, AI_MATKEY_TEXBLEND_EMISSIVE(0)); } if( mat.sTexAmbient.mMapName.length() > 0) { aiString tex; tex.Set( mat.sTexAmbient.mMapName); mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_AMBIENT(0)); if (is_not_qnan(mat.sTexAmbient.mTextureBlend)) mat.pcInstance->AddProperty( &mat.sTexAmbient.mTextureBlend, 1, AI_MATKEY_TEXBLEND_AMBIENT(0)); } if( mat.sTexBump.mMapName.length() > 0) { aiString tex; tex.Set( mat.sTexBump.mMapName); mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_HEIGHT(0)); if (is_not_qnan(mat.sTexBump.mTextureBlend)) mat.pcInstance->AddProperty( &mat.sTexBump.mTextureBlend, 1, AI_MATKEY_TEXBLEND_HEIGHT(0)); } if( mat.sTexShininess.mMapName.length() > 0) { aiString tex; tex.Set( mat.sTexShininess.mMapName); mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_SHININESS(0)); if (is_not_qnan(mat.sTexShininess.mTextureBlend)) mat.pcInstance->AddProperty( &mat.sTexBump.mTextureBlend, 1, AI_MATKEY_TEXBLEND_SHININESS(0)); } // store the name of the material itself, too if( mat.mName.length() > 0) { aiString tex; tex.Set( mat.mName); mat.pcInstance->AddProperty( &tex, AI_MATKEY_NAME); } return; } // ------------------------------------------------------------------------------------------------ void ASEImporter::ConvertMeshes(ASE::Mesh& mesh, std::vector& avOutMeshes) { // validate the material index of the mesh if (mesh.iMaterialIndex >= mParser->m_vMaterials.size()) { mesh.iMaterialIndex = (unsigned int)mParser->m_vMaterials.size()-1; DefaultLogger::get()->warn("Material index is out of range"); } // if the material the mesh is assigned to is consisting of submeshes // we'll need to split it ... Quak. if (!mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials.empty()) { std::vector vSubMaterials = mParser-> m_vMaterials[mesh.iMaterialIndex].avSubMaterials; std::vector* aiSplit = new std::vector[ vSubMaterials.size()]; // build a list of all faces per submaterial for (unsigned int i = 0; i < mesh.mFaces.size();++i) { // check range if (mesh.mFaces[i].iMaterial >= vSubMaterials.size()) { DefaultLogger::get()->warn("Submaterial index is out of range"); // use the last material instead aiSplit[vSubMaterials.size()-1].push_back(i); } else aiSplit[mesh.mFaces[i].iMaterial].push_back(i); } // now generate submeshes for (unsigned int p = 0; p < vSubMaterials.size();++p) { if (!aiSplit[p].empty()) { aiMesh* p_pcOut = new aiMesh(); p_pcOut->mPrimitiveTypes = aiPrimitiveType_TRIANGLE; // let the sub material index p_pcOut->mMaterialIndex = p; // we will need this material mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials[p].bNeed = true; // store the real index here ... color channel 3 p_pcOut->mColors[3] = (aiColor4D*)(uintptr_t)mesh.iMaterialIndex; // store a pointer to the mesh in color channel 2 p_pcOut->mColors[2] = (aiColor4D*) &mesh; avOutMeshes.push_back(p_pcOut); // convert vertices p_pcOut->mNumVertices = (unsigned int)aiSplit[p].size()*3; p_pcOut->mNumFaces = (unsigned int)aiSplit[p].size(); // receive output vertex weights std::vector >* avOutputBones; if (!mesh.mBones.empty()) { avOutputBones = new std::vector >[mesh.mBones.size()]; } // allocate enough storage for faces p_pcOut->mFaces = new aiFace[p_pcOut->mNumFaces]; unsigned int iBase = 0,iIndex; if (p_pcOut->mNumVertices) { p_pcOut->mVertices = new aiVector3D[p_pcOut->mNumVertices]; p_pcOut->mNormals = new aiVector3D[p_pcOut->mNumVertices]; for (unsigned int q = 0; q < aiSplit[p].size();++q) { iIndex = aiSplit[p][q]; p_pcOut->mFaces[q].mIndices = new unsigned int[3]; p_pcOut->mFaces[q].mNumIndices = 3; for (unsigned int t = 0; t < 3;++t) { const