/* Open Asset Import Library (ASSIMP) ---------------------------------------------------------------------- Copyright (c) 2006-2008, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------- */ /** @file A helper class that processes texture transformations */ #include "AssimpPCH.h" #include "TextureTransform.h" using namespace Assimp; // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer TextureTransformStep::TextureTransformStep() { // nothing to do here } // ------------------------------------------------------------------------------------------------ // Destructor, private as well TextureTransformStep::~TextureTransformStep() { // nothing to do here } // ------------------------------------------------------------------------------------------------ // Returns whether the processing step is present in the given flag field. bool TextureTransformStep::IsActive( unsigned int pFlags) const { return (pFlags & aiProcess_TransformUVCoords) != 0; } // ------------------------------------------------------------------------------------------------ // Setup properties void TextureTransformStep::SetupProperties(const Importer* pImp) { configFlags = pImp->GetPropertyInteger(AI_CONFIG_PP_TUV_EVALUATE,AI_UVTRAFO_ALL); } // ------------------------------------------------------------------------------------------------ void TextureTransformStep::PreProcessUVTransform(STransformVecInfo& info) { /* This function tries to simplify the input UV transformation. * That's very important as it allows us to reduce the number * of output UV channels. The oder in which the transformations * are applied is - as always - scaling, rotation, translation. */ char szTemp[512]; int rounded = 0; /* Optimize the rotation angle. That's slightly difficult as * we have an inprecise floating-point number (when comparing * UV transformations we'll take that into account by using * an epsilon of 5 degrees). If there is a rotation value, we can't * perform any further optimizations. */ if (info.mRotation) { float out = info.mRotation; if ((rounded = (int)(info.mRotation / (float)AI_MATH_TWO_PI))) { out -= rounded*(float)AI_MATH_PI; sprintf(szTemp,"Texture coordinate rotation %f can " "be simplified to %f",info.mRotation,out); DefaultLogger::get()->info(szTemp); } // Next step - convert negative rotation angles to positives if (out < 0.f) out = (float)AI_MATH_TWO_PI * 2 + out; info.mRotation = out; return; } /* Optimize UV translation in the U direction. To determine whether * or not we can optimize we need to look at the requested mapping * type (e.g. if mirroring is active there IS a difference between * offset 2 and 3) */ if ((rounded = (int)info.mTranslation.x)) { float out; szTemp[0] = 0; if (aiTextureMapMode_Wrap == info.mapU) { // Wrap - simple take the fraction of the field out = info.mTranslation.x-(float)rounded; sprintf(szTemp,"[w] UV U offset %f can " "be simplified to %f",info.mTranslation.x,out); } else if (aiTextureMapMode_Mirror == info.mapU && 1 != rounded) { // Mirror if (rounded % 2)rounded--; out = info.mTranslation.x-(float)rounded; sprintf(szTemp,"[m/d] UV U offset %f can " "be simplified to %f",info.mTranslation.x,out); } else if (aiTextureMapMode_Clamp == info.mapU || aiTextureMapMode_Decal == info.mapU) { // Clamp - translations beyond 1,1 are senseless sprintf(szTemp,"[c] UV U offset %f can " "be clamped to 1.0f",info.mTranslation.x); out = 1.f; } if (szTemp[0]) { DefaultLogger::get()->info(szTemp); info.mTranslation.x = out; } } /* Optimize UV translation in the V direction. To determine whether * or not we can optimize we need to look at the