/* Open Asset Import Library (assimp) ---------------------------------------------------------------------- Copyright (c) 2006-2010, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------- */ /** @file IFCGeometry.cpp * @brief Geometry conversion and synthesis for IFC */ #include "AssimpPCH.h" #ifndef ASSIMP_BUILD_NO_IFC_IMPORTER #include "IFCUtil.h" #include "PolyTools.h" #include "ProcessHelper.h" #include "../contrib/poly2tri/poly2tri/poly2tri.h" #include "../contrib/clipper/clipper.hpp" #include namespace Assimp { namespace IFC { using ClipperLib::ulong64; // XXX use full -+ range ... const ClipperLib::long64 max_ulong64 = 1518500249; // clipper.cpp / hiRange var //#define to_int64(p) (static_cast( std::max( 0., std::min( static_cast((p)), 1.) ) * max_ulong64 )) #define to_int64(p) (static_cast(static_cast((p) ) * max_ulong64 )) #define from_int64(p) (static_cast((p)) / max_ulong64) #define one_vec (IfcVector2(static_cast(1.0),static_cast(1.0))) bool GenerateOpenings(std::vector& openings, const std::vector& nors, TempMesh& curmesh, bool check_intersection = true, bool generate_connection_geometry = true); // ------------------------------------------------------------------------------------------------ bool ProcessPolyloop(const IfcPolyLoop& loop, TempMesh& meshout, ConversionData& /*conv*/) { size_t cnt = 0; BOOST_FOREACH(const IfcCartesianPoint& c, loop.Polygon) { IfcVector3 tmp; ConvertCartesianPoint(tmp,c); meshout.verts.push_back(tmp); ++cnt; } meshout.vertcnt.push_back(cnt); // zero- or one- vertex polyloops simply ignored if (meshout.vertcnt.back() > 1) { return true; } if (meshout.vertcnt.back()==1) { meshout.vertcnt.pop_back(); meshout.verts.pop_back(); } return false; } // ------------------------------------------------------------------------------------------------ void ProcessPolygonBoundaries(TempMesh& result, const TempMesh& inmesh, size_t master_bounds = (size_t)-1) { // handle all trivial cases if(inmesh.vertcnt.empty()) { return; } if(inmesh.vertcnt.size() == 1) { result.Append(inmesh); return; } ai_assert(std::count(inmesh.vertcnt.begin(), inmesh.vertcnt.end(), 0) == 0); typedef std::vector::const_iterator face_iter; face_iter begin = inmesh.vertcnt.begin(), end = inmesh.vertcnt.end(), iit; std::vector::const_iterator outer_polygon_it = end; // major task here: given a list of nested polygon boundaries (one of which // is the outer contour), reduce the triangulation task arising here to // one that can be solved using the "quadrulation" algorithm which we use // for pouring windows out of walls. The algorithm does not handle all // cases but at least it is numerically stable and gives "nice" triangles. // first compute normals for all polygons using Newell's algorithm // do not normalize 'normals', we need the original length for computing the polygon area std::vector normals; inmesh.ComputePolygonNormals(normals,false); // One of the polygons might be a IfcFaceOuterBound (in which case `master_bounds` // is its index). Sadly we can't rely on it, the docs say 'At most one of the bounds // shall be of the type IfcFaceOuterBound' IfcFloat area_outer_polygon = 1e-10f; if (master_bounds != (size_t)-1) { ai_assert(master_bounds < inmesh.vertcnt.size()); outer_polygon_it = begin + master_bounds; } else { for(iit = begin; iit != end; iit++) { // find the polygon with the largest area and take it as the outer bound. IfcVector3& n = normals[std::distance(begin,iit)]; const IfcFloat area = n.SquareLength(); if (area > area_outer_polygon) { area_outer_polygon = area; outer_polygon_it = iit; } } } ai_assert(outer_polygon_it != end); const size_t outer_polygon_size = *outer_polygon_it; const IfcVector3& master_normal = normals[std::distance(begin, outer_polygon_it)]; const IfcVector3& master_normal_norm = IfcVector3(master_normal).Normalize(); // Generate fake openings to meet the interface for the quadrulate // algorithm. It boils down to generating small boxes given the // inner polygon and the surface normal of the outer contour. // It is important that we use the outer contour's normal because // this is the plane onto which the quadrulate algorithm will // project the entire mesh. std::vector fake_openings; fake_openings.reserve(inmesh.vertcnt.size()-1); std::vector::const_iterator vit = inmesh.verts.begin(), outer_vit; for(iit = begin; iit != end; vit += *iit++) { if (iit == outer_polygon_it) { outer_vit = vit; continue; } // Filter degenerate polygons to keep them from causing trouble later on IfcVector3& n = normals[std::distance(begin,iit)]; const IfcFloat area = n.SquareLength(); if (area < 1e-5f) { IFCImporter::LogWarn("skipping degenerate polygon (ProcessPolygonBoundaries)"); continue; } fake_openings.push_back(TempOpening()); TempOpening& opening = fake_openings.back(); opening.extrusionDir = master_normal; opening.solid = NULL; opening.profileMesh = boost::make_shared(); opening.profileMesh->verts.reserve(*iit); opening.profileMesh->vertcnt.push_back(*iit); std::copy(vit, vit + *iit, std::back_inserter(opening.profileMesh->verts)); } // fill a mesh with ONLY the main polygon TempMesh temp; temp.verts.reserve(outer_polygon_size); temp.vertcnt.push_back(outer_polygon_size); std::copy(outer_vit, outer_vit+outer_polygon_size, std::back_inserter(temp.verts)); GenerateOpenings(fake_openings, normals, temp, false, false); result.Append(temp); } // ------------------------------------------------------------------------------------------------ void ProcessConnectedFaceSet(const IfcConnectedFaceSet& fset, TempMesh& result, ConversionData& conv) { BOOST_FOREACH(const IfcFace& face, fset.CfsFaces) { // size_t ob = -1, cnt = 0; TempMesh meshout; BOOST_FOREACH(const IfcFaceBound& bound, face.Bounds) { if(const IfcPolyLoop* const polyloop = bound.Bound->ToPtr()) { if(ProcessPolyloop(*polyloop, meshout,conv)) { // The outer boundary is better determined by checking which // polygon covers the largest area. //if(bound.ToPtr()) { // ob = cnt; //} //++cnt; } } else { IFCImporter::LogWarn("skipping unknown IfcFaceBound entity, type is " + bound.Bound->GetClassName()); continue; } // And this, even though it is sometimes TRUE and sometimes FALSE, // does not really improve results. /*if(!IsTrue(bound.Orientation)) { size_t c = 0; BOOST_FOREACH(unsigned int& c, meshout.vertcnt) { std::reverse(result.verts.begin() + cnt,result.verts.begin() + cnt + c); cnt += c; } }*/ } ProcessPolygonBoundaries(result, meshout); } } // ------------------------------------------------------------------------------------------------ void ProcessRevolvedAreaSolid(const IfcRevolvedAreaSolid& solid, TempMesh& result, ConversionData& conv) { TempMesh meshout; // first read the profile description if(!ProcessProfile(*solid.SweptArea,meshout,conv) || meshout.verts.size()<=1) { return; } IfcVector3 axis, pos; ConvertAxisPlacement(axis,pos,solid.Axis); IfcMatrix4 tb0,tb1; IfcMatrix4::Translation(pos,tb0); IfcMatrix4::Translation(-pos,tb1); const std::vector& in = meshout.verts; const size_t size=in.size(); bool has_area = solid.SweptArea->ProfileType == "AREA" && size>2; const IfcFloat max_angle = solid.Angle*conv.angle_scale; if(fabs(max_angle) < 1e-3) { if(has_area) { result = meshout; } return; } const unsigned int cnt_segments = std::max(2u,static_cast(16 * fabs(max_angle)/AI_MATH_HALF_PI_F)); const IfcFloat delta = max_angle/cnt_segments; has_area = has_area && fabs(max_angle) < AI_MATH_TWO_PI_F*0.99; result.verts.reserve(size*((cnt_segments+1)*4+(has_area?2:0))); result.vertcnt.reserve(size*cnt_segments+2); IfcMatrix4 rot; rot = tb0 * IfcMatrix4::Rotation(delta,axis,rot) * tb1; size_t base = 0; std::vector& out = result.verts; // dummy data to simplify later processing for(size_t i = 0; i < size; ++i) { out.insert(out.end(),4,in[i]); } for(unsigned int seg = 0; seg < cnt_segments; ++seg) { for(size_t i = 0; i < size; ++i) { const size_t next = (i+1)%size; result.vertcnt.push_back(4); const IfcVector3& base_0 = out[base+i*4+3],base_1 = out[base+next*4+3]; out.push_back(base_0); out.push_back(base_1); out.push_back(rot*base_1); out.push_back(rot*base_0); } base += size*4; } out.erase(out.begin(),out.begin()+size*4); if(has_area) { // leave the triangulation of the profile area to the ear cutting // implementation in aiProcess_Triangulate - for now we just // feed in two huge polygons. base -= size*8; for(size_t i = size; i--; ) { out.push_back(out[base+i*4+3]); } for(size_t i = 0; i < size; ++i ) { out.push_back(out[i*4]); } result.vertcnt.push_back(size); result.vertcnt.push_back(size); } IfcMatrix4 trafo; ConvertAxisPlacement(trafo, solid.Position); result.Transform(trafo); IFCImporter::LogDebug("generate mesh procedurally by radial extrusion (IfcRevolvedAreaSolid)"); } // ------------------------------------------------------------------------------------------------ void