/* Open Asset Import Library (ASSIMP) ---------------------------------------------------------------------- Copyright (c) 2006-2010, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------- */ /// @file SplitByBoneCountProcess.cpp /// Implementation of the SplitByBoneCount postprocessing step #include "AssimpPCH.h" // internal headers of the post-processing framework #include "SplitByBoneCountProcess.h" #include <limits> using namespace Assimp; // ------------------------------------------------------------------------------------------------ // Constructor SplitByBoneCountProcess::SplitByBoneCountProcess() { // set default, might be overriden by importer config mMaxBoneCount = AI_SBBC_DEFAULT_MAX_BONES; } // ------------------------------------------------------------------------------------------------ // Destructor SplitByBoneCountProcess::~SplitByBoneCountProcess() { // nothing to do here } // ------------------------------------------------------------------------------------------------ // Returns whether the processing step is present in the given flag. bool SplitByBoneCountProcess::IsActive( unsigned int pFlags) const { return !!(pFlags & aiProcess_SplitByBoneCount); } // ------------------------------------------------------------------------------------------------ // Updates internal properties void SplitByBoneCountProcess::SetupProperties(const Importer* pImp) { mMaxBoneCount = pImp->GetPropertyInteger(AI_CONFIG_PP_SBBC_MAX_BONES,AI_SBBC_DEFAULT_MAX_BONES); } // ------------------------------------------------------------------------------------------------ // Executes the post processing step on the given imported data. void SplitByBoneCountProcess::Execute( aiScene* pScene) { DefaultLogger::get()->debug("SplitByBoneCountProcess begin"); // early out bool isNecessary = false; for( size_t a = 0; a < pScene->mNumMeshes; ++a) if( pScene->mMeshes[a]->mNumBones > mMaxBoneCount ) isNecessary = true; if( !isNecessary ) { DefaultLogger::get()->debug( boost::str( boost::format( "SplitByBoneCountProcess early-out: no meshes with more than %d bones.") % mMaxBoneCount)); return; } // we need to do something. Let's go. mSubMeshIndices.clear(); mSubMeshIndices.resize( pScene->mNumMeshes); // build a new array of meshes for the scene std::vector<aiMesh*> meshes; for( size_t a = 0; a < pScene->mNumMeshes; ++a) { aiMesh* srcMesh = pScene->mMeshes[a]; std::vector<aiMesh*> newMeshes; SplitMesh( pScene->mMeshes[a], newMeshes); // mesh was split if( !newMeshes.empty() ) { // store new meshes and indices of the new meshes for( size_t b = 0; b < newMeshes.size(); ++b) { mSubMeshIndices[a].push_back( meshes.size()); meshes.push_back( newMeshes[b]); } // and destroy the source mesh. It should be completely contained inside the new submeshes delete srcMesh; } else { // Mesh is kept unchanged - store it's new place in the mesh array mSubMeshIndices[a].push_back( meshes.size()); meshes.push_back( srcMesh); } } // rebuild the scene's mesh array pScene->mNumMeshes = meshes.size(); delete [] pScene->mMeshes; pScene->mMeshes = new aiMesh*[pScene->mNumMeshes]; std::copy( meshes.begin(), meshes.end(), pScene->mMeshes); // recurse through all nodes and translate the node's mesh indices to fit the new mesh array UpdateNode( pScene->mRootNode); DefaultLogger::get()->debug( boost::str( boost::format( "SplitByBoneCountProcess end: split %d meshes into %d submeshes.") % mSubMeshIndices.size() % meshes.size())); } // ------------------------------------------------------------------------------------------------ // Splits the given mesh by bone count. void SplitByBoneCountProcess::SplitMesh( const aiMesh* pMesh, std::vector<aiMesh*>& poNewMeshes) const { // skip if not necessary if( pMesh->mNumBones <= mMaxBoneCount ) return; // necessary optimisation: build a list of all affecting bones for each vertex // TODO: (thom) maybe add a custom allocator here to avoid allocating tens of thousands of small arrays typedef std::pair<size_t, float> BoneWeight; std::vector< std::vector<BoneWeight> > vertexBones( pMesh->mNumVertices); for( size_t a = 0; a < pMesh->mNumBones; ++a) { const aiBone* bone = pMesh->mBones[a]; for( size_t b = 0; b < bone->mNumWeights; ++b) vertexBones[ bone->mWeights[b].mVertexId ].push_back( BoneWeight( a, bone->mWeights[b].mWeight)); } size_t numFacesHandled = 0; std::vector<bool> isFaceHandled( pMesh->mNumFaces, false); while( numFacesHandled < pMesh->mNumFaces ) { // which bones are used in the current submesh size_t numBones = 0; std::vector<bool> isBoneUsed( pMesh->mNumBones, false); // indices of the faces which are going to go into this submesh std::vector<size_t> subMeshFaces; subMeshFaces.reserve( pMesh->mNumFaces); // accumulated vertex count of all the faces in this submesh size_t numSubMeshVertices = 0; // a small local array of new bones for the current face. State of all used bones for that face // can only be updated AFTER the face is completely analysed. Thanks to imre for the fix. std::vector<size_t> newBonesAtCurrentFace; // add faces to the new submesh as long as all bones affecting the faces' vertices fit in the limit for( size_t a = 0; a < pMesh->mNumFaces; ++a) { // skip if the face is already stored in a submesh if( isFaceHandled[a] ) continue; const aiFace& face = pMesh->mFaces[a]; // check every vertex if its bones would still fit into the current submesh for( size_t b = 0; b < face.mNumIndices; ++b ) { const std::vector<BoneWeight>& vb = vertexBones[face.mIndices[b]]; for( size_t c = 0; c < vb.size(); ++c) { size_t boneIndex = vb[c].first; // if the bone is already used in this submesh, it's ok if( isBoneUsed[boneIndex] ) continue; // if it's not used, yet, we would need to add it. Store its bone index if( std::find( newBonesAtCurrentFace.begin(), newBonesAtCurrentFace.end(), boneIndex) == newBonesAtCurrentFace.end() ) newBonesAtCurrentFace.push_back( boneIndex); } } // leave out the face if the new bones required for this face don't fit the bone count limit anymore if( numBones + newBonesAtCurrentFace.size() > mMaxBoneCount ) continue; // mark all new bones as necessary while( !newBonesAtCurrentFace.empty() ) { size_t newIndex = newBonesAtCurrentFace.back(); newBonesAtCurrentFace.pop_back(); // this also avoids the deallocation which comes with a clear() if( isBoneUsed[newIndex] ) continue; isBoneUsed[newIndex] = true; numBones++; } // store the face index and the vertex count subMeshFaces.push_back( a); numSubMeshVertices += face.mNumIndices; // remember that this face is handled isFaceHandled[a] = true; numFacesHandled++; } // create a new mesh to hold this subset of the source mesh aiMesh* newMesh = new aiMesh; if( pMesh->mName.length > 0 ) newMesh->mName.Set( boost::str( boost::format( "%s_sub%d") % pMesh->mName.data % poNewMeshes.size())); newMesh->mMaterialIndex = pMesh->mMaterialIndex; newMesh->mPrimitiveTypes = pMesh->mPrimitiveTypes; poNewMeshes.push_back( newMesh); // create all the arrays for this mesh if the old mesh contained them newMesh->mNumVertices = numSubMeshVertices; newMesh->mNumFaces = subMeshFaces.size(); newMesh->mVertices = new aiVector3D[newMesh->mNumVertices]; if( pMesh->HasNormals() ) newMesh->mNormals = new aiVector3D[newMesh->mNumVertices]; if( pMesh->HasTangentsAndBitangents() ) { newMesh->mTangents = new aiVector3D[newMesh->mNumVertices]; newMesh->mBitangents = new aiVector3D[newMesh->mNumVertices]; } for( size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a ) { if( pMesh->HasTextureCoords( a) ) newMesh->mTextureCoords[a] = new aiVector3D[newMesh->mNumVertices]; newMesh->mNumUVComponents[a] = pMesh->mNumUVComponents[a]; } for( size_t a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a ) { if( pMesh->HasVertexColors( a) ) newMesh->mColors[a] = new aiColor4D[newMesh->mNumVertices]; } // and copy over the data, generating faces with linear indices along the way newMesh->mFaces = new aiFace[subMeshFaces.size()]; size_t nvi = 0; // next vertex index std::vector<size_t> previousVertexIndices( numSubMeshVertices, std::numeric_limits<size_t>::max()); // per new vertex: its index in the source mesh for( size_t a = 0; a < subMeshFaces.size(); ++a ) { const aiFace& srcFace = pMesh->mFaces[subMeshFaces[a]]; aiFace& dstFace = newMesh->mFaces[a]; dstFace.mNumIndices = srcFace.mNumIndices; dstFace.mIndices = new unsigned int[dstFace.mNumIndices]; // accumulate linearly all the