/* Open Asset Import Library (ASSIMP) ---------------------------------------------------------------------- Copyright (c) 2006-2008, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------- */ #include "AssimpPCH.h" #include "Hash.h" using namespace Assimp; // ------------------------------------------------------------------------------------------------ // Get a specific property from a material aiReturn aiGetMaterialProperty(const aiMaterial* pMat, const char* pKey, unsigned int type, unsigned int index, const aiMaterialProperty** pPropOut) { ai_assert (pMat != NULL); ai_assert (pKey != NULL); ai_assert (pPropOut != NULL); for (unsigned int i = 0; i < pMat->mNumProperties;++i) { aiMaterialProperty* prop = pMat->mProperties[i]; if (prop && !::strcmp( prop->mKey.data, pKey ) && prop->mSemantic == type && prop->mIndex == index) { *pPropOut = pMat->mProperties[i]; return AI_SUCCESS; } } *pPropOut = NULL; return AI_FAILURE; } // ------------------------------------------------------------------------------------------------ // Get an array of floating-point values from the material. aiReturn aiGetMaterialFloatArray(const aiMaterial* pMat, const char* pKey, unsigned int type, unsigned int index, float* pOut, unsigned int* pMax) { ai_assert (pMat != NULL); ai_assert (pKey != NULL); ai_assert (pOut != NULL); for (unsigned int i = 0; i < pMat->mNumProperties;++i) { aiMaterialProperty* prop = pMat->mProperties[i]; if (prop && !::strcmp( prop->mKey.data, pKey ) && prop->mSemantic == type && prop->mIndex == index) { // data is given in floats, simply copy it if( aiPTI_Float == pMat->mProperties[i]->mType || aiPTI_Buffer == pMat->mProperties[i]->mType) { unsigned int iWrite = pMat->mProperties[i]->mDataLength / sizeof(float); if (pMax)iWrite = *pMax < iWrite ? *pMax : iWrite; ::memcpy (pOut, pMat->mProperties[i]->mData, iWrite * sizeof (float)); if (pMax)*pMax = iWrite; } // data is given in ints, convert to float else if( aiPTI_Integer == pMat->mProperties[i]->mType) { unsigned int iWrite = pMat->mProperties[i]->mDataLength / sizeof(int); if (pMax)iWrite = *pMax < iWrite ? *pMax : iWrite; for (unsigned int a = 0; a < iWrite;++a) { pOut[a] = (float) ((int*)pMat->mProperties[i]->mData)[a]; } if (pMax)*pMax = iWrite; } // it is a string ... no way to read something out of this else { if (pMax)*pMax = 0; return AI_FAILURE; } return AI_SUCCESS; } } return AI_FAILURE; } // ------------------------------------------------------------------------------------------------ // Get an array if integers from the material aiReturn aiGetMaterialIntegerArray(const aiMaterial* pMat, const char* pKey, unsigned int type, unsigned int index, int* pOut, unsigned int* pMax) { ai_assert (pMat != NULL); ai_assert (pKey != NULL); ai_assert (pOut != NULL); for (unsigned int i = 0; i < pMat->mNumProperties;++i) { aiMaterialProperty* prop = pMat->mProperties[i]; if (prop && !::strcmp( prop->mKey.data, pKey ) && prop->mSemantic == type && prop->mIndex == index) { // data is given in ints, simply copy it if( aiPTI_Integer == pMat->mProperties[i]->mType || aiPTI_Buffer == pMat->mProperties[i]->mType) { unsigned int iWrite = pMat->mProperties[i]->mDataLength / sizeof(int); if (pMax)iWrite = *pMax < iWrite ? *pMax : iWrite; ::memcpy (pOut, pMat->mProperties[i]->mData, iWrite * sizeof (int)); if (pMax)*pMax = iWrite; } // data is given in floats convert to int (lossy!) else if( aiPTI_Float == pMat->mProperties[i]->mType) { unsigned int iWrite = pMat->mProperties[i]->mDataLength / sizeof(float); if (pMax)iWrite = *pMax < iWrite ? *pMax : iWrite; for (unsigned int a = 0; a < iWrite;++a) { pOut[a] = (int) ((float*)pMat->mProperties[i]->mData)[a]; } if (pMax)*pMax = iWrite; } // it is a string ... no way to read something out of this else { if (pMax)*pMax = 0; return AI_FAILURE; } return AI_SUCCESS; } } return AI_FAILURE; } // ------------------------------------------------------------------------------------------------ // Get a color (3 or 4 floats) from the material aiReturn aiGetMaterialColor(const aiMaterial* pMat, const char* pKey, unsigned int type, unsigned int index, aiColor4D* pOut) { unsigned int iMax = 4; aiReturn eRet = aiGetMaterialFloatArray(pMat,pKey,type,index,(float*)pOut,&iMax); // if no alpha channel is provided set it to 1.0 by default if (3 == iMax)pOut->a = 1.0f; return eRet; } // ------------------------------------------------------------------------------------------------ // Get