ProcessSweptDiskSolid(const IfcSweptDiskSolid solid, TempMesh& result, ConversionData& conv) { const Curve* const curve = Curve::Convert(*solid.Directrix, conv); if(!curve) { IFCImporter::LogError("failed to convert Directrix curve (IfcSweptDiskSolid)"); return; } const std::vector& in = result.verts; const size_t size=in.size(); const unsigned int cnt_segments = 16; const IfcFloat deltaAngle = AI_MATH_TWO_PI/cnt_segments; const size_t samples = curve->EstimateSampleCount(solid.StartParam,solid.EndParam); result.verts.reserve(cnt_segments * samples * 4); result.vertcnt.reserve((cnt_segments - 1) * samples); std::vector points; points.reserve(cnt_segments * samples); TempMesh temp; curve->SampleDiscrete(temp,solid.StartParam,solid.EndParam); const std::vector& curve_points = temp.verts; if(curve_points.empty()) { IFCImporter::LogWarn("curve evaluation yielded no points (IfcSweptDiskSolid)"); return; } IfcVector3 current = curve_points[0]; IfcVector3 previous = current; IfcVector3 next; IfcVector3 startvec; startvec.x = 1.0f; startvec.y = 1.0f; startvec.z = 1.0f; unsigned int last_dir = 0; // generate circles at the sweep positions for(size_t i = 0; i < samples; ++i) { if(i != samples - 1) { next = curve_points[i + 1]; } // get a direction vector reflecting the approximate curvature (i.e. tangent) IfcVector3 d = (current-previous) + (next-previous); d.Normalize(); // figure out an arbitrary point q so that (p-q) * d = 0, // try to maximize ||(p-q)|| * ||(p_last-q_last)|| IfcVector3 q; bool take_any = false; for (unsigned int i = 0; i < 2; ++i, take_any = true) { if ((last_dir == 0 || take_any) && abs(d.x) > 1e-6) { q.y = startvec.y; q.z = startvec.z; q.x = -(d.y * q.y + d.z * q.z) / d.x; last_dir = 0; break; } else if ((last_dir == 1 || take_any) && abs(d.y) > 1e-6) { q.x = startvec.x; q.z = startvec.z; q.y = -(d.x * q.x + d.z * q.z) / d.y; last_dir = 1; break; } else if ((last_dir == 2 && abs(d.z) > 1e-6) || take_any) { q.y = startvec.y; q.x = startvec.x; q.z = -(d.y * q.y + d.x * q.x) / d.z; last_dir = 2; break; } } q *= solid.Radius / q.Length(); startvec = q; // generate a rotation matrix to rotate q around d IfcMatrix4 rot; IfcMatrix4::Rotation(deltaAngle,d,rot); for (unsigned int seg = 0; seg < cnt_segments; ++seg, q *= rot ) { points.push_back(q + current); } previous = current; current = next; } // make quads for(size_t i = 0; i < samples - 1; ++i) { const aiVector3D& this_start = points[ i * cnt_segments ]; // locate corresponding point on next sample ring unsigned int best_pair_offset = 0; float best_distance_squared = 1e10f; for (unsigned int seg = 0; seg < cnt_segments; ++seg) { const aiVector3D& p = points[ (i+1) * cnt_segments + seg]; const float l = (p-this_start).SquareLength(); if(l < best_distance_squared) { best_pair_offset = seg; best_distance_squared = l; } } for (unsigned int seg = 0; seg < cnt_segments; ++seg) { result.verts.push_back(points[ i * cnt_segments + (seg % cnt_segments)]); result.verts.push_back(points[ i * cnt_segments + (seg + 1) % cnt_segments]); result.verts.push_back(points[ (i+1) * cnt_segments + ((seg + 1 + best_pair_offset) % cnt_segments)]); result.verts.push_back(points[ (i+1) * cnt_segments + ((seg + best_pair_offset) % cnt_segments)]); IfcVector3& v1 = *(result.verts.end()-1); IfcVector3& v2 = *(result.verts.end()-2); IfcVector3& v3 = *(result.verts.end()-3); IfcVector3& v4 = *(result.verts.end()-4); if (((v4-v3) ^ (v4-v1)) * (v4 - curve_points[i]) < 0.0f) { std::swap(v4, v1); std::swap(v3, v2); } result.vertcnt.push_back(4); } } IFCImporter::LogDebug("generate mesh procedurally by sweeping a disk along a curve (IfcSweptDiskSolid)"); } // ------------------------------------------------------------------------------------------------ IfcMatrix3 DerivePlaneCoordinateSpace(const TempMesh& curmesh, bool& ok, IfcFloat* d = NULL) { const std::vector& out = curmesh.verts; IfcMatrix3 m; ok = true; const size_t s = out.size(); assert(curmesh.vertcnt.size() == 1 && curmesh.vertcnt.back() == s); const IfcVector3 any_point = out[s-1]; IfcVector3 nor; // The input polygon is arbitrarily shaped, therefore we might need some tries // until we find a suitable normal. Note that Newells algorithm would give // a more robust result, but this variant also gives us a suitable first // axis for the 2D coordinate space on the polygon plane, exploiting the // fact that the input polygon is nearly always a quad. bool done = false; size_t base = s-curmesh.vertcnt.back(), i, j; for (i = base; !done && i < s-1; !done && ++i) { for (j = i+1; j < s; ++j) { nor = -((out[i]-any_point)^(out[j]-any_point)); if(fabs(nor.Length()) > 1e-8f) { done = true; break; } } } if(!done) { ok = false; return m; } nor.Normalize(); IfcVector3 r = (out[i]-any_point); r.Normalize(); if(d) { *d = -any_point * nor; } // Reconstruct orthonormal basis // XXX use Gram Schmidt for increased robustness IfcVector3 u = r ^ nor; u.Normalize(); m.a1 = r.x; m.a2 = r.y; m.a3 = r.z; m.b1 = u.x; m.b2 = u.y; m.b3 = u.z; m.c1 = -nor.x; m.c2 = -nor.y; m.c3 = -nor.z; return m; } // ------------------------------------------------------------------------------------------------ bool TryAddOpenings_Poly2Tri(const std::vector& openings,const std::vector& nors, TempMesh& curmesh) { IFCImporter::LogWarn("forced to use poly2tri fallback method to generate wall openings"); std::vector& out = curmesh.verts; bool result = false; // Try to derive a solid base plane within the current surface for use as // working coordinate system. bool ok; const IfcMatrix3& m = DerivePlaneCoordinateSpace(curmesh, ok); if (!ok) { return false; } const IfcMatrix3 minv = IfcMatrix3(m).Inverse(); const IfcVector3& nor = IfcVector3(m.c1, m.c2, m.c3); IfcFloat coord = -1; std::vector contour_flat; contour_flat.reserve(out.size()); IfcVector2 vmin, vmax; MinMaxChooser()(vmin, vmax); // Move all points into the new coordinate system, collecting min/max verts on the way BOOST_FOREACH(IfcVector3& x, out) { const IfcVector3 vv = m * x; // keep Z offset in the plane coordinate system. Ignoring precision issues // (which are present, of course), this should be the same value for // all polygon vertices (assuming the polygon is planar). // XXX this should be guarded, but we somehow need to pick a suitable // epsilon // if(coord != -1.0f) { // assert(fabs(coord - vv.z) < 1e-3f); // } coord = vv.z; vmin = std::min(IfcVector2(vv.x, vv.y), vmin); vmax = std::max(IfcVector2(vv.x, vv.y), vmax); contour_flat.push_back(IfcVector2(vv.x,vv.y)); } // With the current code in DerivePlaneCoordinateSpace, // vmin,vmax should always be the 0...1 rectangle (+- numeric inaccuracies) // but here we won't rely on this. vmax -= vmin; // If this happens then the projection must have been wrong. assert(vmax.Length()); ClipperLib::ExPolygons clipped; ClipperLib::Polygons holes_union; IfcVector3 wall_extrusion; bool do_connections = false, first = true; try { ClipperLib::Clipper clipper_holes; size_t c = 0; BOOST_FOREACH(const TempOpening& t,openings) { const IfcVector3& outernor = nors[c++]; const IfcFloat dot = nor * outernor; if (fabs(dot)<1.f-1e-6f) { continue; } const std::vector& va = t.profileMesh->verts; if(va.size() <= 2) { continue; } std::vector contour; BOOST_FOREACH(const IfcVector3& xx, t.profileMesh->verts) { IfcVector3 vv = m * xx, vv_extr = m * (xx + t.extrusionDir); const bool is_extruded_side = fabs(vv.z - coord) > fabs(vv_extr.z - coord); if (first) { first = false; if (dot > 0.f) { do_connections = true; wall_extrusion = t.extrusionDir; if (is_extruded_side) { wall_extrusion = - wall_extrusion; } } } // XXX should not be necessary - but it is. Why? For precision reasons? vv = is_extruded_side ? vv_extr : vv; contour.push_back(IfcVector2(vv.x,vv.y)); } ClipperLib::Polygon hole; BOOST_FOREACH(IfcVector2& pip, contour) { pip.x = (pip.x - vmin.x) / vmax.x; pip.y = (pip.y - vmin.y) / vmax.y; hole.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) )); } if (!ClipperLib::Orientation(hole)) { std::reverse(hole.begin(), hole.end()); // assert(ClipperLib::Orientation(hole)); } /*ClipperLib::Polygons pol_temp(1), pol_temp2(1); pol_temp[0] = hole; ClipperLib::OffsetPolygons(pol_temp,pol_temp2,5.0); hole = pol_temp2[0];*/ clipper_holes.AddPolygon(hole,ClipperLib::ptSubject); } clipper_holes.Execute(ClipperLib::ctUnion,holes_union, ClipperLib::pftNonZero, ClipperLib::pftNonZero); if (holes_union.empty()) { return false; } // Now that we have the big union of all holes, subtract it from the outer contour // to obtain the final polygon to feed into the triangulator. { ClipperLib::Polygon poly; BOOST_FOREACH(IfcVector2& pip, contour_flat) { pip.x = (pip.x - vmin.x) / vmax.x; pip.y = (pip.y - vmin.y) / vmax.y; poly.