requested mapping * type (e.g. if mirroring is active there IS a difference between * offset 2 and 3) */ if ((rounded = (int)info.mTranslation.y)) { float out; szTemp[0] = 0; if (aiTextureMapMode_Wrap == info.mapV) { // Wrap - simple take the fraction of the field out = info.mTranslation.y-(float)rounded; sprintf(szTemp,"[w] UV V offset %f can " "be simplified to %f",info.mTranslation.y,out); } else if (aiTextureMapMode_Mirror == info.mapV && 1 != rounded) { // Mirror if (rounded % 2)rounded--; out = info.mTranslation.x-(float)rounded; sprintf(szTemp,"[m/d] UV V offset %f can " "be simplified to %f",info.mTranslation.y,out); } else if (aiTextureMapMode_Clamp == info.mapV || aiTextureMapMode_Decal == info.mapV) { // Clamp - translations beyond 1,1 are senseless sprintf(szTemp,"[c] UV V offset %f can" "be clamped to 1.0f",info.mTranslation.y); out = 1.f; } if (szTemp[0]) { DefaultLogger::get()->info(szTemp); info.mTranslation.y = out; } } return; } // ------------------------------------------------------------------------------------------------ void UpdateUVIndex(const std::list& l, unsigned int n) { // Don't set if == 0 && wasn't set before for (std::list::const_iterator it = l.begin(); it != l.end(); ++it) { const TTUpdateInfo& info = *it; if (info.directShortcut) *info.directShortcut = n; else if (!n) { info.mat->AddProperty((int*)&n,1,AI_MATKEY_UVWSRC(info.semantic,info.index)); } } } // ------------------------------------------------------------------------------------------------ inline const char* MappingModeToChar(aiTextureMapMode map) { if (aiTextureMapMode_Wrap == map) return "-w"; if (aiTextureMapMode_Mirror == map) return "-m"; return "-c"; } // ------------------------------------------------------------------------------------------------ void TextureTransformStep::Execute( aiScene* pScene) { DefaultLogger::get()->debug("TransformUVCoordsProcess begin"); /* We build a per-mesh list of texture transformations we'll need * to apply. To achieve this, we iterate through all materials, * find all textures and get their transformations and UV indices. * Then we search for all meshes using this material. */ typedef std::list MeshTrafoList; std::vector meshLists(pScene->mNumMeshes); for (unsigned int i = 0; i < pScene->mNumMaterials;++i) { aiMaterial* mat = pScene->mMaterials[i]; for (unsigned int a = 0; a < mat->mNumProperties;++a) { aiMaterialProperty* prop = mat->mProperties[a]; if (!::strcmp( prop->mKey.data, "$tex.file")) { STransformVecInfo info; // Setup a shortcut structure to allow for a fast updating // of the UV index later TTUpdateInfo update; update.mat = (MaterialHelper*) mat; update.semantic = prop->mSemantic; update.index = prop->mIndex; // Get textured properties and transform for (unsigned int a2 = 0; a2 < mat->mNumProperties;++a2) { aiMaterialProperty* prop2 = mat->mProperties[a2]; if (prop2->mSemantic != prop->mSemantic || prop2->mIndex != prop->mIndex) continue; if ( !::strcmp( prop2->mKey.data, "$tex.uvwsrc")) { info.uvIndex = *((int*)prop2->mData); // Store a direct pointer for later use update.directShortcut = (unsigned int*) prop2->mData; } else if ( !::strcmp( prop2->mKey.data, "$tex.mapmodeu")) info.mapU = *((aiTextureMapMode*)prop2->mData); else if ( !::strcmp( prop2->mKey.data, "$tex.mapmodev")) info.mapV = *((aiTextureMapMode*)prop2->mData); else if ( !::strcmp( prop2->mKey.data, "$tex.uvtrafo")) { // ValidateDS should check this ai_assert(prop2->mDataLength >= 20); ::memcpy(&info.mTranslation.x,prop2->mData,sizeof(float)*5); delete[] prop2->mData; // Directly remove this property from the list mat->mNumProperties--; for (unsigned int a3 = a2; a3 < mat->mNumProperties;++a3) mat->mProperties[a3] = mat->mProperties[a3+1]; // Warn: could be an underflow, but nevertheless it should work --a2; } } // Find out which transformations are to be evaluated if (!