vertices of the source face for( size_t b = 0; b < dstFace.mNumIndices; ++b ) { size_t srcIndex = srcFace.mIndices[b]; dstFace.mIndices[b] = nvi; previousVertexIndices[nvi] = srcIndex; newMesh->mVertices[nvi] = pMesh->mVertices[srcIndex]; if( pMesh->HasNormals() ) newMesh->mNormals[nvi] = pMesh->mNormals[srcIndex]; if( pMesh->HasTangentsAndBitangents() ) { newMesh->mTangents[nvi] = pMesh->mTangents[srcIndex]; newMesh->mBitangents[nvi] = pMesh->mBitangents[srcIndex]; } for( size_t c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++c ) { if( pMesh->HasTextureCoords( c) ) newMesh->mTextureCoords[c][nvi] = pMesh->mTextureCoords[c][srcIndex]; } for( size_t c = 0; c < AI_MAX_NUMBER_OF_COLOR_SETS; ++c ) { if( pMesh->HasVertexColors( c) ) newMesh->mColors[c][nvi] = pMesh->mColors[c][srcIndex]; } nvi++; } } ai_assert( nvi == numSubMeshVertices ); // Create the bones for the new submesh: first create the bone array newMesh->mNumBones = 0; newMesh->mBones = new aiBone*[numBones]; std::vector<size_t> mappedBoneIndex( pMesh->mNumBones, std::numeric_limits<size_t>::max()); for( size_t a = 0; a < pMesh->mNumBones; ++a ) { if( !isBoneUsed[a] ) continue; // create the new bone const aiBone* srcBone = pMesh->mBones[a]; aiBone* dstBone = new aiBone; mappedBoneIndex[a] = newMesh->mNumBones; newMesh->mBones[newMesh->mNumBones++] = dstBone; dstBone->mName = srcBone->mName; dstBone->mOffsetMatrix = srcBone->mOffsetMatrix; dstBone->mNumWeights = 0; } ai_assert( newMesh->mNumBones == numBones ); // iterate over all new vertices and count which bones affected its old vertex in the source mesh for( size_t a = 0; a < numSubMeshVertices; ++a ) { size_t oldIndex = previousVertexIndices[a]; const std::vector<BoneWeight>& bonesOnThisVertex = vertexBones[oldIndex]; for( size_t b = 0; b < bonesOnThisVertex.size(); ++b ) { size_t newBoneIndex = mappedBoneIndex[ bonesOnThisVertex[b].first ]; if( newBoneIndex != std::numeric_limits<size_t>::max() ) newMesh->mBones[newBoneIndex]->mNumWeights++; } } // allocate all bone weight arrays accordingly for( size_t a = 0; a < newMesh->mNumBones; ++a ) { aiBone* bone = newMesh->mBones[a]; ai_assert( bone->mNumWeights > 0 ); bone->mWeights = new aiVertexWeight[bone->mNumWeights]; bone->mNumWeights = 0; // for counting up in the next step } // now copy all the bone vertex weights for all the vertices which made it into the new submesh for( size_t a = 0; a < numSubMeshVertices; ++a) { // find the source vertex for it in the source mesh size_t previousIndex = previousVertexIndices[a]; // these bones were affecting it const std::vector<BoneWeight>& bonesOnThisVertex = vertexBones[previousIndex]; // all of the bones affecting it should be present in the new submesh, or else // the face it comprises shouldn't be present for( size_t b = 0; b < bonesOnThisVertex.size(); ++b) { size_t newBoneIndex = mappedBoneIndex[ bonesOnThisVertex[b].first ]; ai_assert( newBoneIndex != std::numeric_limits<size_t>::max() ); aiVertexWeight* dstWeight = newMesh->mBones[newBoneIndex]->mWeights + newMesh->mBones[newBoneIndex]->mNumWeights; newMesh->mBones[newBoneIndex]->mNumWeights++; dstWeight->mVertexId = a; dstWeight->mWeight = bonesOnThisVertex[b].second; } } // I have the strange feeling that this will break apart at some point in time... } } // ------------------------------------------------------------------------------------------------ // Recursively updates the node's mesh list to account for the changed mesh list void SplitByBoneCountProcess::UpdateNode( aiNode* pNode) const { // rebuild the node's mesh index list if( pNode->mNumMeshes > 0 ) { std::vector<size_t> newMeshList; for( size_t a = 0; a < pNode->mNumMeshes; ++a) { size_t srcIndex = pNode->mMeshes[a]; const std::vector<size_t>& replaceMeshes = mSubMeshIndices[srcIndex]; newMeshList.insert( newMeshList.end(), replaceMeshes.begin(), replaceMeshes.end()); } delete pNode->mMeshes; pNode->mNumMeshes = newMeshList.size(); pNode->mMeshes = new unsigned int[pNode->mNumMeshes]; std::copy( newMeshList.begin(), newMeshList.end(), pNode->mMeshes); } // do that also recursively for all children for( size_t a = 0; a < pNode->mNumChildren; ++a ) { UpdateNode( pNode->mChildren[a]); } }