/* Open Asset Import Library (assimp) ---------------------------------------------------------------------- Copyright (c) 2006-2019, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------- */ #include // Header files, Assimp #include using namespace Assimp; namespace glTF2 { namespace { // // JSON Value reading helpers // template struct ReadHelper { static bool Read(Value& val, T& out) { return val.IsInt() ? out = static_cast(val.GetInt()), true : false; }}; template<> struct ReadHelper { static bool Read(Value& val, bool& out) { return val.IsBool() ? out = val.GetBool(), true : false; }}; template<> struct ReadHelper { static bool Read(Value& val, float& out) { return val.IsNumber() ? out = static_cast(val.GetDouble()), true : false; }}; template struct ReadHelper { static bool Read(Value& val, float (&out)[N]) { if (!val.IsArray() || val.Size() != N) return false; for (unsigned int i = 0; i < N; ++i) { if (val[i].IsNumber()) out[i] = static_cast(val[i].GetDouble()); } return true; }}; template<> struct ReadHelper { static bool Read(Value& val, const char*& out) { return val.IsString() ? (out = val.GetString(), true) : false; }}; template<> struct ReadHelper { static bool Read(Value& val, std::string& out) { return val.IsString() ? (out = std::string(val.GetString(), val.GetStringLength()), true) : false; }}; template<> struct ReadHelper { static bool Read(Value& val, uint64_t& out) { return val.IsUint64() ? out = val.GetUint64(), true : false; }}; template<> struct ReadHelper { static bool Read(Value& val, int64_t& out) { return val.IsInt64() ? out = val.GetInt64(), true : false; }}; template struct ReadHelper< Nullable > { static bool Read(Value& val, Nullable& out) { return out.isPresent = ReadHelper::Read(val, out.value); }}; template inline static bool ReadValue(Value& val, T& out) { return ReadHelper::Read(val, out); } template inline static bool ReadMember(Value& obj, const char* id, T& out) { Value::MemberIterator it = obj.FindMember(id); if (it != obj.MemberEnd()) { return ReadHelper::Read(it->value, out); } return false; } template inline static T MemberOrDefault(Value& obj, const char* id, T defaultValue) { T out; return ReadMember(obj, id, out) ? out : defaultValue; } inline Value* FindMember(Value& val, const char* id) { Value::MemberIterator it = val.FindMember(id); return (it != val.MemberEnd()) ? &it->value : 0; } inline Value* FindString(Value& val, const char* id) { Value::MemberIterator it = val.FindMember(id); return (it != val.MemberEnd() && it->value.IsString()) ? &it->value : 0; } inline Value* FindNumber(Value& val, const char* id) { Value::MemberIterator it = val.FindMember(id); return (it != val.MemberEnd() && it->value.IsNumber()) ? &it->value : 0; } inline Value* FindUInt(Value& val, const char* id) { Value::MemberIterator it = val.FindMember(id); return (it != val.MemberEnd() && it->value.IsUint()) ? &it->value : 0; } inline Value* FindArray(Value& val, const char* id) { Value::MemberIterator it = val.FindMember(id); return (it != val.MemberEnd() && it->value.IsArray()) ? &it->value : 0; } inline Value* FindObject(Value& val, const char* id) { Value::MemberIterator it = val.FindMember(id); return (it != val.MemberEnd() && it->value.IsObject()) ? &it->value : 0; } } // // LazyDict methods // template inline LazyDict::LazyDict(Asset& asset, const char* dictId, const char* extId) : mDictId(dictId), mExtId(extId), mDict(0), mAsset(asset) { asset.mDicts.push_back(this); // register to the list of dictionaries } template inline LazyDict::~LazyDict() { for (size_t i = 0; i < mObjs.size(); ++i) { delete mObjs[i]; } } template inline void LazyDict::AttachToDocument(Document& doc) { Value* container = 0; if (mExtId) { if (Value* exts = FindObject(doc, "extensions")) { container = FindObject(*exts, mExtId); } } else { container = &doc; } if (container) { mDict = FindArray(*container, mDictId); } } template inline void LazyDict::DetachFromDocument() { mDict = 0; } template unsigned int LazyDict::Remove(const char* id) { id = T::TranslateId(mAsset, id); typename IdDict::iterator it = mObjsById.find(id); if (it == mObjsById.end()) { throw DeadlyExportError("GLTF: Object with id \"" + std::string(id) + "\" is not found"); } const unsigned int index = it->second; mAsset.mUsedIds[id] = false; mObjsById.erase(id); mObjsByOIndex.erase(index); mObjs.erase(mObjs.begin() + index); //update index of object in mObjs; for (unsigned int i = index; i < mObjs.size(); ++i) { T *obj = mObjs[i]; obj->index = i; } for (IdDict::iterator it = mObjsById.begin(); it != mObjsById.end(); ++it) { if (it->second <= index) { continue; } mObjsById[it->first] = it->second - 1; } for (Dict::iterator it = mObjsByOIndex.begin(); it != mObjsByOIndex.end(); ++it) { if (it->second <= index) { continue; } mObjsByOIndex[it->first] = it->second - 