(configFlags & AI_UVTRAFO_ROTATION)) info.mRotation = 0.f; if (!(configFlags & AI_UVTRAFO_SCALING)) info.mScaling = aiVector2D(1.f,1.f); if (!(configFlags & AI_UVTRAFO_TRANSLATION)) info.mTranslation = aiVector2D(0.f,0.f); // Do some preprocessing PreProcessUVTransform(info); info.uvIndex = std::min(info.uvIndex,AI_MAX_NUMBER_OF_TEXTURECOORDS -1u); // Find out whether this material is used by more than // one mesh. This will make our task much, much more difficult! unsigned int cnt = 0; for (unsigned int n = 0; n < pScene->mNumMeshes;++n) { if (pScene->mMeshes[n]->mMaterialIndex == i) ++cnt; } if (!cnt)continue; else if (1 != cnt) { // This material is referenced by more than one mesh! // So we need to make sure the UV index for the texture // is identical for each of it ... info.lockedPos = AI_TT_UV_IDX_LOCK_TBD; } // Get all coresponding meshes for (unsigned int n = 0; n < pScene->mNumMeshes;++n) { aiMesh* mesh = pScene->mMeshes[n]; if (mesh->mMaterialIndex != i || !mesh->mTextureCoords[0]) continue; unsigned int uv = info.uvIndex; if (!mesh->mTextureCoords[uv]) { // If the requested UV index is not available, // take the first one instead. uv = 0; } if (mesh->mNumUVComponents[info.uvIndex] >= 3) { DefaultLogger::get()->warn("UV transformations on 3D mapping channels " "are not supported by this step"); continue; } MeshTrafoList::iterator it; // Check whether we have this transform setup already for (it = meshLists[n].begin();it != meshLists[n].end(); ++it) { if ((*it) == info && (*it).uvIndex == uv) { (*it).updateList.push_back(update); break; } } if (it == meshLists[n].end()) { meshLists[n].push_back(info); meshLists[n].back().uvIndex = uv; meshLists[n].back().updateList.push_back(update); } } } } } char buffer[1024]; // should be sufficiently large unsigned int outChannels = 0, inChannels = 0, transformedChannels = 0; // Now process all meshes. Important: we don't remove unreferenced UV channels. // This is a job for the RemoveUnreferencedData-Step. for (unsigned int q = 0; q < pScene->mNumMeshes;++q) { aiMesh* mesh = pScene->mMeshes[q]; MeshTrafoList& trafo = meshLists[q]; inChannels += mesh->GetNumUVChannels(); if (!mesh->mTextureCoords[0] || trafo.empty() || trafo.size() == 1 && trafo.begin()->IsUntransformed()) { outChannels += mesh->GetNumUVChannels(); continue; } // Move untransformed UV channels to the first // position in the list .... except if we need // a new locked index which should be as small as possible bool veto = false; unsigned int cnt = 0; unsigned int untransformed = 0; MeshTrafoList::iterator it,it2; for (it = trafo.begin();it != trafo.end(); ++it,++cnt) { if ((*it).lockedPos == AI_TT_UV_IDX_LOCK_TBD) { // Lock this index and make sure it won't be changed (*it).lockedPos = cnt; veto = true; continue; } if (!veto && it != trafo.begin() && (*it).IsUntransformed()) { trafo.push_front((*it)); trafo.erase(it); break; } } // Find all that are not at their 'locked' position // and move them to it. Conflicts are possible but // quite unlikely. cnt = 0; for (it = trafo.begin();it != trafo.end(); ++it,++cnt) { if ((*it).lockedPos != AI_TT_UV_IDX_LOCK_NONE && (*it).lockedPos != cnt) { it2 = trafo.begin();unsigned int t = 0; while (t != (*it).lockedPos)++it2; if ((*it2).lockedPos != AI_TT_UV_IDX_LOCK_NONE) { DefaultLogger::get()->error("Channel mismatch, can't compute all