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) )); } if (ClipperLib::Orientation(poly)) { std::reverse(poly.begin(), poly.end()); } clipper_holes.Clear(); clipper_holes.AddPolygon(poly,ClipperLib::ptSubject); clipper_holes.AddPolygons(holes_union,ClipperLib::ptClip); clipper_holes.Execute(ClipperLib::ctDifference,clipped, ClipperLib::pftNonZero, ClipperLib::pftNonZero); } } catch (const char* sx) { IFCImporter::LogError("Ifc: error during polygon clipping, skipping openings for this face: (Clipper: " + std::string(sx) + ")"); return false; } std::vector old_verts; std::vector old_vertcnt; old_verts.swap(curmesh.verts); old_vertcnt.swap(curmesh.vertcnt); // add connection geometry to close the adjacent 'holes' for the openings // this should only be done from one side of the wall or the polygons // would be emitted twice. if (false && do_connections) { std::vector tmpvec; BOOST_FOREACH(ClipperLib::Polygon& opening, holes_union) { assert(ClipperLib::Orientation(opening)); tmpvec.clear(); BOOST_FOREACH(ClipperLib::IntPoint& point, opening) { tmpvec.push_back( minv * IfcVector3( vmin.x + from_int64(point.X) * vmax.x, vmin.y + from_int64(point.Y) * vmax.y, coord)); } for(size_t i = 0, size = tmpvec.size(); i < size; ++i) { const size_t next = (i+1)%size; curmesh.vertcnt.push_back(4); const IfcVector3& in_world = tmpvec[i]; const IfcVector3& next_world = tmpvec[next]; // Assumptions: no 'partial' openings, wall thickness roughly the same across the wall curmesh.verts.push_back(in_world); curmesh.verts.push_back(in_world+wall_extrusion); curmesh.verts.push_back(next_world+wall_extrusion); curmesh.verts.push_back(next_world); } } } std::vector< std::vector > contours; BOOST_FOREACH(ClipperLib::ExPolygon& clip, clipped) { contours.clear(); // Build the outer polygon contour line for feeding into poly2tri std::vector contour_points; BOOST_FOREACH(ClipperLib::IntPoint& point, clip.outer) { contour_points.push_back( new p2t::Point(from_int64(point.X), from_int64(point.Y)) ); } p2t::CDT* cdt ; try { // Note: this relies on custom modifications in poly2tri to raise runtime_error's // instead if assertions. These failures are not debug only, they can actually // happen in production use if the input data is broken. An assertion would be // inappropriate. cdt = new p2t::CDT(contour_points); } catch(const std::exception& e) { IFCImporter::LogError("Ifc: error during polygon triangulation, skipping some openings: (poly2tri: " + std::string(e.what()) + ")"); continue; } // Build the poly2tri inner contours for all holes we got from ClipperLib BOOST_FOREACH(ClipperLib::Polygon& opening, clip.holes) { contours.push_back(std::vector()); std::vector& contour = contours.back(); BOOST_FOREACH(ClipperLib::IntPoint& point, opening) { contour.push_back( new p2t::Point(from_int64(point.X), from_int64(point.Y)) ); } cdt->AddHole(contour); } try { // Note: See above cdt->Triangulate(); } catch(const std::exception& e) { IFCImporter::LogError("Ifc: error during polygon triangulation, skipping some openings: (poly2tri: " + std::string(e.what()) + ")"); continue; } const std::vector& tris = cdt->GetTriangles(); // Collect the triangles we just produced BOOST_FOREACH(p2t::Triangle* tri, tris) { for(int i = 0; i < 3; ++i) { const IfcVector2& v = IfcVector2( static_cast( tri->GetPoint(i)->x ), static_cast( tri->GetPoint(i)->y ) ); assert(v.x <= 1.0 && v.x >= 0.0 && v.y <= 1.0 && v.y >= 0.0); const IfcVector3 v3 = minv * IfcVector3(vmin.x + v.x * vmax.x, vmin.y + v.y * vmax.y,coord) ; curmesh.verts.push_back(v3); } curmesh.vertcnt.push_back(3); } result = true; } if (!result) { // revert -- it's a shame, but better than nothing curmesh.verts.insert(curmesh.verts.end(),old_verts.begin(), old_verts.end()); curmesh.vertcnt.insert(curmesh.vertcnt.end(),old_vertcnt.begin(), old_vertcnt.end()); IFCImporter::LogError("Ifc: revert, could not generate openings for this wall"); } return result; } // ------------------------------------------------------------------------------------------------ struct DistanceSorter { DistanceSorter(const IfcVector3& base) : base(base) {} bool operator () (const TempOpening& a, const TempOpening& b) const { return (a.profileMesh->Center()-base).SquareLength() < (b.profileMesh->Center()-base).SquareLength(); } IfcVector3 base; }; // ------------------------------------------------------------------------------------------------ struct XYSorter { // sort first by X coordinates, then by Y coordinates bool operator () (const IfcVector2&a, const IfcVector2& b) const { if (a.x == b.x) { return a.y < b.y; } return a.x < b.x; } }; typedef std::pair< IfcVector2, IfcVector2 > BoundingBox; typedef std::map XYSortedField; // ------------------------------------------------------------------------------------------------ void QuadrifyPart(const IfcVector2& pmin, const IfcVector2& pmax, XYSortedField& field, const std::vector< BoundingBox >& bbs, std::vector& out) { if (!(pmin.x-pmax.x) || !(pmin.y-pmax.y)) { return; } IfcFloat xs = 1e10, xe = 1e10; bool found = false; // Search along the x-axis until we find an opening XYSortedField::iterator start = field.begin(); for(; start != field.end(); ++start) { const BoundingBox& bb = bbs[(*start).second]; if(bb.first.x >= pmax.x) { break; } if (bb.second.x > pmin.x && bb.second.y > pmin.y && bb.first.y < pmax.y) { xs = bb.first.x; xe = bb.second.x; found = true; break; } } if (!found) { // the rectangle [pmin,pend] is opaque, fill it out.push_back(pmin); out.push_back(IfcVector2(pmin.x,pmax.y)); out.push_back(pmax); out.push_back(IfcVector2(pmax.x,pmin.y)); return; } xs = std::max(pmin.x,xs); xe = std::min(pmax.x,xe); // see if there's an offset to fill at the top of our quad if (xs - pmin.x) { out.push_back(pmin); out.push_back(IfcVector2(pmin.x,pmax.y)); out.push_back(IfcVector2(xs,pmax.y)); out.push_back(IfcVector2(xs,pmin.y)); } // search along the y-axis for all openings that overlap xs and our quad IfcFloat ylast = pmin.y; found = false; for(; start != field.end(); ++start) { const BoundingBox& bb = bbs[(*start).second]; if (bb.first.x > xs || bb.first.y >= pmax.y) { break; } if (bb.second.y > ylast) { found = true; const IfcFloat ys = std::max(bb.first.y,pmin.y), ye = std::min(bb.second.y,pmax.y); if (ys - ylast > 0.0f) { QuadrifyPart( IfcVector2(xs,ylast), IfcVector2(xe,ys) ,field,bbs,out); } // the following are the window vertices /*wnd.push_back(IfcVector2(xs,ys)); wnd.push_back(IfcVector2(xs,ye)); wnd.push_back(IfcVector2(xe,ye)); wnd.push_back(IfcVector2(xe,ys));*/ ylast = ye; } } if (!found) { // the rectangle [pmin,pend] is opaque, fill it out.push_back(IfcVector2(xs,pmin.y)); out.push_back(IfcVector2(xs,pmax.y)); out.push_back(IfcVector2(xe,pmax.y)); out.push_back(IfcVector2(xe,pmin.y)); return; } if (ylast < pmax.y) { QuadrifyPart( IfcVector2(xs,ylast), IfcVector2(xe,pmax.y) ,field,bbs,out); } // now for the whole rest if (pmax.x-xe) { QuadrifyPart(IfcVector2(xe,pmin.y), pmax ,field,bbs,out); } } typedef std::vector Contour; typedef std::vector SkipList; // should probably use int for performance reasons struct ProjectedWindowContour { Contour contour; BoundingBox bb; SkipList skiplist; bool is_rectangular; ProjectedWindowContour(const Contour& contour, const BoundingBox& bb, bool is_rectangular) : contour(contour) , bb(bb) , is_rectangular(is_rectangular) {} bool IsInvalid() const { return contour.empty(); } void FlagInvalid() { contour.clear(); } void PrepareSkiplist() { skiplist.resize(contour.size(),false); } }; typedef std::vector< ProjectedWindowContour > ContourVector; // ------------------------------------------------------------------------------------------------ bool BoundingBoxesOverlapping( const BoundingBox &ibb, const BoundingBox &bb ) { // count the '=' case as non-overlapping but as adjacent to each other return ibb.first.x < bb.second.x && ibb.second.x > bb.first.x && ibb.first.y < bb.second.y && ibb.second.y > bb.first.y; } // ------------------------------------------------------------------------------------------------ bool IsDuplicateVertex(const IfcVector2& vv, const std::vector& temp_contour) { // sanity check for duplicate vertices BOOST_FOREACH(const IfcVector2& cp, temp_contour) { if ((cp-vv).SquareLength() < 1e-5f) { return true; } } return false; } // ------------------------------------------------------------------------------------------------ void ExtractVerticesFromClipper(const ClipperLib::Polygon& poly, std::vector& temp_contour, bool filter_duplicates = false) { temp_contour.clear(); BOOST_FOREACH(const ClipperLib::IntPoint& point, poly) { IfcVector2 vv = IfcVector2( from_int64(point.X), from_int64(point.Y)); vv = std::max(vv,IfcVector2()); vv = std::min(vv,one_vec); if (!filter_duplicates || !IsDuplicateVertex(vv, temp_contour)) { temp_contour.push_back(vv); } } } // ------------------------------------------------------------------------------------------------ BoundingBox GetBoundingBox(const ClipperLib::Polygon& poly) { IfcVector2 newbb_min, newbb_max; MinMaxChooser()(newbb_min, newbb_max); BOOST_FOREACH(const ClipperLib::IntPoint& point, poly) { IfcVector2 vv = IfcVector2( from_int64(point.X), from_int64(point.Y)); // sanity rounding vv = std::max(vv,IfcVector2()); vv = std::min(vv,one_vec); newbb_min = std::min(newbb_min,vv); newbb_max = std::max(newbb_max,vv); } return BoundingBox(newbb_min, newbb_max); } // ------------------------------------------------------------------------------------------------ void InsertWindowContours(const ContourVector& contours, const std::vector& openings, TempMesh& curmesh) { // fix windows - we need to insert the real, polygonal shapes into the quadratic holes that we have now for(size_t i = 0; i < contours.size();++i) { const BoundingBox& bb = contours[i].bb; const std::vector& contour = contours[i].contour; if(contour.empty()) { continue; } // check if we need to do it at all - many windows just fit perfectly into their quadratic holes, // i.e. their contours *are* already their bounding boxes. if (contour.size() == 4) { std::set verts; for(size_t n = 0; n < 4; ++n) { verts.insert(contour[n]); } const std::set::const_iterator end = verts.end(); if (verts.find(bb.first)!