1; } return index; } template Ref LazyDict::Retrieve(unsigned int i) { typename Dict::iterator it = mObjsByOIndex.find(i); if (it != mObjsByOIndex.end()) {// already created? return Ref(mObjs, it->second); } // read it from the JSON object if (!mDict) { throw DeadlyImportError("GLTF: Missing section \"" + std::string(mDictId) + "\""); } if (!mDict->IsArray()) { throw DeadlyImportError("GLTF: Field is not an array \"" + std::string(mDictId) + "\""); } Value &obj = (*mDict)[i]; if (!obj.IsObject()) { throw DeadlyImportError("GLTF: Object at index \"" + to_string(i) + "\" is not a JSON object"); } T* inst = new T(); inst->id = std::string(mDictId) + "_" + to_string(i); inst->oIndex = i; ReadMember(obj, "name", inst->name); inst->Read(obj, mAsset); return Add(inst); } template Ref LazyDict::Get(unsigned int i) { return Ref(mObjs, i); } template Ref LazyDict::Get(const char* id) { id = T::TranslateId(mAsset, id); typename IdDict::iterator it = mObjsById.find(id); if (it != mObjsById.end()) { // already created? return Ref(mObjs, it->second); } return Ref(); } template Ref LazyDict::Add(T* obj) { unsigned int idx = unsigned(mObjs.size()); mObjs.push_back(obj); mObjsByOIndex[obj->oIndex] = idx; mObjsById[obj->id] = idx; mAsset.mUsedIds[obj->id] = true; return Ref(mObjs, idx); } template Ref LazyDict::Create(const char* id) { Asset::IdMap::iterator it = mAsset.mUsedIds.find(id); if (it != mAsset.mUsedIds.end()) { throw DeadlyImportError("GLTF: two objects with the same ID exist"); } T* inst = new T(); unsigned int idx = unsigned(mObjs.size()); inst->id = id; inst->index = idx; inst->oIndex = idx; return Add(inst); } // // glTF dictionary objects methods // inline Buffer::Buffer() : byteLength(0), type(Type_arraybuffer), EncodedRegion_Current(nullptr), mIsSpecial(false) { } inline Buffer::~Buffer() { for(SEncodedRegion* reg : EncodedRegion_List) delete reg; } inline const char* Buffer::TranslateId(Asset& /*r*/, const char* id) { return id; } inline void Buffer::Read(Value& obj, Asset& r) { size_t statedLength = MemberOrDefault(obj, "byteLength", 0); byteLength = statedLength; Value* it = FindString(obj, "uri"); if (!it) { if (statedLength > 0) { throw DeadlyImportError("GLTF: buffer with non-zero length missing the \"uri\" attribute"); } return; } const char* uri = it->GetString(); glTFCommon::Util::DataURI dataURI; if (ParseDataURI(uri, it->GetStringLength(), dataURI)) { if (dataURI.base64) { uint8_t* data = 0; this->byteLength = glTFCommon::Util::DecodeBase64(dataURI.data, dataURI.dataLength, data); this->mData.reset(data, std::default_delete()); if (statedLength > 0 && this->byteLength != statedLength) { throw DeadlyImportError("GLTF: buffer \"" + id + "\", expected " + to_string(statedLength) + " bytes, but found " + to_string(dataURI.dataLength)); } } else { // assume raw data if (statedLength != dataURI.dataLength) { throw DeadlyImportError("GLTF: buffer \"" + id + "\", expected " + to_string(statedLength) + " bytes, but found " + to_string(dataURI.dataLength)); } this->mData.reset(new uint8_t[dataURI.dataLength], std::default_delete()); memcpy( this->mData.get(), dataURI.data, dataURI.dataLength ); } } else { // Local file if (byteLength > 0) { std::string dir = !r.mCurrentAssetDir.empty() ? (r.mCurrentAssetDir + "/") : ""; IOStream* file = r.OpenFile(dir + uri, "rb"); if (file) { bool ok = LoadFromStream(*file, byteLength); delete file; if (!ok) throw DeadlyImportError("GLTF: error while reading referenced file \"" + std::string(uri) + "\"" ); } else { throw DeadlyImportError("GLTF: could not open referenced file \"" + std::string(uri) + "\""); } } } } inline bool Buffer::LoadFromStream(IOStream& stream, size_t length, size_t baseOffset) { byteLength = length ? length : stream.FileSize(); if (baseOffset) { stream.Seek(baseOffset, aiOrigin_SET); } mData.reset(new uint8_t[byteLength], std::default_delete()); if (stream.Read(mData.get(), byteLength, 1) != 1) { return false; } return true; } inline void Buffer::EncodedRegion_Mark(const size_t pOffset, const size_t pEncodedData_Length, uint8_t* pDecodedData, const size_t pDecodedData_Length, const std::string& pID) { // Check pointer to data if(pDecodedData == nullptr) throw DeadlyImportError("GLTF: for marking encoded region pointer to decoded data must be provided."); // Check offset if(pOffset > byteLength) { const uint8_t val_size = 32; char val[val_size]; ai_snprintf(val, val_size, "%llu", (long long)pOffset); throw DeadlyImportError(std::string("GLTF: incorrect offset value (") + val + ") for marking encoded region."); } // Check length if((pOffset + pEncodedData_Length) > byteLength) { const uint8_t val_size = 64; char val[val_size]; ai_snprintf(val, val_size, "%llu, %llu", (long long)pOffset, (long long)pEncodedData_Length); throw DeadlyImportError(std::string("GLTF: encoded region