uint32_t iIndex2 = mesh.mFaces[iIndex].mIndices[t]; p_pcOut->mVertices[iBase] = mesh.mPositions [iIndex2]; p_pcOut->mNormals [iBase] = mesh.mNormals [iIndex2]; // convert bones, if existing if (!mesh.mBones.empty()) { // check whether there is a vertex weight that is using // this vertex index ... if (iIndex2 < mesh.mBoneVertices.size()) { for (std::vector >::const_iterator blubb = mesh.mBoneVertices[iIndex2].mBoneWeights.begin(); blubb != mesh.mBoneVertices[iIndex2].mBoneWeights.end();++blubb) { // NOTE: illegal cases have already been filtered out avOutputBones[(*blubb).first].push_back(std::pair( iBase,(*blubb).second)); } } } ++iBase; } // Flip the face order p_pcOut->mFaces[q].mIndices[0] = iBase-3; p_pcOut->mFaces[q].mIndices[1] = iBase-2; p_pcOut->mFaces[q].mIndices[2] = iBase-1; } } // convert texture coordinates (up to AI_MAX_NUMBER_OF_TEXTURECOORDS sets supported) for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c) { if (!mesh.amTexCoords[c].empty()) { p_pcOut->mTextureCoords[c] = new aiVector3D[p_pcOut->mNumVertices]; iBase = 0; for (unsigned int q = 0; q < aiSplit[p].size();++q) { iIndex = aiSplit[p][q]; for (unsigned int t = 0; t < 3;++t) { p_pcOut->mTextureCoords[c][iBase++] = mesh.amTexCoords[c][mesh.mFaces[iIndex].mIndices[t]]; } } // setup the number of valid vertex components p_pcOut->mNumUVComponents[c] = mesh.mNumUVComponents[c]; } } // convert vertex colors (only one set supported) if (!mesh.mVertexColors.empty()) { p_pcOut->mColors[0] = new aiColor4D[p_pcOut->mNumVertices]; iBase = 0; for (unsigned int q = 0; q < aiSplit[p].size();++q) { iIndex = aiSplit[p][q]; for (unsigned int t = 0; t < 3;++t) { p_pcOut->mColors[0][iBase++] = mesh.mVertexColors[mesh.mFaces[iIndex].mIndices[t]]; } } } if (!mesh.mBones.empty()) { p_pcOut->mNumBones = 0; for (unsigned int mrspock = 0; mrspock < mesh.mBones.size();++mrspock) if (!avOutputBones[mrspock].empty())p_pcOut->mNumBones++; p_pcOut->mBones = new aiBone* [ p_pcOut->mNumBones ]; aiBone** pcBone = p_pcOut->mBones; for (unsigned int mrspock = 0; mrspock < mesh.mBones.size();++mrspock) { if (!avOutputBones[mrspock].empty()) { // we will need this bone. add it to the output mesh and // add all per-vertex weights aiBone* pc = *pcBone = new aiBone(); pc->mName.Set(mesh.mBones[mrspock].mName); pc->mNumWeights = (unsigned int)avOutputBones[mrspock].size(); pc->mWeights = new aiVertexWeight[pc->mNumWeights]; for (unsigned int captainkirk = 0; captainkirk < pc->mNumWeights;++captainkirk) { const std::pair& ref = avOutputBones[mrspock][captainkirk]; pc->mWeights[captainkirk].mVertexId = ref.first; pc->mWeights[captainkirk].mWeight = ref.second; } ++pcBone; } } // delete allocated storage delete[] avOutputBones; } } } // delete storage delete[] aiSplit; } else { // Otherwise we can simply copy the data to one output mesh // This codepath needs less memory and uses fast memcpy()s // to do the actual copying. So I think it is worth the // effort here. aiMesh* p_pcOut = new aiMesh(); p_pcOut->mPrimitiveTypes = aiPrimitiveType_TRIANGLE; // set an empty sub material index p_pcOut->mMaterialIndex = ASE::Face::DEFAULT_MATINDEX; mParser->m_vMaterials[mesh.iMaterialIndex].bNeed = true; // store the real index here ... in color channel 3 p_pcOut->mColors[3] = (aiColor4D*)(uintptr_t)mesh.iMaterialIndex; // store a pointer to the mesh in color channel 2 p_pcOut->mColors[2] = (aiColor4D*) &mesh; avOutMeshes.push_back(p_pcOut); // if the mesh hasn't faces or vertices, there are two cases // possible: 1. the model is invalid. 