=end && verts.find(bb.second)!=end && verts.find(IfcVector2(bb.first.x,bb.second.y))!=end && verts.find(IfcVector2(bb.second.x,bb.first.y))!=end ) { continue; } } const IfcFloat diag = (bb.first-bb.second).Length(); const IfcFloat epsilon = diag/1000.f; // walk through all contour points and find those that lie on the BB corner size_t last_hit = -1, very_first_hit = -1; IfcVector2 edge; for(size_t n = 0, e=0, size = contour.size();; n=(n+1)%size, ++e) { // sanity checking if (e == size*2) { IFCImporter::LogError("encountered unexpected topology while generating window contour"); break; } const IfcVector2& v = contour[n]; bool hit = false; if (fabs(v.x-bb.first.x) n ? size-(last_hit-n) : n-last_hit; for(size_t a = last_hit, e = 0; e <= cnt; a=(a+1)%size, ++e) { // hack: this is to fix cases where opening contours are self-intersecting. // Clipper doesn't produce such polygons, but as soon as we're back in // our brave new floating-point world, very small distances are consumed // by the maximum available precision, leading to self-intersecting // polygons. This fix makes concave windows fail even worse, but // anyway, fail is fail. if ((contour[a] - edge).SquareLength() > diag*diag*0.7) { continue; } curmesh.verts.push_back(IfcVector3(contour[a].x, contour[a].y, 0.0f)); } if (edge != contour[last_hit]) { IfcVector2 corner = edge; if (fabs(contour[last_hit].x-bb.first.x)& a, const std::vector& b, ClipperLib::ExPolygons& out) { out.clear(); ClipperLib::Clipper clipper; ClipperLib::Polygon clip; BOOST_FOREACH(const IfcVector2& pip, a) { clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) )); } if (ClipperLib::Orientation(clip)) { std::reverse(clip.begin(), clip.end()); } clipper.AddPolygon(clip, ClipperLib::ptSubject); clip.clear(); BOOST_FOREACH(const IfcVector2& pip, b) { clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) )); } if (ClipperLib::Orientation(clip)) { std::reverse(clip.begin(), clip.end()); } clipper.AddPolygon(clip, ClipperLib::ptSubject); clipper.Execute(ClipperLib::ctUnion, out,ClipperLib::pftNonZero,ClipperLib::pftNonZero); } // ------------------------------------------------------------------------------------------------ // Subtract a from b void MakeDisjunctWindowContours (const std::vector& a, const std::vector& b, ClipperLib::ExPolygons& out) { out.clear(); ClipperLib::Clipper clipper; ClipperLib::Polygon clip; BOOST_FOREACH(const IfcVector2& pip, a) { clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) )); } if (ClipperLib::Orientation(clip)) { std::reverse(clip.begin(), clip.end()); } clipper.AddPolygon(clip, ClipperLib::ptClip); clip.clear(); BOOST_FOREACH(const IfcVector2& pip, b) { clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) )); } if (ClipperLib::Orientation(clip)) { std::reverse(clip.begin(), clip.end()); } clipper.AddPolygon(clip, ClipperLib::ptSubject); clipper.Execute(ClipperLib::ctDifference, out,ClipperLib::pftNonZero,ClipperLib::pftNonZero); } // ------------------------------------------------------------------------------------------------ void CleanupWindowContour(ProjectedWindowContour& window) { std::vector scratch; std::vector& contour = window.contour; ClipperLib::Polygon subject; ClipperLib::Clipper clipper; ClipperLib::ExPolygons clipped; BOOST_FOREACH(const IfcVector2& pip, contour) { subject.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) )); } clipper.AddPolygon(subject,ClipperLib::ptSubject); clipper.Execute(ClipperLib::ctUnion,clipped,ClipperLib::pftNonZero,ClipperLib::pftNonZero); // This should yield only one polygon or something went wrong if (clipped.size() != 1) { // Empty polygon? drop the contour altogether if(clipped.empty()) { IFCImporter::LogError("error during polygon clipping, window contour is degenerate"); window.FlagInvalid(); return; } // Else: take the first only IFCImporter::LogError("error during polygon clipping, window contour is not convex"); } ExtractVerticesFromClipper(clipped[0].outer, scratch); // Assume the bounding box doesn't change during this operation } // ------------------------------------------------------------------------------------------------ void CleanupWindowContours(ContourVector& contours) { // Use PolyClipper to clean up window contours try { BOOST_FOREACH(ProjectedWindowContour& window, contours) { CleanupWindowContour(window); } } catch (const char* sx) { IFCImporter::LogError("error during polygon clipping, window shape may be wrong: (Clipper: " + std::string(sx) + ")"); } } // ------------------------------------------------------------------------------------------------ void CleanupOuterContour(const std::vector& contour_flat, TempMesh& curmesh) { std::vector vold; std::vector iold; vold.reserve(curmesh.verts.size()); iold.reserve(curmesh.vertcnt.size()); // Fix the outer contour using polyclipper try { ClipperLib::Polygon subject; ClipperLib::Clipper clipper; ClipperLib::ExPolygons clipped; ClipperLib::Polygon clip; clip.reserve(contour_flat.size()); BOOST_FOREACH(const IfcVector2& pip, contour_flat) { clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) )); } if (!ClipperLib::Orientation(clip)) { std::reverse(clip.begin(), clip.end()); } // We need to run polyclipper on every single polygon -- we can't run it one all // of them at once or it would merge them all together which would undo all // previous steps subject.reserve(4); size_t index = 0; size_t countdown = 0; BOOST_FOREACH(const IfcVector3& pip, curmesh.verts) { if (!countdown) { countdown = curmesh.vertcnt[index++]; if (!countdown) { continue; } } subject.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) )); if (--countdown == 0) { if (!ClipperLib::Orientation(subject)) { std::reverse(subject.begin(), subject.end()); } clipper.AddPolygon(subject,ClipperLib::ptSubject); clipper.AddPolygon(clip,ClipperLib::ptClip); clipper.Execute(ClipperLib::ctIntersection,clipped,ClipperLib::pftNonZero,ClipperLib::pftNonZero); BOOST_FOREACH(const ClipperLib::ExPolygon& ex, clipped) { iold.push_back(ex.outer.size()); BOOST_FOREACH(const ClipperLib::IntPoint& point, ex.outer) { vold.push_back(IfcVector3( from_int64(point.X), from_int64(point.Y), 0.0f)); } } subject.clear(); clipped.clear(); clipper.Clear(); } } } catch (const char* sx) { IFCImporter::LogError("Ifc: error during polygon clipping, wall contour line may be wrong: (Clipper: " + std::string(sx) + ")"); return; } // swap data arrays std::swap(vold,curmesh.verts); std::swap(iold,curmesh.vertcnt); } typedef std::vector OpeningRefs; typedef std::vector OpeningRefVector; typedef std::vector > ContourRefVector; // ------------------------------------------------------------------------------------------------ bool BoundingBoxesAdjacent(const BoundingBox& bb, const BoundingBox& ibb) { // TODO: I'm pretty sure there is a much more compact way to check this const IfcFloat epsilon = 1e-5f; return (fabs(bb.second.x - ibb.first.x) < epsilon && bb.first.y <= ibb.second.y && bb.second.y >= ibb.first.y) || (fabs(bb.first.x - ibb.second.x) < epsilon && ibb.first.y <= bb.second.y && ibb.second.y >= bb.first.y) || (fabs(bb.second.y - ibb.first.y) < epsilon && bb.first.x <= ibb.second.x && bb.second.x >= ibb.first.x) || (fabs(bb.first.y - ibb.second.y) < epsilon && ibb.first.x <= bb.second.x && ibb.second.x >= bb.first.x); } // ------------------------------------------------------------------------------------------------ // Check if m0,m1 intersects n0,n1 assuming same ordering of the points in the line segments // output the intersection points on n0,n1 bool IntersectingLineSegments(const IfcVector2& n0, const IfcVector2& n1, const IfcVector2& m0, const IfcVector2& m1, IfcVector2& out0, IfcVector2& out1) { const IfcVector2& m0_to_m1 = m1 - m0; const IfcVector2& n0_to_n1 = n1 - n0; const IfcVector2& n0_to_m0 = m0 - n0; const IfcVector2& n1_to_m1 = m1 - n1; const IfcVector2& n0_to_m1 = m1 - n0; const IfcFloat e = 1e-5f; const IfcFloat smalle = 1e-9f; static const IfcFloat inf = std::numeric_limits::infinity(); if (!