a string from the material aiReturn aiGetMaterialString(const aiMaterial* pMat, const char* pKey, unsigned int type, unsigned int index, aiString* pOut) { ai_assert (pMat != NULL); ai_assert (pKey != NULL); ai_assert (pOut != NULL); for (unsigned int i = 0; i < pMat->mNumProperties;++i) { aiMaterialProperty* prop = pMat->mProperties[i]; if (prop && !::strcmp( prop->mKey.data, pKey ) && prop->mSemantic == type && prop->mIndex == index) { if( aiPTI_String == pMat->mProperties[i]->mType) { const aiString* pcSrc = (const aiString*)pMat->mProperties[i]->mData; ::memcpy (pOut->data, pcSrc->data, (pOut->length = pcSrc->length)+1); } // Wrong type else return AI_FAILURE; return AI_SUCCESS; } } return AI_FAILURE; } // ------------------------------------------------------------------------------------------------ // Construction. Actually the one and only way to get an aiMaterial instance MaterialHelper::MaterialHelper() { // Allocate 5 entries by default mNumProperties = 0; mNumAllocated = 5; mProperties = new aiMaterialProperty*[5]; } // ------------------------------------------------------------------------------------------------ MaterialHelper::~MaterialHelper() { _InternDestruct(); } // ------------------------------------------------------------------------------------------------ aiMaterial::~aiMaterial() { // This is safe: aiMaterial has a private constructor, // so instances must be created indirectly via MaterialHelper. ((MaterialHelper*)this)->_InternDestruct(); } // ------------------------------------------------------------------------------------------------ // Manual destructor void MaterialHelper::_InternDestruct() { // First clean up all properties Clear(); // Then delete the array that stored them delete[] mProperties; AI_DEBUG_INVALIDATE_PTR(mProperties); // Update members mNumAllocated = 0; } // ------------------------------------------------------------------------------------------------ void MaterialHelper::Clear() { for (unsigned int i = 0; i < mNumProperties;++i) { // delete this entry delete mProperties[i]; AI_DEBUG_INVALIDATE_PTR(mProperties[i]); } mNumProperties = 0; // The array remains allocated, we just invalidated its contents } // ------------------------------------------------------------------------------------------------ uint32_t MaterialHelper::ComputeHash(bool includeMatName /*= false*/) { uint32_t hash = 1503; // magic start value, choosen to be my birthday :-) for (unsigned int i = 0; i < this->mNumProperties;++i) { aiMaterialProperty* prop; // Exclude all properties whose first character is '?' from the hash // See doc for aiMaterialProperty. if ((prop = mProperties[i]) && (includeMatName || prop->mKey.data[0] != '?')) { hash = SuperFastHash(prop->mKey.data,(unsigned int)prop->mKey.length,hash); hash = SuperFastHash(prop->mData,prop->mDataLength,hash); // Combine the semantic and the index with the hash hash = SuperFastHash((const char*)&prop->mSemantic,sizeof(unsigned int),hash); hash = SuperFastHash((const char*)&prop->mIndex,sizeof(unsigned int),hash); } } return hash; } // ------------------------------------------------------------------------------------------------ aiReturn MaterialHelper::RemoveProperty (const char* pKey,unsigned int type, unsigned int index) { ai_assert(NULL != pKey); for (unsigned int i = 0; i < mNumProperties;++i) { aiMaterialProperty* prop = mProperties[i]; if (prop && !::strcmp( prop->mKey.data, pKey ) && prop->mSemantic == type && prop->mIndex == index) { // Delete this entry delete mProperties[i]; // collapse the array behind --. --mNumProperties; for (unsigned int a = i; a < mNumProperties;++a) { mProperties[a] = mProperties[a+1]; } return AI_SUCCESS; } } return AI_FAILURE; } // ------------------------------------------------------------------------------------------------ aiReturn MaterialHelper::AddBinaryProperty (const void* pInput, unsigned int pSizeInBytes, const char* pKey, unsigned int type, unsigned int index, aiPropertyTypeInfo pType) { ai_assert (pInput != NULL); ai_assert (pKey != NULL); ai_assert (0 != pSizeInBytes); // first search the list whether there is already an entry // with this name. unsigned int iOutIndex = 0xFFFFFFFF; for (unsigned int i = 0; i < mNumProperties;++i) { aiMaterialProperty* prop = mProperties[i]; if (prop && !::strcmp( prop->mKey.data, pKey ) && prop->mSemantic == type && prop->mIndex == index) { // delete this entry delete this->mProperties[i]; iOutIndex = i; } } // Allocate a new material property aiMaterialProperty* pcNew = new aiMaterialProperty(); // Fill this pcNew->mType = pType; pcNew->mSemantic = type; pcNew->mIndex = index; pcNew->mDataLength = pSizeInBytes; pcNew->mData = new char[pSizeInBytes]; ::memcpy (pcNew->mData,pInput,pSizeInBytes); pcNew->mKey.length = ::strlen(pKey); ai_assert ( MAXLEN > pcNew->mKey.length); ::strcpy( pcNew->mKey.data, pKey ); if (0xFFFFFFFF != iOutIndex) { mProperties[iOutIndex] = pcNew; return AI_SUCCESS; } // resize the array ... double the storage if (mNumProperties == mNumAllocated) { unsigned int iOld = mNumAllocated; mNumAllocated *= 2; aiMaterialProperty** ppTemp = new aiMaterialProperty*[mNumAllocated]; if (NULL == ppTemp)return AI_OUTOFMEMORY; ::memcpy (ppTemp,mProperties,iOld * sizeof(void*)); delete[] mProperties; mProperties = ppTemp; } // push back ... mProperties[mNumProperties++] = pcNew; return AI_SUCCESS; } // ------------------------------------------------------------------------------------------------ aiReturn MaterialHelper::AddProperty (const aiString* pInput, const char* pKey, unsigned int type, unsigned int index) { // Fix ... don't keep the whole string buffer return this->AddBinaryProperty(pInput,(unsigned int)pInput->length+1+ (unsigned int)(((uint8_t*)&pInput->data - (uint8_t*)&pInput->length)), pKey,type,index, aiPTI_String); } // ------------------------------------------------------------------------------------------------ void MaterialHelper::CopyPropertyList(MaterialHelper* pcDest, const MaterialHelper* pcSrc) { ai_assert(NULL != pcDest); ai_assert(NULL != pcSrc); unsigned int iOldNum = pcDest->mNumProperties; pcDest->mNumAllocated += pcSrc->mNumAllocated; pcDest->mNumProperties += pcSrc->mNumProperties; aiMaterialProperty** pcOld = pcDest->mProperties; pcDest->mProperties = new aiMaterialProperty*[pcDest->mNumAllocated]; if (iOldNum && pcOld) { for (unsigned int i = 0; i < iOldNum;++i) pcDest->mProperties[i] = pcOld[i]; delete[] pcOld; } for (unsigned int i = iOldNum; i< pcDest->mNumProperties;++i) { aiMaterialProperty* propSrc = pcSrc->mProperties[i]; // search whether we have already a property with this name // (if yes we overwrite the old one) aiMaterialProperty* prop; for (unsigned int q = 0; q < iOldNum;++q) { prop = pcDest->mProperties[q]; if (prop && prop->mKey == propSrc->mKey && prop->mSemantic == propSrc->mSemantic && prop->mIndex == propSrc->mIndex) { delete prop; // collapse the whole array ... ::memmove(&pcDest->mProperties[q],&pcDest->mProperties[q+1],i-q); i--; pcDest->mNumProperties--; } } // Allocate the output property and copy the source property prop = pcDest->mProperties[i] = new aiMaterialProperty(); prop->mKey = propSrc->mKey; prop->mDataLength = propSrc->mDataLength; prop->mType = propSrc->mType; prop->mSemantic = propSrc->mSemantic; prop->mIndex = propSrc->mIndex; prop->mData = new char[propSrc->mDataLength]; ::memcpy(prop->mData,propSrc->mData,prop->mDataLength); } return; } // ------------------------------------------------------------------------------------------------ aiReturn aiGetMaterialTexture(const C_STRUCT aiMaterial* mat, aiTextureType type, unsigned int index, C_STRUCT aiString* path, aiTextureMapping* _mapping /*= NULL*/, unsigned int* uvindex /*= NULL*/, float* blend /*= NULL*/, aiTextureOp* op /*= NULL*/, aiTextureMapMode* mapmode /*= NULL*/, unsigned int* flags /*= NULL*/ ) { ai_assert(NULL != mat && NULL != path); // Get the path to the texture if (AI_SUCCESS != aiGetMaterialString(mat,AI_MATKEY_TEXTURE(type,index),path)) { return AI_FAILURE; } // Determine mapping type aiTextureMapping mapping = aiTextureMapping_UV; aiGetMaterialInteger(mat,AI_MATKEY_MAPPING(type,index),(int*)&mapping); if (_mapping) *_mapping = mapping; // Get UV index if (aiTextureMapping_UV == mapping && uvindex) { aiGetMaterialInteger(mat,AI_MATKEY_UVWSRC(type,index),(int*)uvindex); } // Get blend factor if (blend) { aiGetMaterialFloat(mat,AI_MATKEY_TEXBLEND(type,index),blend); } // Get texture operation if (op){ aiGetMaterialInteger(mat,AI_MATKEY_TEXOP(type,index),(int*)op); } // Get texture mapping modes if (mapmode) { aiGetMaterialInteger(mat,AI_MATKEY_MAPPINGMODE_U(type,index),(int*)&mapmode[0]); aiGetMaterialInteger(mat,AI_MATKEY_MAPPINGMODE_V(type,index),(int*)&mapmode[1]); } // Get texture flags if (flags){ aiGetMaterialInteger(mat,AI_MATKEY_TEXFLAGS(type,index),(int*)flags); } return AI_SUCCESS; }