2. This is a dummy // helper object which we are going to remove later ... if (mesh.mFaces.empty() || mesh.mPositions.empty()) { return; } // convert vertices p_pcOut->mNumVertices = (unsigned int)mesh.mPositions.size(); p_pcOut->mNumFaces = (unsigned int)mesh.mFaces.size(); // allocate enough storage for faces p_pcOut->mFaces = new aiFace[p_pcOut->mNumFaces]; // copy vertices p_pcOut->mVertices = new aiVector3D[mesh.mPositions.size()]; memcpy(p_pcOut->mVertices,&mesh.mPositions[0], mesh.mPositions.size() * sizeof(aiVector3D)); // copy normals p_pcOut->mNormals = new aiVector3D[mesh.mNormals.size()]; memcpy(p_pcOut->mNormals,&mesh.mNormals[0], mesh.mNormals.size() * sizeof(aiVector3D)); // copy texture coordinates for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c) { if (!mesh.amTexCoords[c].empty()) { p_pcOut->mTextureCoords[c] = new aiVector3D[mesh.amTexCoords[c].size()]; memcpy(p_pcOut->mTextureCoords[c],&mesh.amTexCoords[c][0], mesh.amTexCoords[c].size() * sizeof(aiVector3D)); // setup the number of valid vertex components p_pcOut->mNumUVComponents[c] = mesh.mNumUVComponents[c]; } } // copy vertex colors if (!mesh.mVertexColors.empty()) { p_pcOut->mColors[0] = new aiColor4D[mesh.mVertexColors.size()]; memcpy(p_pcOut->mColors[0],&mesh.mVertexColors[0], mesh.mVertexColors.size() * sizeof(aiColor4D)); } // copy faces for (unsigned int iFace = 0; iFace < p_pcOut->mNumFaces;++iFace) { p_pcOut->mFaces[iFace].mNumIndices = 3; p_pcOut->mFaces[iFace].mIndices = new unsigned int[3]; // copy indices (flip the face order, too) p_pcOut->mFaces[iFace].mIndices[0] = mesh.mFaces[iFace].mIndices[2]; p_pcOut->mFaces[iFace].mIndices[1] = mesh.mFaces[iFace].mIndices[1]; p_pcOut->mFaces[iFace].mIndices[2] = mesh.mFaces[iFace].mIndices[0]; } // copy vertex bones if (!mesh.mBones.empty() && !mesh.mBoneVertices.empty()) { std::vector* avBonesOut = new std::vector[mesh.mBones.size()]; // find all vertex weights for this bone unsigned int quak = 0; for (std::vector::const_iterator harrypotter = mesh.mBoneVertices.begin(); harrypotter != mesh.mBoneVertices.end();++harrypotter,++quak) { for (std::vector >::const_iterator ronaldweasley = (*harrypotter).mBoneWeights.begin(); ronaldweasley != (*harrypotter).mBoneWeights.end();++ronaldweasley) { aiVertexWeight weight; weight.mVertexId = quak; weight.mWeight = (*ronaldweasley).second; avBonesOut[(*ronaldweasley).first].push_back(weight); } } // now build a final bone list p_pcOut->mNumBones = 0; for (unsigned int jfkennedy = 0; jfkennedy < mesh.mBones.size();++jfkennedy) if (!avBonesOut[jfkennedy].empty())p_pcOut->mNumBones++; p_pcOut->mBones = new aiBone*[p_pcOut->mNumBones]; aiBone** pcBone = p_pcOut->mBones; for (unsigned int jfkennedy = 0; jfkennedy < mesh.mBones.size();++jfkennedy) { if (!avBonesOut[jfkennedy].empty()) { aiBone* pc = *pcBone = new aiBone(); pc->mName.Set(mesh.mBones[jfkennedy].mName); pc->mNumWeights = (unsigned int)avBonesOut[jfkennedy].size(); pc->mWeights = new aiVertexWeight[pc->mNumWeights]; ::memcpy(pc->mWeights,&avBonesOut[jfkennedy][0], sizeof(aiVertexWeight) * pc->mNumWeights); ++pcBone; } } // delete allocated storage delete[] avBonesOut; } } } // ------------------------------------------------------------------------------------------------ void ASEImporter::BuildMaterialIndices() { ai_assert(NULL != pcScene); // iterate through all materials and check whether we need them for (unsigned int iMat = 0; iMat < mParser->m_vMaterials.size();++iMat) { if (mParser->m_vMaterials[iMat].bNeed) { // convert it to the aiMaterial layout ASE::Material& mat = mParser->m_vMaterials[iMat]; ConvertMaterial(mat); TextureTransform::ApplyScaleNOffset(mat); ++pcScene->mNumMaterials; } for (unsigned int iSubMat = 0; iSubMat < mParser->m_vMaterials[ iMat].avSubMaterials.size();++iSubMat) { if (mParser->m_vMaterials[iMat].avSubMaterials[iSubMat].bNeed) { // convert it to the aiMaterial layout ASE::Material& mat = mParser->m_vMaterials[iMat].avSubMaterials[iSubMat]; ConvertMaterial(mat); TextureTransform::ApplyScaleNOffset(mat); ++pcScene->mNumMaterials; } } } // allocate the output material array pcScene->mMaterials = new aiMaterial*[pcScene->mNumMaterials]; Dot3DS::Material** pcIntMaterials = new Dot3DS::Material*[pcScene->mNumMaterials]; unsigned int iNum = 0; for (unsigned int iMat = 0; iMat < mParser->m_vMaterials.size();++iMat) { if (mParser->m_vMaterials[iMat].bNeed) { ai_assert(NULL != mParser->m_vMaterials[iMat].pcInstance); pcScene->mMaterials[iNum] = mParser->m_vMaterials[iMat].pcInstance; // store the internal material, too pcIntMaterials[iNum] = &mParser->m_vMaterials[iMat]; // iterate through all meshes and search for one which is using // this top-level material index for (unsigned int iMesh = 0; iMesh < pcScene->mNumMeshes;++iMesh) { if (ASE::Face::DEFAULT_MATINDEX == pcScene->mMeshes[iMesh]->mMaterialIndex && iMat == (uintptr_t)pcScene->mMeshes[iMesh]->mColors[3]) { pcScene->mMeshes[iMesh]->mMaterialIndex = iNum; pcScene->mMeshes[iMesh]->mColors[3] = NULL; } } iNum++; } for (unsigned int iSubMat = 0; iSubMat < mParser->m_vMaterials[iMat].avSubMaterials.size();++iSubMat) { if (mParser->m_vMaterials[iMat].avSubMaterials[iSubMat].bNeed) { ai_assert(NULL != mParser->m_vMaterials[iMat].avSubMaterials[iSubMat].pcInstance); pcScene->mMaterials[iNum] = mParser->m_vMaterials[iMat]. avSubMaterials[iSubMat].pcInstance; // store the internal material, too pcIntMaterials[iNum] = &mParser->m_vMaterials[iMat].avSubMaterials[iSubMat]; // iterate through all meshes and search for one which is using // this sub-level material index for (unsigned int iMesh = 0; iMesh < pcScene->mNumMeshes;++iMesh) { if (iSubMat == pcScene->mMeshes[iMesh]->mMaterialIndex && iMat == (uintptr_t)pcScene->mMeshes[iMesh]->mColors[3]) { pcScene->mMeshes[iMesh]->mMaterialIndex = iNum; pcScene->mMeshes[iMesh]->mColors[3] = NULL; } } iNum++; } } } // prepare for the next step for (unsigned int hans = 0; hans < mParser->m_vMaterials.size();++hans) TextureTransform::ApplyScaleNOffset(mParser->m_vMaterials[hans]); // now we need to iterate through all meshes, // generating correct texture coordinates and material uv indices for (unsigned int curie = 0; curie < pcScene->mNumMeshes;++curie) { aiMesh* pcMesh = pcScene->mMeshes[curie]; // apply texture coordinate transformations TextureTransform::BakeScaleNOffset(pcMesh,pcIntMaterials[pcMesh->mMaterialIndex]); } for (unsigned int hans = 0; hans < pcScene->mNumMaterials;++hans) { // setup the correct UV indices for each material TextureTransform::SetupMatUVSrc(pcScene->mMaterials[hans], pcIntMaterials[hans]); } delete[] pcIntMaterials; // finished! return; } // ------------------------------------------------------------------------------------------------ // Generate normal vectors basing on smoothing groups bool ASEImporter::GenerateNormals(ASE::Mesh& mesh) { if (!mesh.mNormals.empty() && !configRecomputeNormals) { // check whether there are only uninitialized normals. If there are // some, skip all normals from the file and compute them on our own for (std::vector::const_iterator qq = mesh.mNormals.begin(); qq != mesh.mNormals.end();++qq) { if ((*qq).x || (*qq).y || (*qq).z) { return true; } } } // The array will be reused ComputeNormalsWithSmoothingsGroups(mesh); return false; }