(n0_to_m0.SquareLength() < e*e || fabs(n0_to_m0 * n0_to_n1) / (n0_to_m0.Length() * n0_to_n1.Length()) > 1-1e-5 )) { return false; } if (!(n1_to_m1.SquareLength() < e*e || fabs(n1_to_m1 * n0_to_n1) / (n1_to_m1.Length() * n0_to_n1.Length()) > 1-1e-5 )) { return false; } IfcFloat s0; IfcFloat s1; // pick the axis with the higher absolute difference so the result // is more accurate. Since we cannot guarantee that the axis with // the higher absolute difference is big enough as to avoid // divisions by zero, the case 0/0 ~ infinity is detected and // handled separately. if(fabs(n0_to_n1.x) > fabs(n0_to_n1.y)) { s0 = n0_to_m0.x / n0_to_n1.x; s1 = n0_to_m1.x / n0_to_n1.x; if (fabs(s0) == inf && fabs(n0_to_m0.x) < smalle) { s0 = 0.; } if (fabs(s1) == inf && fabs(n0_to_m1.x) < smalle) { s1 = 0.; } } else { s0 = n0_to_m0.y / n0_to_n1.y; s1 = n0_to_m1.y / n0_to_n1.y; if (fabs(s0) == inf && fabs(n0_to_m0.y) < smalle) { s0 = 0.; } if (fabs(s1) == inf && fabs(n0_to_m1.y) < smalle) { s1 = 0.; } } if (s1 < s0) { std::swap(s1,s0); } s0 = std::max(0.0,s0); s1 = std::max(0.0,s1); s0 = std::min(1.0,s0); s1 = std::min(1.0,s1); if (fabs(s1-s0) < e) { return false; } out0 = n0 + s0 * n0_to_n1; out1 = n0 + s1 * n0_to_n1; return true; } // ------------------------------------------------------------------------------------------------ void FindAdjacentContours(ContourVector::iterator current, const ContourVector& contours) { const IfcFloat sqlen_epsilon = static_cast(1e-8); const BoundingBox& bb = (*current).bb; // What is to be done here is to populate the skip lists for the contour // and to add necessary padding points when needed. SkipList& skiplist = (*current).skiplist; // First step to find possible adjacent contours is to check for adjacent bounding // boxes. If the bounding boxes are not adjacent, the contours lines cannot possibly be. for (ContourVector::const_iterator it = contours.begin(), end = contours.end(); it != end; ++it) { if ((*it).IsInvalid()) { continue; } // this left here to make clear we also run on the current contour // to check for overlapping contour segments (which can happen due // to projection artifacts). //if(it == current) { // continue; //} const bool is_me = it == current; const BoundingBox& ibb = (*it).bb; // Assumption: the bounding boxes are pairwise disjoint or identical ai_assert(is_me || !BoundingBoxesOverlapping(bb, ibb)); if (is_me || BoundingBoxesAdjacent(bb, ibb)) { // Now do a each-against-everyone check for intersecting contour // lines. This obviously scales terribly, but in typical real // world Ifc files it will not matter since most windows that // are adjacent to each others are rectangular anyway. Contour& ncontour = (*current).contour; const Contour& mcontour = (*it).contour; for (size_t n = 0; n < ncontour.size(); ++n) { const IfcVector2& n0 = ncontour[n]; const IfcVector2& n1 = ncontour[(n+1) % ncontour.size()]; for (size_t m = 0, mend = (is_me ? n : mcontour.size()); m < mend; ++m) { ai_assert(&mcontour != &ncontour || m < n); const IfcVector2& m0 = mcontour[m]; const IfcVector2& m1 = mcontour[(m+1) % mcontour.size()]; IfcVector2 isect0, isect1; if (IntersectingLineSegments(n0,n1, m0, m1, isect0, isect1)) { if ((isect0 - n0).SquareLength() > sqlen_epsilon) { ++n; ncontour.insert(ncontour.begin() + n, isect0); skiplist.insert(skiplist.begin() + n, true); } else { skiplist[n] = true; } if ((isect1 - n1).SquareLength() > sqlen_epsilon) { ++n; ncontour.insert(ncontour.begin() + n, isect1); skiplist.insert(skiplist.begin() + n, false); } } } } } } } // ------------------------------------------------------------------------------------------------ AI_FORCE_INLINE bool LikelyBorder(const IfcVector2& vdelta) { const IfcFloat dot_point_epsilon = static_cast(1e-5); return fabs(vdelta.x * vdelta.y) < dot_point_epsilon; } // ------------------------------------------------------------------------------------------------ void FindBorderContours(ContourVector::iterator current) { const IfcFloat border_epsilon_upper = static_cast(1-1e-4); const IfcFloat border_epsilon_lower = static_cast(1e-4); bool outer_border = false; bool start_on_outer_border = false; SkipList& skiplist = (*current).skiplist; IfcVector2 last_proj_point; const Contour::const_iterator cbegin = (*current).contour.begin(), cend = (*current).contour.end(); for (Contour::const_iterator cit = cbegin; cit != cend; ++cit) { const IfcVector2& proj_point = *cit; // Check if this connection is along the outer boundary of the projection // plane. In such a case we better drop it because such 'edges' should // not have any geometry to close them (think of door openings). if (proj_point.x <= border_epsilon_lower || proj_point.x >= border_epsilon_upper || proj_point.y <= border_epsilon_lower || proj_point.y >= border_epsilon_upper) { if (outer_border) { ai_assert(cit != cbegin); if (LikelyBorder(proj_point - last_proj_point)) { skiplist[std::distance(cbegin, cit) - 1] = true; } } else if (cit == cbegin) { start_on_outer_border = true; } outer_border = true; } else { outer_border = false; } last_proj_point = proj_point; } // handle last segment if (outer_border && start_on_outer_border) { const IfcVector2& proj_point = *cbegin; if (LikelyBorder(proj_point - last_proj_point)) { skiplist[skiplist.size()-1] = true; } } } // ------------------------------------------------------------------------------------------------ AI_FORCE_INLINE bool LikelyDiagonal(IfcVector2 vdelta) { vdelta.x = fabs(vdelta.x); vdelta.y = fabs(vdelta.y); return (fabs(vdelta.x-vdelta.y) < 0.8 * std::max(vdelta.x, vdelta.y)); } // ------------------------------------------------------------------------------------------------ void FindLikelyCrossingLines(ContourVector::iterator current) { SkipList& skiplist = (*current).skiplist; IfcVector2 last_proj_point; const Contour::const_iterator cbegin = (*current).contour.begin(), cend = (*current).contour.end(); for (Contour::const_iterator cit = cbegin; cit != cend; ++cit) { const IfcVector2& proj_point = *cit; if (cit != cbegin) { IfcVector2 vdelta = proj_point - last_proj_point; if (LikelyDiagonal(vdelta)) { skiplist[std::distance(cbegin, cit) - 1] = true; } } last_proj_point = proj_point; } // handle last segment if (LikelyDiagonal(*cbegin - last_proj_point)) { skiplist[skiplist.size()-1] = true; } } // ------------------------------------------------------------------------------------------------ size_t CloseWindows(ContourVector& contours, const IfcMatrix4& minv, OpeningRefVector& contours_to_openings, TempMesh& curmesh) { size_t closed = 0; // For all contour points, check if one of the assigned openings does // already have points assigned to it. In this case, assume this is // the other side of the wall and generate connections between // the two holes in order to close the window. // All this gets complicated by the fact that contours may pertain to // multiple openings(due to merging of adjacent or overlapping openings). // The code is based on the assumption that this happens symmetrically // on both sides of the wall. If it doesn't (which would be a bug anyway) // wrong geometry may be generated. for (ContourVector::iterator it = contours.begin(), end = contours.end(); it != end; ++it) { if ((*it).IsInvalid()) { continue; } OpeningRefs& refs = contours_to_openings[std::distance(contours.begin(), it)]; bool has_other_side = false; BOOST_FOREACH(const TempOpening* opening, refs) { if(!opening->wallPoints.empty()) { has_other_side = true; break; } } if (has_other_side) { ContourRefVector adjacent_contours; // prepare a skiplist for this contour. The skiplist is used to // eliminate unwanted contour lines for adjacent windows and // those bordering the outer frame. (*it).PrepareSkiplist(); FindAdjacentContours(it, contours); FindBorderContours(it); // if the window is the result of a finite union or intersection of rectangles, // there shouldn't be any crossing or diagonal lines in it. Such lines would // be artifacts caused by numerical inaccuracies or other bugs in polyclipper // and our own code. Since rectangular openings are by far the most frequent // case, it is worth filtering for this corner case. if((*it).is_rectangular) { FindLikelyCrossingLines(it); } ai_assert((*it).skiplist.size() == (*it).contour.size()); SkipList::const_iterator skipbegin = (*it).skiplist.begin(), skipend = (*it).skiplist.end(); curmesh.verts.reserve(curmesh.verts.size() + (*it).contour.size() * 