with offset/length (") + val + ") is out of range."); } // Add new region EncodedRegion_List.push_back(new SEncodedRegion(pOffset, pEncodedData_Length, pDecodedData, pDecodedData_Length, pID)); // And set new value for "byteLength" byteLength += (pDecodedData_Length - pEncodedData_Length); } inline void Buffer::EncodedRegion_SetCurrent(const std::string& pID) { if((EncodedRegion_Current != nullptr) && (EncodedRegion_Current->ID == pID)) return; for(SEncodedRegion* reg : EncodedRegion_List) { if(reg->ID == pID) { EncodedRegion_Current = reg; return; } } throw DeadlyImportError("GLTF: EncodedRegion with ID: \"" + pID + "\" not found."); } inline bool Buffer::ReplaceData(const size_t pBufferData_Offset, const size_t pBufferData_Count, const uint8_t* pReplace_Data, const size_t pReplace_Count) { if((pBufferData_Count == 0) || (pReplace_Count == 0) || (pReplace_Data == nullptr)) { return false; } const size_t new_data_size = byteLength + pReplace_Count - pBufferData_Count; uint8_t *new_data = new uint8_t[new_data_size]; // Copy data which place before replacing part. ::memcpy(new_data, mData.get(), pBufferData_Offset); // Copy new data. ::memcpy(&new_data[pBufferData_Offset], pReplace_Data, pReplace_Count); // Copy data which place after replacing part. ::memcpy(&new_data[pBufferData_Offset + pReplace_Count], &mData.get()[pBufferData_Offset + pBufferData_Count], pBufferData_Offset); // Apply new data mData.reset(new_data, std::default_delete()); byteLength = new_data_size; return true; } inline bool Buffer::ReplaceData_joint(const size_t pBufferData_Offset, const size_t pBufferData_Count, const uint8_t* pReplace_Data, const size_t pReplace_Count) { if((pBufferData_Count == 0) || (pReplace_Count == 0) || (pReplace_Data == nullptr)) { return false; } const size_t new_data_size = byteLength + pReplace_Count - pBufferData_Count; uint8_t* new_data = new uint8_t[new_data_size]; // Copy data which place before replacing part. memcpy(new_data, mData.get(), pBufferData_Offset); // Copy new data. memcpy(&new_data[pBufferData_Offset], pReplace_Data, pReplace_Count); // Copy data which place after replacing part. memcpy(&new_data[pBufferData_Offset + pReplace_Count], &mData.get()[pBufferData_Offset + pBufferData_Count] , new_data_size - (pBufferData_Offset + pReplace_Count) ); // Apply new data mData.reset(new_data, std::default_delete()); byteLength = new_data_size; return true; } inline size_t Buffer::AppendData(uint8_t* data, size_t length) { size_t offset = this->byteLength; // Force alignment to 4 bits Grow((length + 3) & ~3); memcpy(mData.get() + offset, data, length); return offset; } inline void Buffer::Grow(size_t amount) { if (amount <= 0) return; if (capacity >= byteLength + amount) { byteLength += amount; return; } // Shift operation is standard way to divide integer by 2, it doesn't cast it to float back and forth, also works for odd numbers, // originally it would look like: static_cast(capacity * 1.5f) capacity = std::max(capacity + (capacity >> 1), byteLength + amount); uint8_t* b = new uint8_t[capacity]; if (mData) memcpy(b, mData.get(), byteLength); mData.reset(b, std::default_delete()); byteLength += amount; } // // struct BufferView // inline void BufferView::Read(Value& obj, Asset& r) { if (Value* bufferVal = FindUInt(obj, "buffer")) { buffer = r.buffers.Retrieve(bufferVal->GetUint()); } byteOffset = MemberOrDefault(obj, "byteOffset", size_t(0)); byteLength = MemberOrDefault(obj, "byteLength", size_t(0)); byteStride = MemberOrDefault(obj, "byteStride", 0u); } // // struct Accessor // inline void Accessor::Read(Value& obj, Asset& r) { if (Value* bufferViewVal = FindUInt(obj, "bufferView")) { bufferView = r.bufferViews.Retrieve(bufferViewVal->GetUint()); } byteOffset = MemberOrDefault(obj, "byteOffset", size_t(0)); componentType = MemberOrDefault(obj, "componentType", ComponentType_BYTE); count = MemberOrDefault(obj, "count", size_t(0)); const char* typestr; type = ReadMember(obj, "type", typestr) ? AttribType::FromString(typestr) : AttribType::SCALAR; } inline unsigned int Accessor::GetNumComponents() { return AttribType::GetNumComponents(type); } inline unsigned int Accessor::GetBytesPerComponent() { return int(ComponentTypeSize(componentType)); } inline unsigned int Accessor::GetElementSize() { return GetNumComponents() * GetBytesPerComponent(); } inline uint8_t* Accessor::GetPointer() { if (!bufferView || !bufferView->buffer) return 0; uint8_t* basePtr = bufferView->buffer->GetPointer(); if (!basePtr) return 0; size_t offset = byteOffset + bufferView->byteOffset; // Check if region is encoded. if(bufferView->buffer->EncodedRegion_Current != nullptr) { const size_t begin = bufferView->buffer->EncodedRegion_Current->Offset; const size_t end = begin + bufferView->buffer->EncodedRegion_Current->DecodedData_Length; if((offset >= begin) && (offset < end)) return &bufferView->buffer->EncodedRegion_Current->DecodedData[offset - begin]; } return basePtr + offset; } namespace { inline void CopyData(size_t count, const uint8_t* src, size_t src_stride, uint8_t* dst, size_t dst_stride) { if (src_stride == dst_stride) { memcpy(dst, src, count * src_stride); } else { size_t sz = std::min(src_stride, dst_stride); for (size_t i = 0; i < count; ++i) { memcpy(dst, src, sz); if (sz < dst_stride) { memset(dst + sz, 0, dst_stride - sz); } src += src_stride; dst += dst_stride; } } } } template bool Accessor::ExtractData(T*& outData) { uint8_t* data = GetPointer(); if (!data) return false; const size_t elemSize = GetElementSize(); const size_t totalSize = elemSize * count; const size_t stride = bufferView && bufferView->byteStride ? bufferView->byteStride : elemSize; const size_t targetElemSize = sizeof(T); ai_assert(elemSize <= targetElemSize); ai_assert(count*stride <= bufferView->byteLength); outData = new T[count]; if (stride == elemSize && targetElemSize == elemSize) { memcpy(outData, data, totalSize); } else { for (size_t i = 0; i < count; ++i) { memcpy(outData + i, data + i*stride, elemSize); } } return true; } inline void Accessor::WriteData(size_t count, const void* src_buffer, size_t src_stride) { uint8_t* buffer_ptr = bufferView->buffer->GetPointer(); size_t offset = byteOffset + bufferView->byteOffset; size_t dst_stride = GetNumComponents() * GetBytesPerComponent(); const uint8_t* src = reinterpret_cast(src_buffer); uint8_t* dst = reinterpret_cast< uint8_t*>(buffer_ptr + offset); ai_assert(dst + count*dst_stride <= buffer_ptr + bufferView->buffer->byteLength); CopyData(count, src, src_stride, dst, dst_stride); } inline Accessor::Indexer::Indexer(Accessor& acc) : accessor(acc) , data(acc.GetPointer()) , elemSize(acc.GetElementSize()) , stride(acc.bufferView && acc.bufferView->byteStride ? acc.bufferView->byteStride : elemSize) { } //! Accesses the i-th value as defined by the accessor template T Accessor::Indexer::GetValue(int i) { ai_assert(data); ai_assert(i*stride < accessor.bufferView->byteLength); T value = T(); memcpy(&value, data + i*stride, elemSize); //value >>= 8 * (sizeof(T) - elemSize); return value; } inline Image::Image() : width(0) , height(0) , mDataLength(0) { } inline void Image::Read(Value& obj, Asset& r) { if (!mDataLength) { if (Value* uri = FindString(obj, "uri")) { const char* uristr = uri->GetString(); glTFCommon::Util::DataURI dataURI; if (ParseDataURI(uristr, uri->GetStringLength(), dataURI)) { mimeType = dataURI.mediaType; if (dataURI.base64) { uint8_t *ptr = nullptr; mDataLength = glTFCommon::Util::DecodeBase64(dataURI.data, dataURI.dataLength, ptr); mData.reset(ptr); } } else { this->uri = uristr; } } else if (Value* bufferViewVal = FindUInt(obj, "bufferView")) { this->bufferView = r.bufferViews.Retrieve(bufferViewVal->GetUint()); Ref buffer = this->bufferView->buffer; this->mDataLength = this->bufferView->byteLength; // maybe this memcpy could be avoided if aiTexture does not delete[] pcData at destruction. this->mData.reset(new uint8_t[this->mDataLength]); memcpy(this->mData.get(), buffer->GetPointer() + this->bufferView->byteOffset, this->mDataLength); if (Value* mtype = FindString(obj, "mimeType")) { this->mimeType = mtype->GetString(); } } } } inline uint8_t* Image::StealData() { mDataLength = 0; return mData.release(); } inline void Image::SetData(uint8_t* data, size_t length, Asset& r) { Ref b = r.GetBodyBuffer(); if (b) { // binary file: append to body std::string bvId = r.FindUniqueID(this->id, "imgdata"); bufferView = r.bufferViews.Create(bvId); bufferView->buffer = b; bufferView->byteLength = length; bufferView->byteOffset = b->AppendData(data, length); } else { // text file: will be stored as a data uri this->mData.reset(data); this->mDataLength = length; } } inline void Sampler::Read(Value& obj, Asset& /*r*/) { SetDefaults(); ReadMember(obj, "name", name); ReadMember(obj, "magFilter", magFilter); ReadMember(obj, "minFilter", minFilter); ReadMember(obj, "wrapS", wrapS); ReadMember(obj, "wrapT", wrapT); } inline void Sampler::SetDefaults() { //only wrapping modes have defaults wrapS = SamplerWrap::Repeat; wrapT = SamplerWrap::Repeat; magFilter = SamplerMagFilter::UNSET; minFilter = SamplerMinFilter::UNSET; } inline void Texture::Read(Value& obj, Asset& r) { if (Value* sourceVal = FindUInt(obj, "source")) { source = r.images.Retrieve(sourceVal->GetUint()); } if (Value* samplerVal = FindUInt(obj, "sampler")) { sampler = r.samplers.Retrieve(samplerVal->GetUint()); } } namespace { inline void SetTextureProperties(Asset& r, Value* prop, TextureInfo& out) { if (Value* index = FindUInt(*prop, "index")) { out.texture = r.textures.Retrieve(index->GetUint()); } if (Value* texcoord = FindUInt(*prop, "texCoord")) { out.texCoord = texcoord->GetUint(); } } inline void ReadTextureProperty(Asset& r, Value& vals, const char* propName, TextureInfo& out) { if (Value* prop = FindMember(vals, propName)) { SetTextureProperties(r, prop, out); } } inline void ReadTextureProperty(Asset& r, Value& vals, const char* propName, NormalTextureInfo& out) { if (Value* prop = FindMember(vals, propName)) { SetTextureProperties(r, prop, out); if (Value* scale = FindNumber(*prop, "scale")) { out.scale = static_cast(scale->GetDouble()); } } } inline void ReadTextureProperty(Asset& r, Value& vals, const char* propName, OcclusionTextureInfo& out) { if (Value* prop = FindMember(vals, propName)) { SetTextureProperties(r, prop, out); if (Value* strength = FindNumber(*prop, "strength")) { out.strength = static_cast(strength->GetDouble()); } } } } inline void Material::Read(Value& material, Asset& r) { SetDefaults(); if (Value* pbrMetallicRoughness = FindObject(material, "pbrMetallicRoughness")) { ReadMember(*pbrMetallicRoughness, "baseColorFactor", this->pbrMetallicRoughness.baseColorFactor); ReadTextureProperty(r, *pbrMetallicRoughness, "baseColorTexture", this->pbrMetallicRoughness.baseColorTexture); ReadTextureProperty(r, *pbrMetallicRoughness, "metallicRoughnessTexture", this->pbrMetallicRoughness.metallicRoughnessTexture); ReadMember(*pbrMetallicRoughness, "metallicFactor", this->pbrMetallicRoughness.metallicFactor); ReadMember(*pbrMetallicRoughness, "roughnessFactor", this->pbrMetallicRoughness.roughnessFactor); } ReadTextureProperty(r, material, "normalTexture", this->normalTexture); ReadTextureProperty(r, material, "occlusionTexture", this->occlusionTexture); ReadTextureProperty(r, material, "emissiveTexture", this->emissiveTexture); ReadMember(material, "emissiveFactor", this->emissiveFactor); ReadMember(material, "doubleSided", this->doubleSided); ReadMember(material, "alphaMode", this->alphaMode); ReadMember(material, "alphaCutoff", this->alphaCutoff); if (Value* extensions = FindObject(material, "extensions")) { if (r.extensionsUsed.KHR_materials_pbrSpecularGlossiness) { if (Value* pbrSpecularGlossiness = FindObject(*extensions, "KHR_materials_pbrSpecularGlossiness")) { PbrSpecularGlossiness pbrSG; ReadMember(*pbrSpecularGlossiness, "diffuseFactor", pbrSG.diffuseFactor); ReadTextureProperty(r, *pbrSpecularGlossiness, "diffuseTexture", pbrSG.diffuseTexture); ReadTextureProperty(r, *pbrSpecularGlossiness, "specularGlossinessTexture", pbrSG.specularGlossinessTexture); ReadMember(*pbrSpecularGlossiness, "specularFactor", pbrSG.specularFactor); ReadMember(*pbrSpecularGlossiness, "glossinessFactor", pbrSG.glossinessFactor); this->pbrSpecularGlossiness = Nullable(pbrSG); } } unlit = nullptr != FindObject(*extensions, "KHR_materials_unlit"); } } namespace { void SetVector(vec4& v, const float(&in)[4]) { v[0] = in[0]; v[1] = in[1]; v[2] = in[2]; v[3] = in[3]; } void SetVector(vec3& v, const float(&in)[3]) { v[0] = in[0]; v[1] = in[1]; v[2] = in[2]; } } inline void Material::SetDefaults() { //pbr materials SetVector(pbrMetallicRoughness.baseColorFactor, defaultBaseColor); pbrMetallicRoughness.metallicFactor = 1.0; pbrMetallicRoughness.roughnessFactor = 1.0; SetVector(emissiveFactor, defaultEmissiveFactor); alphaMode = "OPAQUE"; alphaCutoff = 0.5; doubleSided = false; unlit = false; } inline void PbrSpecularGlossiness::SetDefaults() { //pbrSpecularGlossiness properties SetVector(diffuseFactor, defaultDiffuseFactor); SetVector(specularFactor, defaultSpecularFactor); glossinessFactor = 1.0; } namespace { template inline int Compare(const char* attr, const char (&str)[N]) { return (strncmp(attr, str, N - 1) == 0) ? N - 1 : 0; } inline bool GetAttribVector(Mesh::Primitive& p, const char* attr, Mesh::AccessorList*& v, int& pos) { if ((pos = Compare(attr, "POSITION"))) { v = &(p.attributes.position); } else if ((pos = Compare(attr, "NORMAL"))) { v = &(p.attributes.normal); } else if ((pos = Compare(attr, "TANGENT"))) { v = &(p.attributes.tangent); } else if ((pos = Compare(attr, "TEXCOORD"))) { v = &(p.attributes.texcoord); } else if ((pos = Compare(attr, "COLOR"))) { v = &(p.attributes.color); } else if ((pos = Compare(attr, "JOINT"))) { v = &(p.attributes.joint); } else if ((pos = Compare(attr, "JOINTMATRIX"))) { v = &(p.attributes.jointmatrix); } else if ((pos = Compare(attr, "WEIGHT"))) { v = &(p.attributes.weight); } else return false; return true; } inline bool GetAttribTargetVector(Mesh::Primitive& p, const int targetIndex, const char* attr, Mesh::AccessorList*& v, int& pos) { if ((pos = Compare(attr, "POSITION"))) { v = &(p.targets[targetIndex].position); } else if ((pos = Compare(attr, "NORMAL"))) { v = &(p.targets[targetIndex].normal); } else if ((pos = Compare(attr, "TANGENT"))) { v = &(p.targets[targetIndex].tangent); } else return false; return true; } } inline void