/* Open Asset Import Library (ASSIMP) ---------------------------------------------------------------------- Copyright (c) 2006-2008, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------- */ #include "AssimpPCH.h" #include "Hash.h" using namespace Assimp; // ------------------------------------------------------------------------------------------------ aiReturn aiGetMaterialProperty(const aiMaterial* pMat, const char* pKey, unsigned int type, unsigned int index, const aiMaterialProperty** pPropOut) { ai_assert (pMat != NULL); ai_assert (pKey != NULL); ai_assert (pPropOut != NULL); for (unsigned int i = 0; i < pMat->mNumProperties;++i) { aiMaterialProperty* prop = pMat->mProperties[i]; if (prop && !::strcmp( prop->mKey.data, pKey ) && prop->mSemantic == type && prop->mIndex == index) { *pPropOut = pMat->mProperties[i]; return AI_SUCCESS; } } *pPropOut = NULL; return AI_FAILURE; } // ------------------------------------------------------------------------------------------------ aiReturn aiGetMaterialFloatArray(const aiMaterial* pMat, const char* pKey, unsigned int type, unsigned int index, float* pOut, unsigned int* pMax) { ai_assert (pMat != NULL); ai_assert (pKey != NULL); ai_assert (pOut != NULL); for (unsigned int i = 0; i < pMat->mNumProperties;++i) { aiMaterialProperty* prop = pMat->mProperties[i]; if (prop && !::strcmp( prop->mKey.data, pKey ) && prop->mSemantic == type && prop->mIndex == index) { // data is given in floats, simply copy it if( aiPTI_Float == pMat->mProperties[i]->mType || aiPTI_Buffer == pMat->mProperties[i]->mType) { unsigned int iWrite = pMat->mProperties[i]->mDataLength / sizeof(float); if (pMax)iWrite = *pMax < iWrite ? *pMax : iWrite; ::memcpy (pOut, pMat->mProperties[i]->mData, iWrite * sizeof (float)); if (pMax)*pMax = iWrite; } // data is given in ints, convert to float else if( aiPTI_Integer == pMat->mProperties[i]->mType) { unsigned int iWrite = pMat->mProperties[i]->mDataLength / sizeof(int); if (pMax)iWrite = *pMax < iWrite ? *pMax : iWrite; for (unsigned int a = 0; a < iWrite;++a) { pOut[a] = (float) ((int*)pMat->mProperties[i]->mData)[a]; } if (pMax)*pMax = iWrite; } // it is a string ... no way to read something out of this else { if (pMax)*pMax = 0; return AI_FAILURE; } return AI_SUCCESS; } } return AI_FAILURE; } // ------------------------------------------------------------------------------------------------ aiReturn aiGetMaterialIntegerArray(const aiMaterial* pMat, const char* pKey, unsigned int type, unsigned int index, int* pOut, unsigned int* pMax) { ai_assert (pMat != NULL); ai_assert (pKey != NULL); ai_assert (pOut != NULL); for (unsigned int i = 0; i < pMat->mNumProperties;++i) { aiMaterialProperty* prop = pMat->mProperties[i]; if (prop && !::strcmp( prop->mKey.data, pKey ) && prop->mSemantic == type && prop->mIndex == index) { // data is given in ints, simply copy it if( aiPTI_Integer == pMat->mProperties[i]->mType || aiPTI_Buffer == pMat->mProperties[i]->mType) { unsigned int iWrite = pMat->mProperties[i]->mDataLength / sizeof(int); if (pMax)iWrite = *pMax < iWrite ? *pMax : iWrite; ::memcpy (pOut, pMat->mProperties[i]->mData, iWrite * sizeof (int)); if (pMax)*pMax = iWrite; } // data is given in floats convert to int (lossy!) else if( aiPTI_Float == pMat->mProperties[i]->mType) { unsigned int iWrite = pMat->mProperties[i]->mDataLength / sizeof(float); if (pMax)iWrite = *pMax < iWrite ? *pMax : iWrite; for (unsigned int a = 0; a < iWrite;++a) { pOut[a] = (int) ((float*)pMat->mProperties[i]->mData)[a]; } if (pMax)*pMax = iWrite; } // it is a string ... no way to read something out of this else { if (pMax)*pMax = 0; return AI_FAILURE; } return AI_SUCCESS; } } return AI_FAILURE; } // ------------------------------------------------------------------------------------------------ aiReturn aiGetMaterialColor(const aiMaterial* pMat, const char* pKey, unsigned int type, unsigned int index, aiColor4D* pOut) { unsigned int iMax = 4; aiReturn eRet = aiGetMaterialFloatArray(pMat,pKey,type,index,(float*)pOut,&iMax); // if no alpha channel is provided set it to 1.0 by default if (3 == iMax)pOut->a = 