4); curmesh.vertcnt.reserve(curmesh.vertcnt.size() + (*it).contour.size()); // XXX this algorithm is really a bit inefficient - both in terms // of constant factor and of asymptotic runtime. size_t vstart = curmesh.verts.size(); std::vector::const_iterator skipit = skipbegin; IfcVector3 start0; IfcVector3 start1; IfcVector2 last_proj; //const IfcVector2& first_proj; const Contour::const_iterator cbegin = (*it).contour.begin(), cend = (*it).contour.end(); bool drop_this_edge = false; for (Contour::const_iterator cit = cbegin; cit != cend; ++cit, drop_this_edge = *skipit++) { const IfcVector2& proj_point = *cit; // Locate the closest opposite point. This should be a good heuristic to // connect only the points that are really intended to be connected. IfcFloat best = static_cast(1e10); IfcVector3 bestv; /* debug code to check for unwanted diagonal lines in window contours if (cit != cbegin) { const IfcVector2& vdelta = proj_point - last_proj; if (fabs(vdelta.x-vdelta.y) < 0.5 * std::max(vdelta.x, vdelta.y)) { //continue; } } */ const IfcVector3& world_point = minv * IfcVector3(proj_point.x,proj_point.y,0.0f); last_proj = proj_point; BOOST_FOREACH(const TempOpening* opening, refs) { BOOST_FOREACH(const IfcVector3& other, opening->wallPoints) { const IfcFloat sqdist = (world_point - other).SquareLength(); if (sqdist < best) { // avoid self-connections if(sqdist < 1e-5) { continue; } bestv = other; best = sqdist; } } } if (drop_this_edge) { curmesh.verts.pop_back(); curmesh.verts.pop_back(); } else { curmesh.verts.push_back(cit == cbegin ? world_point : bestv); curmesh.verts.push_back(cit == cbegin ? bestv : world_point); curmesh.vertcnt.push_back(4); ++closed; } if (cit == cbegin) { start0 = world_point; start1 = bestv; continue; } curmesh.verts.push_back(world_point); curmesh.verts.push_back(bestv); if (cit == cend - 1) { drop_this_edge = *skipit; // Check if the final connection (last to first element) is itself // a border edge that needs to be dropped. if (drop_this_edge) { --closed; curmesh.vertcnt.pop_back(); curmesh.verts.pop_back(); curmesh.verts.pop_back(); } else { curmesh.verts.push_back(start1); curmesh.verts.push_back(start0); } } } BOOST_FOREACH(TempOpening* opening, refs) { opening->wallPoints.clear(); } } else { const Contour::const_iterator cbegin = (*it).contour.begin(), cend = (*it).contour.end(); BOOST_FOREACH(TempOpening* opening, refs) { ai_assert(opening->wallPoints.empty()); opening->wallPoints.reserve(opening->wallPoints.capacity() + (*it).contour.size()); for (Contour::const_iterator cit = cbegin; cit != cend; ++cit) { const IfcVector2& proj_point = *cit; opening->wallPoints.push_back(minv * IfcVector3(proj_point.x,proj_point.y,0.0f)); } } } } return closed; } // ------------------------------------------------------------------------------------------------ void Quadrify(const std::vector< BoundingBox >& bbs, TempMesh& curmesh) { ai_assert(curmesh.IsEmpty()); std::vector quads; quads.reserve(bbs.size()*4); // sort openings by x and y axis as a preliminiary to the QuadrifyPart() algorithm XYSortedField field; for (std::vector::const_iterator it = bbs.begin(); it != bbs.end(); ++it) { if (field.find((*it).first) != field.end()) { IFCImporter::LogWarn("constraint failure during generation of wall openings, results may be faulty"); } field[(*it).first] = std::distance(bbs.begin(),it); } QuadrifyPart(IfcVector2(),one_vec,field,bbs,quads); ai_assert(!(quads.size() % 4)); curmesh.vertcnt.resize(quads.size()/4,4); curmesh.verts.reserve(quads.size()); BOOST_FOREACH(const IfcVector2& v2, quads) { curmesh.verts.push_back(IfcVector3(v2.x, v2.y, static_cast(0.0))); } } // ------------------------------------------------------------------------------------------------ void Quadrify(const ContourVector& contours, TempMesh& curmesh) { std::vector bbs; bbs.reserve(contours.size()); BOOST_FOREACH(const ContourVector::value_type& val, contours) { bbs.push_back(val.bb); } Quadrify(bbs, curmesh); } // ------------------------------------------------------------------------------------------------ IfcMatrix4 ProjectOntoPlane(std::vector& out_contour, const TempMesh& in_mesh, IfcFloat& out_base_d, bool &ok) { const std::vector& in_verts = in_mesh.verts; ok = true; IfcMatrix4 m = IfcMatrix4(DerivePlaneCoordinateSpace(in_mesh, ok, &out_base_d)); if(!ok) { return IfcMatrix4(); } #ifdef _DEBUG const IfcFloat det = m.Determinant(); ai_assert(fabs(det-1) < 1e-5); #endif IfcFloat coord = 0; out_contour.reserve(in_verts.size()); IfcVector2 vmin, vmax; MinMaxChooser()(vmin, vmax); // Project all points into the new coordinate system, collect min/max verts on the way BOOST_FOREACH(const IfcVector3& x, in_verts) { const IfcVector3& vv = m * x; // keep Z offset in the plane coordinate system. Ignoring precision issues // (which are present, of course), this should be the same value for // all polygon vertices (assuming the polygon is planar). // XXX this should be guarded, but we somehow need to pick a suitable // epsilon // if(coord != -1.0f) { // assert(fabs(coord - vv.z) < 1e-3f); // } coord += vv.z; vmin = std::min(IfcVector2(vv.x, vv.y), vmin); vmax = std::max(IfcVector2(vv.x, vv.y), vmax); out_contour.push_back(IfcVector2(vv.x,vv.y)); } coord /= in_verts.size(); // Further improve the projection by mapping the entire working set into // [0,1] range. This gives us a consistent data range so all epsilons // used below can be constants. vmax -= vmin; BOOST_FOREACH(IfcVector2& vv, out_contour) { vv.x = (vv.x - vmin.x) / vmax.x; vv.y = (vv.y - vmin.y) / vmax.y; // sanity rounding vv = std::max(vv,IfcVector2()); vv = std::min(vv,one_vec); } IfcMatrix4 mult; mult.a1 = static_cast(1.0) / vmax.x; mult.b2 = static_cast(1.0) / vmax.y; mult.a4 = -vmin.x * mult.a1; mult.b4 = -vmin.y * mult.b2; mult.c4 = -coord; m = mult * m; // debug code to verify correctness #ifdef _DEBUG std::vector out_contour2; BOOST_FOREACH(const IfcVector3& x, in_verts) { const IfcVector3& vv = m * x; out_contour2.push_back(IfcVector2(vv.x,vv.y)); ai_assert(fabs(vv.z) < 1e-5); } for(size_t i = 0; i < out_contour.size(); ++i) { ai_assert((out_contour[i]-out_contour2[i]).SquareLength() < 1e-6); } #endif return m; } // ------------------------------------------------------------------------------------------------ bool GenerateOpenings(std::vector& openings, const std::vector& nors, TempMesh& curmesh, bool check_intersection, bool generate_connection_geometry) { std::vector& out = curmesh.verts; OpeningRefVector contours_to_openings; // Try to derive a solid base plane within the current surface for use as // working coordinate system. Map all vertices onto this plane and // rescale them to [0,1] range. This normalization means all further // epsilons need not be scaled. bool ok = true; std::vector contour_flat; IfcFloat base_d; const IfcMatrix4& m = ProjectOntoPlane(contour_flat, curmesh, base_d, ok); if(!ok) { return false; } IfcVector3 nor = IfcVector3(m.c1, m.c2, m.c3); nor.Normalize(); // Obtain inverse transform for getting back to world space later on const IfcMatrix4 minv = IfcMatrix4(m).Inverse(); // Compute bounding boxes for all 2D openings in projection space ContourVector contours; std::vector temp_contour; std::vector temp_contour2; size_t c = 0; BOOST_FOREACH(TempOpening& opening,openings) { std::vector profile_verts = opening.profileMesh->verts; std::vector profile_vertcnts = opening.profileMesh->vertcnt; if(profile_verts.size() <= 2) { continue; } // The opening meshes are real 3D meshes so skip over all faces // clearly facing into the wrong direction. Also, we need to check // whether the meshes do actually intersect the base surface plane. // This is done by recording minimum and maximum values for the // d component of the plane equation for all polys and checking // against surface d. // Use the sign of the dot product of the face normal to the plane // normal to determine to which side of the difference mesh a // triangle belongs. Get independent bounding boxes and vertex // sets for both sides and take the better one (we can't just // take both - this would likely cause major screwup of vertex // winding, producing errors as late as in CloseWindows()). IfcFloat dmin, dmax; MinMaxChooser()(dmin,dmax); temp_contour.clear(); temp_contour2.clear(); IfcVector2 vpmin,vpmax; MinMaxChooser()(vpmin,vpmax); IfcVector2 vpmin2,vpmax2; MinMaxChooser()(vpmin2,vpmax2); for (size_t f = 0, vi_total = 0, fend = profile_vertcnts.size(); f < fend; ++f) { const IfcVector3& face_nor = ((profile_verts[vi_total+2] - profile_verts[vi_total]) ^ (profile_verts[vi_total+1] - profile_verts[vi_total])).Normalize(); const IfcFloat abs_dot_face_nor = abs(nor * face_nor); if (abs_dot_face_nor < 0.9) { vi_total += profile_vertcnts[f]; continue; } const bool side_flag = nor * face_nor > 0; for (unsigned int vi = 0, vend = profile_vertcnts[f]; vi < vend; ++vi, ++vi_total) { const IfcVector3& x = profile_verts[vi_total]; const IfcVector3& v = m * x; IfcVector2 vv(v.x, v.y); //if(check_intersection) { dmin = std::min(dmin, v.z); dmax = std::max(dmax, v.z); //} // sanity rounding vv = std::max(vv,IfcVector2()); vv = std::min(vv,one_vec); if(side_flag) { vpmin = std::min(vpmin,vv); vpmax = std::max(vpmax,vv); } else { vpmin2 = std::min(vpmin2,vv); vpmax2 = std::max(vpmax2,vv); } std::vector& store = side_flag ? temp_contour : temp_contour2; if (!IsDuplicateVertex(vv, store)) { store.push_back(vv); } } } if (temp_contour2.size() > 2) { const IfcVector2 area = vpmax-vpmin; const IfcVector2 area2 = vpmax2-vpmin2; if (temp_contour.size() <= 2 || fabs(area2.x * area2.y) > fabs(area.x * area.y)) { temp_contour.swap(temp_contour2); vpmax = vpmax2; vpmin = vpmin2; } } if(temp_contour.size() <= 2) { continue; } // TODO: This epsilon may be too large const IfcFloat epsilon = fabs(dmax-dmin) * 0.0001; if (check_intersection && (0 < dmin-epsilon || 0 > dmax+epsilon)) { continue; } BoundingBox bb = BoundingBox(vpmin,vpmax); // Skip over very small openings - these are likely projection errors // (i.e. they don't belong to this side of the wall) if(fabs(vpmax.x - vpmin.x) * fabs(vpmax.y - vpmin.y) < static_cast(1e-10)) { continue; } std::vector joined_openings(1, &opening); bool is_rectangle = temp_contour.size() == 4; // See if this BB intersects or is in close adjacency to any other BB we have so far. for (ContourVector::iterator it = contours.begin(); it != contours.end(); ) { const BoundingBox& ibb = (*it).bb; if (BoundingBoxesOverlapping(ibb, bb)) { if (!(*it).is_rectangular) { is_rectangle = false; } const std::vector& other = (*it).contour; ClipperLib::ExPolygons poly; // First check whether subtracting the old contour (to which ibb belongs) // from the new contour (to which bb belongs) yields an updated bb which // no longer overlaps ibb MakeDisjunctWindowContours(other, temp_contour, poly); if(poly.size() == 1) { const BoundingBox& newbb = GetBoundingBox(poly[0].outer); if (!BoundingBoxesOverlapping(ibb, newbb )) { // Good guy bounding box bb = newbb ; ExtractVerticesFromClipper(poly[0].outer, temp_contour, false); continue; } } // Take these two overlapping contours and try to merge them. If they // overlap (which should not happen, but in fact happens-in-the-real- // world [tm] ), resume using a single contour and a single bounding box. MergeWindowContours(temp_contour, other, poly); if (poly.size() > 1) { return TryAddOpenings_Poly2Tri(openings, nors, curmesh); } else if (poly.size() == 0) { IFCImporter::LogWarn("ignoring duplicate opening"); temp_contour.clear(); break; } else { IFCImporter::LogDebug("merging overlapping openings"); ExtractVerticesFromClipper(poly[0].outer, temp_contour, false); // Generate the union of the bounding boxes bb.first = std::min(bb.first, ibb.first); bb.second = std::max(bb.second, ibb.second); // Update contour-to-opening tables accordingly if (generate_connection_geometry) { std::vector& t = contours_to_openings[std::distance(contours.begin(),it)]; joined_openings.insert(joined_openings.end(), t.begin(), t.end()); contours_to_openings.erase(contours_to_openings.begin() + std::distance(contours.begin(),it)); } contours.erase(it); // Restart from scratch because the newly formed BB might now // overlap any other BB which its constituent BBs didn't // previously overlap. it = contours.begin(); continue; } } ++it; } if(!temp_contour.empty()) { if (generate_connection_geometry) { contours_to_openings.push_back(std::vector( joined_openings.begin(), joined_openings.end())); } contours.push_back(ProjectedWindowContour(temp_contour, bb, is_rectangle)); } } // Check if we still have any openings left - it may well be that this is // not the cause, for example if all the opening candidates don't intersect // this surface or point into a direction perpendicular to it. if (contours.empty()) { return false; } curmesh.Clear(); // Generate a base subdivision into quads to accommodate the given list // of window bounding boxes. Quadrify(contours,curmesh); // Run a sanity cleanup pass on the window contours to avoid generating // artifacts during the contour generation phase later on. CleanupWindowContours(contours); // Previously we reduced all windows to rectangular AABBs in projection // space, now it is time to fill the gaps between the BBs and the real // window openings. InsertWindowContours(contours,openings, curmesh); // Clip the entire outer contour of our current result against the real // outer contour of the surface. This is necessary because the result // of the Quadrify() algorithm is always a square area spanning // over [0,1]^2 (i.e. entire projection space). CleanupOuterContour(contour_flat, curmesh); // Undo the projection and get back to world (or local object) space BOOST_FOREACH(IfcVector3& v3, curmesh.verts) { v3 = minv * v3; } // Generate window caps to connect the symmetric openings on both sides // of the wall. if (generate_connection_geometry) { CloseWindows(contours, minv, contours_to_openings, curmesh); } return true; } // ------------------------------------------------------------------------------------------------ void ProcessExtrudedAreaSolid(const IfcExtrudedAreaSolid& solid, TempMesh& result, ConversionData& conv) { TempMesh meshout; // First read the profile description if(!ProcessProfile(*solid.SweptArea,meshout,conv) || meshout.verts.size()<=1) { return; } IfcVector3 dir; ConvertDirection(dir,solid.ExtrudedDirection); dir *= solid.Depth; /* if(conv.collect_openings && !conv.apply_openings) { dir *= 1000.0; } */ // Outline: assuming that `meshout.verts` is now a list of vertex points forming // the underlying profile, extrude along the given axis, forming new // triangles. std::vector& in = meshout.verts; const size_t size=in.size(); const bool has_area = solid.SweptArea->ProfileType == "AREA" && size>2; if(solid.Depth < 1e-6) { if(has_area) { meshout = result; } return; } result.verts.reserve(size*(has_area?4:2)); result.vertcnt.reserve(meshout.vertcnt.size()+2); // First step: transform all vertices into the target coordinate space IfcMatrix4 trafo; ConvertAxisPlacement(trafo, solid.Position); BOOST_FOREACH(IfcVector3& v,in) { v *= trafo; } IfcVector3 min = in[0]; dir *= IfcMatrix3(trafo); std::vector nors; const bool openings = !!conv.apply_openings && conv.apply_openings->size(); // Compute the normal vectors for all opening polygons as a prerequisite // to TryAddOpenings_Poly2Tri() // XXX this belongs into the aforementioned function if (openings) { if (!conv.settings.useCustomTriangulation) { // it is essential to apply the openings in the correct spatial order. The direction // doesn't matter, but we would screw up if we started with e.g. a door in between // two windows. std::sort(conv.apply_openings->begin(),conv.apply_openings->end(), DistanceSorter(min)); } nors.reserve(conv.apply_openings->size()); BOOST_FOREACH(TempOpening& t,*conv.apply_openings) { TempMesh& bounds = *t.profileMesh.get(); if (bounds.verts.size() <= 2) { nors.push_back(IfcVector3()); continue; } nors.push_back(((bounds.verts[2]-bounds.verts[0])^(bounds.verts[1]-bounds.verts[0]) ).Normalize()); } } TempMesh temp; TempMesh& curmesh = openings ? temp : result; std::vector& out = curmesh.verts; size_t sides_with_openings = 0; for(size_t i = 0; i < size; ++i) { const size_t next = (i+1)%size; curmesh.vertcnt.push_back(4); out.push_back(in[i]); out.push_back(in[i]+dir); out.push_back(in[next]+dir); out.push_back(in[next]); if(openings) { if(GenerateOpenings(*conv.apply_openings,nors,temp,false, true)) { ++sides_with_openings; } result.Append(temp); temp.Clear(); } } if(openings) { BOOST_FOREACH(TempOpening& opening, *conv.apply_openings) { if (!opening.wallPoints.empty()) { IFCImporter::LogError("failed to generate all window caps"); } opening.wallPoints.clear(); } } size_t sides_with_v_openings = 0; if(has_area) { for(size_t n = 0; n < 2; ++n) { for(size_t i = size; i--; ) { out.push_back(in[i]+(n?dir:IfcVector3())); } curmesh.vertcnt.push_back(size); if(openings && size > 2) { if(GenerateOpenings(*conv.apply_openings,nors,temp,true, true)) { ++sides_with_v_openings; } result.Append(temp); temp.Clear(); } } } if(openings && ((sides_with_openings == 1 && sides_with_openings) || (sides_with_v_openings == 2 && sides_with_v_openings))) { IFCImporter::LogWarn("failed to resolve all openings, presumably their topology is not supported by Assimp"); } IFCImporter::LogDebug("generate mesh procedurally by extrusion (IfcExtrudedAreaSolid)"); } // ------------------------------------------------------------------------------------------------ void ProcessSweptAreaSolid(const IfcSweptAreaSolid& swept, TempMesh& meshout, ConversionData& conv) { if(const