Mesh::Read(Value& pJSON_Object, Asset& pAsset_Root) { if (Value* name = FindMember(pJSON_Object, "name")) { this->name = name->GetString(); } /****************** Mesh primitives ******************/ if (Value* primitives = FindArray(pJSON_Object, "primitives")) { this->primitives.resize(primitives->Size()); for (unsigned int i = 0; i < primitives->Size(); ++i) { Value& primitive = (*primitives)[i]; Primitive& prim = this->primitives[i]; prim.mode = MemberOrDefault(primitive, "mode", PrimitiveMode_TRIANGLES); if (Value* attrs = FindObject(primitive, "attributes")) { for (Value::MemberIterator it = attrs->MemberBegin(); it != attrs->MemberEnd(); ++it) { if (!it->value.IsUint()) continue; const char* attr = it->name.GetString(); // Valid attribute semantics include POSITION, NORMAL, TANGENT, TEXCOORD, COLOR, JOINT, JOINTMATRIX, // and WEIGHT.Attribute semantics can be of the form[semantic]_[set_index], e.g., TEXCOORD_0, TEXCOORD_1, etc. int undPos = 0; Mesh::AccessorList* vec = 0; if (GetAttribVector(prim, attr, vec, undPos)) { size_t idx = (attr[undPos] == '_') ? atoi(attr + undPos + 1) : 0; if ((*vec).size() <= idx) (*vec).resize(idx + 1); (*vec)[idx] = pAsset_Root.accessors.Retrieve(it->value.GetUint()); } } } if (Value* targetsArray = FindArray(primitive, "targets")) { prim.targets.resize(targetsArray->Size()); for (unsigned int i = 0; i < targetsArray->Size(); ++i) { Value& target = (*targetsArray)[i]; if (!target.IsObject()) continue; for (Value::MemberIterator it = target.MemberBegin(); it != target.MemberEnd(); ++it) { if (!it->value.IsUint()) continue; const char* attr = it->name.GetString(); // Valid attribute semantics include POSITION, NORMAL, TANGENT int undPos = 0; Mesh::AccessorList* vec = 0; if (GetAttribTargetVector(prim, i, attr, vec, undPos)) { size_t idx = (attr[undPos] == '_') ? atoi(attr + undPos + 1) : 0; if ((*vec).size() <= idx) (*vec).resize(idx + 1); (*vec)[idx] = pAsset_Root.accessors.Retrieve(it->value.GetUint()); } } } } if (Value* indices = FindUInt(primitive, "indices")) { prim.indices = pAsset_Root.accessors.Retrieve(indices->GetUint()); } if (Value* material = FindUInt(primitive, "material")) { prim.material = pAsset_Root.materials.Retrieve(material->GetUint()); } } } if (Value* weights = FindArray(pJSON_Object, "weights")) { this->weights.resize(weights->Size()); for (unsigned int i = 0; i < weights->Size(); ++i) { Value& weightValue = (*weights)[i]; if (weightValue.IsNumber()) { this->weights[i] = weightValue.GetFloat(); } } } } inline void Camera::Read(Value& obj, Asset& /*r*/) { std::string type_string = std::string(MemberOrDefault(obj, "type", "perspective")); if (type_string == "orthographic") { type = Camera::Orthographic; } else { type = Camera::Perspective; } const char* subobjId = (type == Camera::Orthographic) ? "orthographic" : "perspective"; Value* it = FindObject(obj, subobjId); if (!it) throw DeadlyImportError("GLTF: Camera missing its parameters"); if (type == Camera::Perspective) { cameraProperties.perspective.aspectRatio = MemberOrDefault(*it, "aspectRatio", 0.f); cameraProperties.perspective.yfov = MemberOrDefault(*it, "yfov", 3.1415f/2.f); cameraProperties.perspective.zfar = MemberOrDefault(*it, "zfar", 100.f); cameraProperties.perspective.znear = MemberOrDefault(*it, "znear", 0.01f); } else { cameraProperties.ortographic.xmag = MemberOrDefault(obj, "xmag", 1.f); cameraProperties.ortographic.ymag = MemberOrDefault(obj, "ymag", 1.f); cameraProperties.ortographic.zfar = MemberOrDefault(obj, "zfar", 100.f); cameraProperties.ortographic.znear = MemberOrDefault(obj, "znear", 0.01f); } } inline void Light::Read(Value& obj, Asset& /*r*/) { #ifndef M_PI const float M_PI = 3.14159265358979323846f; #endif std::string type_string; ReadMember(obj, "type", type_string); if (type_string == "directional") type = Light::Directional; else if (type_string == "point") type = Light::Point; else type = Light::Spot; name = MemberOrDefault(obj, "name", ""); SetVector(color, vec3{ 1.0f, 1.0f, 1.0f }); ReadMember(obj, "color", color); intensity = MemberOrDefault(obj, "intensity", 1.0f); ReadMember(obj, "range", range); if (type == Light::Spot) { Value* spot = FindObject(obj, "spot"); if (!spot) throw DeadlyImportError("GLTF: Light missing its spot parameters"); innerConeAngle = MemberOrDefault(*spot, "innerConeAngle", 0.0f); outerConeAngle = MemberOrDefault(*spot, "outerConeAngle", M_PI / 4.0f); } } inline void Node::Read(Value& obj, Asset& r) { if (Value* children = FindArray(obj, "children")) { this->children.reserve(children->Size()); for (unsigned int i = 0; i < children->Size(); ++i) { Value& child = (*children)[i]; if (child.IsUint()) { // get/create the child node Ref chn = r.nodes.Retrieve(child.GetUint()); if (chn) this->children.push_back(chn); } } } if (Value* matrix = FindArray(obj, "matrix")) { ReadValue(*matrix, this->matrix); } else { ReadMember(obj, "translation", translation); ReadMember(obj, "scale", scale); ReadMember(obj, "rotation", rotation); } if (Value* mesh = FindUInt(obj, "mesh")) { unsigned numMeshes = 1; this->meshes.reserve(numMeshes); Ref meshRef = r.meshes.Retrieve((*mesh).GetUint()); if (meshRef) this->meshes.push_back(meshRef); } if (Value* skin = FindUInt(obj, "skin")) { this->skin = r.skins.Retrieve(skin->GetUint()); } if (Value* camera = FindUInt(obj, "camera")) { this->camera = r.cameras.Retrieve(camera->GetUint()); if (this->camera) this->camera->id = this->id; } if (Value* extensions = FindObject(obj, "extensions")) { if (r.extensionsUsed.KHR_lights_punctual) { if (Value* ext = FindObject(*extensions, "KHR_lights_punctual")) { if (Value* light = FindUInt(*ext, "light")) { this->light = r.lights.Retrieve(light->GetUint()); if (this->light) this->light->id = this->id; } } } } } inline void Scene::Read(Value& obj, Asset& r) { if (Value* array = FindArray(obj, "nodes")) { for (unsigned int i = 0; i < array->Size(); ++i) { if (!(*array)[i].IsUint()) continue; Ref node = r.nodes.Retrieve((*array)[i].GetUint()); if (node) this->nodes.push_back(node); } } } inline void Skin::Read(Value& obj, Asset& r) { if (Value* matrices = FindUInt(obj, "inverseBindMatrices")) { inverseBindMatrices = r.accessors.Retrieve(matrices->GetUint()); } if (Value* joints = FindArray(obj, "joints")) { for (unsigned i = 0; i < joints->Size(); ++i) { if (!(*joints)[i].IsUint()) continue; Ref node = r.nodes.Retrieve((*joints)[i].GetUint()); if (node) { this->jointNames.push_back(node); } } } } inline void Animation::Read(Value& obj, Asset& r) { if (Value* samplers = FindArray(obj, "samplers")) { for (unsigned i = 0; i < samplers->Size(); ++i) { Value& sampler = (*samplers)[i]; Sampler s; if (Value* input = FindUInt(sampler, "input")) { s.input = r.accessors.Retrieve(input->GetUint()); } if (Value* output = FindUInt(sampler, "output")) { s.output = r.accessors.Retrieve(output->GetUint()); } s.interpolation = Interpolation_LINEAR; if (Value* interpolation = FindString(sampler, "interpolation")) { const std::string interp = interpolation->GetString(); if (interp == "LINEAR") { s.interpolation = Interpolation_LINEAR; } else if (interp == "STEP") { s.interpolation = Interpolation_STEP; } else if (interp == "CUBICSPLINE") { s.interpolation = Interpolation_CUBICSPLINE; } } this->samplers.push_back(s); } } if (Value* channels = FindArray(obj, "channels")) { for (unsigned i = 0; i < channels->Size(); ++i) { Value& channel = (*channels)[i]; Channel c; if (Value* sampler = FindUInt(channel, "sampler")) { c.sampler = sampler->GetUint(); } if (Value* target = FindObject(channel, "target")) { if (Value* node = FindUInt(*target, "node")) { c.target.node = r.nodes.Retrieve(node->GetUint()); } if (Value* path = FindString(*target, "path")) { const std::string p = path->GetString(); if (p == "translation") { c.target.path = AnimationPath_TRANSLATION; } else if (p == "rotation") { c.target.path = AnimationPath_ROTATION; } else if (p == "scale") { c.target.path = AnimationPath_SCALE; } else if (p == "weights") { c.target.path = AnimationPath_WEIGHTS; } } } this->channels.push_back(c); } } } inline void AssetMetadata::Read(Document& doc) { if (Value* obj = FindObject(doc, "asset")) { ReadMember(*obj, "copyright", copyright); ReadMember(*obj, "generator", generator); if (Value* versionString = FindString(*obj, "version")) { version = versionString->GetString(); } else if (Value* versionNumber = FindNumber (*obj, "version")) { char buf[4]; ai_snprintf(buf, 4, "%.1f", versionNumber->GetDouble()); version = buf; } if (Value* profile = FindObject(*obj, "profile")) { ReadMember(*profile, "api", this->profile.api); ReadMember(*profile, "version", this->profile.version); } } if (version.empty() || version[0] != '2') { throw DeadlyImportError("GLTF: Unsupported glTF version: " + version); } } // // Asset methods implementation // inline void Asset::ReadBinaryHeader(IOStream& stream, std::vector& sceneData) { GLB_Header header; if (stream.Read(&header, sizeof(header), 1) != 1) { throw DeadlyImportError("GLTF: Unable to read the file header"); } if (strncmp((char*)header.magic, AI_GLB_MAGIC_NUMBER, sizeof(header.magic)) != 0) { throw DeadlyImportError("GLTF: Invalid binary glTF file"); } AI_SWAP4(header.version); asset.version = to_string(header.version); if (header.version != 2) { throw DeadlyImportError("GLTF: Unsupported binary glTF version"); } GLB_Chunk chunk; if (stream.Read(&chunk, sizeof(chunk), 1) != 1) { throw DeadlyImportError("GLTF: Unable to read JSON chunk"); } AI_SWAP4(chunk.chunkLength); AI_SWAP4(chunk.chunkType); if (chunk.chunkType != ChunkType_JSON) { throw DeadlyImportError("GLTF: JSON chunk missing"); } // read the scene data mSceneLength = chunk.chunkLength; sceneData.resize(mSceneLength + 1); sceneData[mSceneLength] = '\0'; if (stream.Read(&sceneData[0], 1, mSceneLength) != mSceneLength) { throw DeadlyImportError("GLTF: Could not read the file contents"); } uint32_t padding = ((chunk.chunkLength + 3) & ~3) - chunk.chunkLength; if (padding > 0) { stream.Seek(padding, aiOrigin_CUR); } AI_SWAP4(header.length); mBodyOffset = 12 + 8 + chunk.chunkLength + padding + 8; if (header.length >= mBodyOffset) { if (stream.Read(&chunk, sizeof(chunk), 1) != 1) { throw DeadlyImportError("GLTF: Unable to read BIN chunk"); } AI_SWAP4(chunk.chunkLength); AI_SWAP4(chunk.chunkType); if (chunk.chunkType != ChunkType_BIN) { throw DeadlyImportError("GLTF: BIN chunk missing"); } mBodyLength = chunk.chunkLength; } else { mBodyOffset = mBodyLength = 0; } } inline void Asset::Load(const std::string& pFile, bool isBinary) { mCurrentAssetDir.clear(); int pos = std::max(int(pFile.rfind('/')), int(pFile.rfind('\\'))); if (pos != int(std::string::npos)) mCurrentAssetDir = pFile.substr(0, pos + 1); shared_ptr stream(OpenFile(pFile.c_str(), "rb", true)); if (!stream) { throw DeadlyImportError("GLTF: Could not open file for reading"); } // is binary? then read the header std::vector sceneData; if (isBinary) { SetAsBinary(); // also creates the body buffer ReadBinaryHeader(*stream, sceneData); } else { mSceneLength = stream->FileSize(); mBodyLength = 0; // read the scene data sceneData.resize(mSceneLength + 1); sceneData[mSceneLength] = '\0'; if (stream->Read(&sceneData[0], 1, mSceneLength) != mSceneLength) { throw DeadlyImportError("GLTF: Could not read the file contents"); } } // parse the JSON document Document doc; doc.ParseInsitu(&sceneData[0]); if (doc.HasParseError()) { char buffer[32]; ai_snprintf(buffer, 32, "%d", static_cast(doc.GetErrorOffset())); throw DeadlyImportError(std::string("GLTF: JSON parse error, offset ") + buffer + ": " + GetParseError_En(doc.GetParseError())); } if (!doc.IsObject()) { throw DeadlyImportError("GLTF: JSON document root must be a JSON object"); } // Fill the buffer instance for the current file embedded contents if (mBodyLength > 0) { if (!mBodyBuffer->LoadFromStream(*stream, mBodyLength, mBodyOffset)) { throw DeadlyImportError("GLTF: Unable to read gltf file"); } } // Load the metadata asset.Read(doc); ReadExtensionsUsed(doc); // Prepare the dictionaries for (size_t i = 0; i < mDicts.size(); ++i) { mDicts[i]->AttachToDocument(doc); } // Read the "scene" property, which specifies which scene to load // and recursively load everything referenced by it unsigned int sceneIndex = 0; if (Value* scene = FindUInt(doc, "scene")) { sceneIndex = scene->GetUint(); } if (Value* scenesArray = FindArray(doc, "scenes")) { if (sceneIndex < scenesArray->Size()) { this->scene = scenes.Retrieve(sceneIndex); } } // Force reading of skins since they're not always directly referenced if (Value* skinsArray = FindArray(doc, "skins")) { for (unsigned int i = 0; i < skinsArray->Size(); ++i) { skins.Retrieve(i); } } if (Value* animsArray = FindArray(doc, "animations")) { for (unsigned int i = 0; i < animsArray->Size(); ++i) { animations.Retrieve(i); } } // Clean up for (size_t i = 0; i < mDicts.size(); ++i) { mDicts[i]->DetachFromDocument(); } } inline void Asset::SetAsBinary() { if (!mBodyBuffer) { mBodyBuffer = buffers.Create("binary_glTF"); mBodyBuffer->MarkAsSpecial(); } } inline void Asset::ReadExtensionsUsed(Document& doc) { Value* extsUsed = FindArray(doc, "extensionsUsed"); if (!extsUsed) return; std::gltf_unordered_map exts; for (unsigned int i = 0; i < extsUsed->Size(); ++i) { if ((*extsUsed)[i].IsString()) { exts[(*extsUsed)[i].GetString()] = true; } } #define CHECK_EXT(EXT) \ if (exts.find(#EXT) != exts.end()) extensionsUsed.EXT = true; CHECK_EXT(KHR_materials_pbrSpecularGlossiness); CHECK_EXT(KHR_materials_unlit); CHECK_EXT(KHR_lights_punctual); #undef CHECK_EXT } inline IOStream* Asset::OpenFile(std::string path, const char* mode, bool /*absolute*/) { #ifdef ASSIMP_API return mIOSystem->Open(path, mode); #else if (path.size() < 2) return 0; if (!absolute && path[1] != ':' && path[0] != '/') { // relative? path = mCurrentAssetDir + path; } FILE* f = fopen(path.c_str(), mode); return f ? new IOStream(f) : 0; #endif } inline std::string Asset::FindUniqueID(const std::string& str, const char* suffix) { std::string id = str; if (!id.empty()) { if (mUsedIds.find(id) == mUsedIds.end()) return id; id += "_"; } id += suffix; Asset::IdMap::iterator it = mUsedIds.find(id); if (it == mUsedIds.end()) return id; std::vector buffer; buffer.resize(id.size() + 16); int offset = ai_snprintf(buffer.data(), buffer.size(), "%s_", id.c_str()); for (int i = 0; it != mUsedIds.end(); ++i) { ai_snprintf(buffer.data() + offset, buffer.size() - offset, "%d", i); id = buffer.data(); it = mUsedIds.find(id); } return id; } } // ns glTF