transformations properly"); continue; } std::swap(*it2,*it); if ((*it).lockedPos == untransformed)untransformed = cnt; } } // ... and add dummies for all unreferenced channels // at the end of the list bool ref[AI_MAX_NUMBER_OF_TEXTURECOORDS]; for (unsigned int n = 0; n < AI_MAX_NUMBER_OF_TEXTURECOORDS;++n) ref[n] = (!mesh->mTextureCoords[n] ? true : false); for (it = trafo.begin();it != trafo.end(); ++it) ref[(*it).uvIndex] = true; for (unsigned int n = 0; n < AI_MAX_NUMBER_OF_TEXTURECOORDS;++n) { if (ref[n])continue; trafo.push_back(STransformVecInfo()); trafo.back().uvIndex = n; } // Then check whether this list breaks the channel limit. // The unimportant ones are at the end of the list, so // it shouldn't be too worse if we remove them. unsigned int size = (unsigned int)trafo.size(); if (size > AI_MAX_NUMBER_OF_TEXTURECOORDS) { if (!DefaultLogger::isNullLogger()) { ::sprintf(buffer,"%i UV channels required but just %i available", trafo.size(),AI_MAX_NUMBER_OF_TEXTURECOORDS); DefaultLogger::get()->error(buffer); } size = AI_MAX_NUMBER_OF_TEXTURECOORDS; } aiVector3D* old[AI_MAX_NUMBER_OF_TEXTURECOORDS]; for (unsigned int n = 0; n < AI_MAX_NUMBER_OF_TEXTURECOORDS;++n) old[n] = mesh->mTextureCoords[n]; // Now continue and generate the output channels. Channels // that we're not going to need later can be overridden. it = trafo.begin(); for (unsigned int n = 0; n < trafo.size();++n,++it) { if (n >= size) { // Try to use an untransformed channel for all channels we threw over board UpdateUVIndex((*it).updateList,untransformed); continue; } outChannels++; // Write to the log if (!DefaultLogger::isNullLogger()) { sprintf(buffer,"Mesh %i, channel %i: t(%.3f,%.3f), s(%.3f,%.3f), r(%.3f), %s%s", q,n, (*it).mTranslation.x, (*it).mTranslation.y, (*it).mScaling.x, (*it).mScaling.y, AI_RAD_TO_DEG( (*it).mRotation), MappingModeToChar ((*it).mapU), MappingModeToChar ((*it).mapV)); DefaultLogger::get()->info(buffer); } // Check whether we need a new buffer here if (mesh->mTextureCoords[n]) { it2 = it;++it2; for (unsigned int m = n+1; m < size;++m, ++it2) { if ((*it2).uvIndex == n) { it2 = trafo.begin(); break; } } if (it2 == trafo.begin()) { mesh->mTextureCoords[n] = new aiVector3D[mesh->mNumVertices]; } } else mesh->mTextureCoords[n] = new aiVector3D[mesh->mNumVertices]; aiVector3D* src = old[(*it).uvIndex]; aiVector3D* dest, *end; dest = mesh->mTextureCoords[n]; ai_assert(NULL != src); // Copy the data to the destination array if (dest != src) ::memcpy(dest,src,sizeof(aiVector3D)*mesh->mNumVertices); end = dest + mesh->mNumVertices; // Build a transformation matrix and transform all UV coords with it if (!(*it).IsUntransformed()) { const aiVector2D& trl = (*it).mTranslation; const aiVector2D& scl = (*it).mScaling; ++transformedChannels; aiMatrix3x3 matrix; aiMatrix3x3 m2,m3,m4,m5; m4.a1 = scl.x; m4.b2 = scl.y; m2.a3 = m2.b3 = 0.5f; m3.a3 = m3.b3 = -0.5f; if ((*it).mRotation > AI_TT_ROTATION_EPSILON ) aiMatrix3x3::RotationZ((*it).mRotation,matrix); m5.a3 += trl.x; m5.b3 += trl.y; matrix = m2 * m4 * matrix * m3 * m5; for (src = dest; src != end; ++src) { src->z = 1.f; *src = matrix * *src; src->x /= src->z; src->y /= src->z; src->z = 0.f; } } // Update all UV indices UpdateUVIndex((*it).updateList,n); } } // Print some detailled statistics into the log if (!DefaultLogger::isNullLogger()) { if (transformedChannels) { ::sprintf(buffer,"TransformUVCoordsProcess end: %i output channels (in: %i, modified: %i)", outChannels,inChannels,transformedChannels); DefaultLogger::get()->info(buffer); } else DefaultLogger::get()->debug("TransformUVCoordsProcess finished"); } }