1.0f; return eRet; } // ------------------------------------------------------------------------------------------------ aiReturn aiGetMaterialString(const aiMaterial* pMat, const char* pKey, unsigned int type, unsigned int index, aiString* pOut) { ai_assert (pMat != NULL); ai_assert (pKey != NULL); ai_assert (pOut != NULL); for (unsigned int i = 0; i < pMat->mNumProperties;++i) { aiMaterialProperty* prop = pMat->mProperties[i]; if (prop && !::strcmp( prop->mKey.data, pKey ) && prop->mSemantic == type && prop->mIndex == index) { if( aiPTI_String == pMat->mProperties[i]->mType) { const aiString* pcSrc = (const aiString*)pMat->mProperties[i]->mData; ::memcpy (pOut->data, pcSrc->data, (pOut->length = pcSrc->length)+1); } // Wrong type else return AI_FAILURE; return AI_SUCCESS; } } return AI_FAILURE; } // ------------------------------------------------------------------------------------------------ MaterialHelper::MaterialHelper() { // Allocate 5 entries by default mNumProperties = 0; mNumAllocated = 5; mProperties = new aiMaterialProperty*[5]; } // ------------------------------------------------------------------------------------------------ MaterialHelper::~MaterialHelper() { Clear(); } // ------------------------------------------------------------------------------------------------ void MaterialHelper::Clear() { for (unsigned int i = 0; i < mNumProperties;++i) { // delete this entry delete mProperties[i]; } mNumProperties = 0; // The array remains } // ------------------------------------------------------------------------------------------------ uint32_t MaterialHelper::ComputeHash() { uint32_t hash = 1503; // magic start value, choosen to be my birthday :-) for (unsigned int i = 0; i < this->mNumProperties;++i) { aiMaterialProperty* prop; // NOTE: We need to exclude the material name from the hash if ((prop = this->mProperties[i]) && ::strcmp(prop->mKey.data,"$mat.name")) { hash = SuperFastHash(prop->mKey.data,(unsigned int)prop->mKey.length,hash); hash = SuperFastHash(prop->mData,prop->mDataLength,hash); // Combine the semantic and the index with the hash // We print them to a string to make sure the quality // of the hash isn't decreased. char buff[32]; unsigned int len; len = itoa10(buff,prop->mSemantic); hash = SuperFastHash(buff,len-1,hash); len = itoa10(buff,prop->mIndex); hash = SuperFastHash(buff,len-1,hash); } } return hash; } // ------------------------------------------------------------------------------------------------ aiReturn MaterialHelper::RemoveProperty (const char* pKey,unsigned int type, unsigned int index) { ai_assert(NULL != pKey); for (unsigned int i = 0; i < mNumProperties;++i) { aiMaterialProperty* prop = mProperties[i]; if (prop && !::strcmp( prop->mKey.data, pKey ) && prop->mSemantic == type && prop->mIndex == index) { // Delete this entry delete mProperties[i]; // collapse the array behind --. --mNumProperties; for (unsigned int a = i; a < mNumProperties;++a) { mProperties[a] = mProperties[a+1]; } return AI_SUCCESS; } } return AI_FAILURE; } // ------------------------------------------------------------------------------------------------ aiReturn MaterialHelper::AddBinaryProperty (const void* pInput, unsigned int pSizeInBytes, const char* pKey, unsigned int type, unsigned int index, aiPropertyTypeInfo pType) { ai_assert (pInput != NULL); ai_assert (pKey != NULL); ai_assert (0 != pSizeInBytes); // first search the list whether there is already an entry // with this name. unsigned int iOutIndex = 0xFFFFFFFF; for (unsigned int i = 0; i < mNumProperties;++i) { aiMaterialProperty* prop = mProperties[i]; if (prop && !::strcmp( prop->mKey.data, pKey ) && prop->mSemantic == type && prop->mIndex == index) { // delete this entry delete this->mProperties[i]; iOutIndex = i; } } // Allocate a new material property aiMaterialProperty* pcNew = new aiMaterialProperty(); // Fill this pcNew->mType = pType; pcNew->mSemantic = type; pcNew->mIndex = index; pcNew->mDataLength = pSizeInBytes; pcNew->mData = new char[pSizeInBytes]; ::memcpy (pcNew->mData,pInput,pSizeInBytes); pcNew->mKey.length = ::strlen(pKey); ai_assert ( MAXLEN > pcNew->mKey.length); ::strcpy( pcNew->mKey.data, pKey ); if (0xFFFFFFFF != iOutIndex) { mProperties[iOutIndex] = pcNew; return AI_SUCCESS; } // resize the array ... allocate storage for 5 other properties if (mNumProperties == mNumAllocated) { unsigned int iOld = mNumAllocated; mNumAllocated += 5; aiMaterialProperty** ppTemp = new aiMaterialProperty*[mNumAllocated]; if (NULL == ppTemp)return AI_OUTOFMEMORY; ::memcpy (ppTemp,mProperties,iOld * sizeof(void*)); delete[] mProperties; mProperties = ppTemp; } // push back ... mProperties[mNumProperties++] = pcNew; return AI_SUCCESS; } // ------------------------------------------------------------------------------------------------ aiReturn MaterialHelper::AddProperty (const aiString* pInput, const char* pKey, unsigned int type, unsigned int index) { // Fix ... don't keep the whole string buffer return this->AddBinaryProperty(pInput,(unsigned int)pInput->length+1+ (unsigned int)(((uint8_t*)&pInput->data - (uint8_t*)&pInput->length)), pKey,type,index, aiPTI_String); } // ------------------------------------------------------------------------------------------------ void MaterialHelper::CopyPropertyList(MaterialHelper* pcDest, const MaterialHelper* pcSrc) { ai_assert(NULL != pcDest); ai_assert(NULL != pcSrc); unsigned int iOldNum = pcDest->mNumProperties; pcDest->mNumAllocated += pcSrc->mNumAllocated; pcDest->mNumProperties += pcSrc->mNumProperties; aiMaterialProperty** pcOld = pcDest->mProperties; pcDest->mProperties = new aiMaterialProperty*[pcDest->mNumAllocated]; if (iOldNum && pcOld) { for (unsigned int i = 0; i < iOldNum;++i) pcDest->mProperties[i] = pcOld[i]; delete[] pcOld; } for (unsigned int i = iOldNum; i< pcDest->mNumProperties;++i) { aiMaterialProperty* propSrc = pcSrc->mProperties[i]; // search whether we have already a property with this name // (if yes we overwrite the old one) aiMaterialProperty* prop; for (unsigned int q = 0; q < iOldNum;++q) { prop = pcDest->mProperties[q]; if (prop && prop->mKey == propSrc->mKey && prop->mSemantic == propSrc->mSemantic && prop->mIndex == propSrc->mIndex) { delete prop; // collapse the whole array ... ::memmove(&pcDest->mProperties[q],&pcDest->mProperties[q+1],i-q); i--; pcDest->mNumProperties--; } } // Allocate the output property and copy the source property prop = pcDest->mProperties[i] = new aiMaterialProperty(); prop->mKey = propSrc->mKey; prop->mDataLength = propSrc->mDataLength; prop->mType = propSrc->mType; prop->mSemantic = propSrc->mSemantic; prop->mIndex = propSrc->mIndex; prop->mData = new char[propSrc->mDataLength]; ::memcpy(prop->mData,propSrc->mData,prop->mDataLength); } return; } // ------------------------------------------------------------------------------------------------ aiReturn aiGetMaterialTexture(const C_STRUCT aiMaterial* mat, aiTextureType type, unsigned int index, C_STRUCT aiString* path, aiTextureMapping* _mapping /*= NULL*/, unsigned int* uvindex /*= NULL*/, float* blend /*= NULL*/, aiTextureOp* op /*= NULL*/, aiTextureMapMode* mapmode /*= NULL*/) { ai_assert(NULL != mat && NULL != path); // Get the path to the texture if (AI_SUCCESS != aiGetMaterialString(mat,AI_MATKEY_TEXTURE(type,index),path)) { return AI_FAILURE; } // Determine the mapping type of the texture aiTextureMapping mapping = aiTextureMapping_UV; aiGetMaterialInteger(mat,AI_MATKEY_MAPPING(type,index),(int*)&mapping); if (_mapping)*_mapping = mapping; // Get the UV index of the texture if (aiTextureMapping_UV == mapping && uvindex) { aiGetMaterialInteger(mat,AI_MATKEY_UVWSRC(type,index),(int*)uvindex); } // Get the blend factor of the texture if (blend) { aiGetMaterialFloat(mat,AI_MATKEY_TEXBLEND(type,index),blend); } // Get the texture operation of the texture if (op) { aiGetMaterialInteger(mat,AI_MATKEY_TEXOP(type,index),(int*)op); } // get the texture mapping modes for the texture if (mapmode) { aiGetMaterialInteger(mat,AI_MATKEY_MAPPINGMODE_U(type,index),(int*)&mapmode[0]); aiGetMaterialInteger(mat,AI_MATKEY_MAPPINGMODE_V(type,index),(int*)&mapmode[1]); aiGetMaterialInteger(mat,AI_MATKEY_MAPPINGMODE_W(type,index),(int*)&mapmode[2]); } return AI_SUCCESS; }