IfcExtrudedAreaSolid* const solid = swept.ToPtr()) { ProcessExtrudedAreaSolid(*solid,meshout,conv); } else if(const IfcRevolvedAreaSolid* const rev = swept.ToPtr()) { ProcessRevolvedAreaSolid(*rev,meshout,conv); } else { IFCImporter::LogWarn("skipping unknown IfcSweptAreaSolid entity, type is " + swept.GetClassName()); } } // ------------------------------------------------------------------------------------------------ enum Intersect { Intersect_No, Intersect_LiesOnPlane, Intersect_Yes }; // ------------------------------------------------------------------------------------------------ Intersect IntersectSegmentPlane(const IfcVector3& p,const IfcVector3& n, const IfcVector3& e0, const IfcVector3& e1, IfcVector3& out) { const IfcVector3 pdelta = e0 - p, seg = e1-e0; const IfcFloat dotOne = n*seg, dotTwo = -(n*pdelta); if (fabs(dotOne) < 1e-6) { return fabs(dotTwo) < 1e-6f ? Intersect_LiesOnPlane : Intersect_No; } const IfcFloat t = dotTwo/dotOne; // t must be in [0..1] if the intersection point is within the given segment if (t > 1.f || t < 0.f) { return Intersect_No; } out = e0+t*seg; return Intersect_Yes; } // ------------------------------------------------------------------------------------------------ void ProcessBooleanHalfSpaceDifference(const IfcHalfSpaceSolid* hs, TempMesh& result, const TempMesh& first_operand, ConversionData& conv) { ai_assert(hs != NULL); const IfcPlane* const plane = hs->BaseSurface->ToPtr(); if(!plane) { IFCImporter::LogError("expected IfcPlane as base surface for the IfcHalfSpaceSolid"); return; } // extract plane base position vector and normal vector IfcVector3 p,n(0.f,0.f,1.f); if (plane->Position->Axis) { ConvertDirection(n,plane->Position->Axis.Get()); } ConvertCartesianPoint(p,plane->Position->Location); if(!IsTrue(hs->AgreementFlag)) { n *= -1.f; } // clip the current contents of `meshout` against the plane we obtained from the second operand const std::vector& in = first_operand.verts; std::vector& outvert = result.verts; std::vector::const_iterator begin = first_operand.vertcnt.begin(), end = first_operand.vertcnt.end(), iit; outvert.reserve(in.size()); result.vertcnt.reserve(first_operand.vertcnt.size()); unsigned int vidx = 0; for(iit = begin; iit != end; vidx += *iit++) { unsigned int newcount = 0; for(unsigned int i = 0; i < *iit; ++i) { const IfcVector3& e0 = in[vidx+i], e1 = in[vidx+(i+1)%*iit]; // does the next segment intersect the plane? IfcVector3 isectpos; const Intersect isect = IntersectSegmentPlane(p,n,e0,e1,isectpos); if (isect == Intersect_No || isect == Intersect_LiesOnPlane) { if ( (e0-p).Normalize()*n > 0 ) { outvert.push_back(e0); ++newcount; } } else if (isect == Intersect_Yes) { if ( (e0-p).Normalize()*n > 0 ) { // e0 is on the right side, so keep it outvert.push_back(e0); outvert.push_back(isectpos); newcount += 2; } else { // e0 is on the wrong side, so drop it and keep e1 instead outvert.push_back(isectpos); ++newcount; } } } if (!newcount) { continue; } IfcVector3 vmin,vmax; ArrayBounds(&*(outvert.end()-newcount),newcount,vmin,vmax); // filter our IfcFloat points - those may happen if a point lies // directly on the intersection line. However, due to IfcFloat // precision a bitwise comparison is not feasible to detect // this case. const IfcFloat epsilon = (vmax-vmin).SquareLength() / 1e6f; FuzzyVectorCompare fz(epsilon); std::vector::iterator e = std::unique( outvert.end()-newcount, outvert.end(), fz ); if (e != outvert.end()) { newcount -= static_cast(std::distance(e,outvert.end())); outvert.erase(e,outvert.end()); } if (fz(*( outvert.end()-newcount),outvert.back())) { outvert.pop_back(); --newcount; } if(newcount > 2) { result.vertcnt.push_back(newcount); } else while(newcount-->0) { result.verts.pop_back(); } } IFCImporter::LogDebug("generating CSG geometry by plane clipping (IfcBooleanClippingResult)"); } // ------------------------------------------------------------------------------------------------ void ProcessBooleanExtrudedAreaSolidDifference(const IfcExtrudedAreaSolid* as, TempMesh& result, const TempMesh& first_operand, ConversionData& conv) { ai_assert(as != NULL); // This case is handled by reduction to an instance of the quadrify() algorithm. // Obviously, this won't work for arbitrarily complex cases. In fact, the first // operand should be near-planar. Luckily, this is usually the case in Ifc // buildings. boost::shared_ptr meshtmp(new TempMesh()); ProcessExtrudedAreaSolid(*as,*meshtmp,conv); std::vector openings(1, TempOpening(as,IfcVector3(0,0,0),meshtmp)); result = first_operand; TempMesh temp; std::vector::const_iterator vit = first_operand.verts.begin(); BOOST_FOREACH(unsigned int pcount, first_operand.vertcnt) { temp.Clear(); temp.verts.insert(temp.verts.end(), vit, vit + pcount); temp.vertcnt.push_back(pcount); // The algorithms used to generate mesh geometry sometimes // spit out lines or other degenerates which must be // filtered to avoid running into assertions later on. // ComputePolygonNormal returns the Newell normal, so the // length of the normal is the area of the polygon. const IfcVector3& normal = temp.ComputeLastPolygonNormal(false); if (normal.SquareLength() < static_cast(1e-5)) { IFCImporter::LogWarn("skipping degenerate polygon (ProcessBooleanExtrudedAreaSolidDifference)"); continue; } GenerateOpenings(openings, std::vector(1,IfcVector3(1,0,0)), temp); result.Append(temp); vit += pcount; } IFCImporter::LogDebug("generating CSG geometry by geometric difference to a solid (IfcExtrudedAreaSolid)"); } // ------------------------------------------------------------------------------------------------ void ProcessBoolean(const IfcBooleanResult& boolean, TempMesh& result, ConversionData& conv) { // supported CSG operations: // DIFFERENCE if(const IfcBooleanResult* const clip = boolean.ToPtr()) { if(clip->Operator != "DIFFERENCE") { IFCImporter::LogWarn("encountered unsupported boolean operator: " + (std::string)clip->Operator); return; } // supported cases (1st operand): // IfcBooleanResult -- call ProcessBoolean recursively // IfcSweptAreaSolid -- obtain polygonal geometry first // supported cases (2nd operand): // IfcHalfSpaceSolid -- easy, clip against plane // IfcExtrudedAreaSolid -- reduce to an instance of the quadrify() algorithm const IfcHalfSpaceSolid* const hs = clip->SecondOperand->ResolveSelectPtr(conv.db); const IfcExtrudedAreaSolid* const as = clip->SecondOperand->ResolveSelectPtr(conv.db); if(!hs && !as) { IFCImporter::LogError("expected IfcHalfSpaceSolid or IfcExtrudedAreaSolid as second clipping operand"); return; } TempMesh first_operand; if(const IfcBooleanResult* const op0 = clip->FirstOperand->ResolveSelectPtr(conv.db)) { ProcessBoolean(*op0,first_operand,conv); } else if (const IfcSweptAreaSolid* const swept = clip->FirstOperand->ResolveSelectPtr(conv.db)) { ProcessSweptAreaSolid(*swept,first_operand,conv); } else { IFCImporter::LogError("expected IfcSweptAreaSolid or IfcBooleanResult as first clipping operand"); return; } if(hs) { ProcessBooleanHalfSpaceDifference(hs, result, first_operand, conv); } else { ProcessBooleanExtrudedAreaSolidDifference(as, result, first_operand, conv); } } else { IFCImporter::LogWarn("skipping unknown IfcBooleanResult entity, type is " + boolean.GetClassName()); } } // ------------------------------------------------------------------------------------------------ bool ProcessGeometricItem(const IfcRepresentationItem& geo, std::vector& mesh_indices, ConversionData& conv) { bool fix_orientation = true; boost::shared_ptr< TempMesh > meshtmp = boost::make_shared(); if(const IfcShellBasedSurfaceModel* shellmod = geo.ToPtr()) { BOOST_FOREACH(boost::shared_ptr shell,shellmod->SbsmBoundary) { try { const EXPRESS::ENTITY& e = shell->To(); const IfcConnectedFaceSet& fs = conv.db.MustGetObject(e).To(); ProcessConnectedFaceSet(fs,*meshtmp.get(),conv); } catch(std::bad_cast&) { IFCImporter::LogWarn("unexpected type error, IfcShell ought to inherit from IfcConnectedFaceSet"); } } } else if(const IfcConnectedFaceSet* fset = geo.ToPtr()) { ProcessConnectedFaceSet(*fset,*meshtmp.get(),conv); } else if(const IfcSweptAreaSolid* swept = geo.ToPtr()) { ProcessSweptAreaSolid(*swept,*meshtmp.get(),conv); } else if(const IfcSweptDiskSolid* disk = geo.ToPtr()) { ProcessSweptDiskSolid(*disk,*meshtmp.get(),conv); fix_orientation = false; } else if(const IfcManifoldSolidBrep* brep = geo.ToPtr()) { ProcessConnectedFaceSet(brep->Outer,*meshtmp.get(),conv); } else if(const IfcFaceBasedSurfaceModel* surf = geo.ToPtr()) { BOOST_FOREACH(const IfcConnectedFaceSet& fc, surf->FbsmFaces) { ProcessConnectedFaceSet(fc,*meshtmp.get(),conv); } } else if(const IfcBooleanResult* boolean = geo.ToPtr()) { ProcessBoolean(*boolean,*meshtmp.get(),conv); } else if(geo.ToPtr()) { // silently skip over bounding boxes return false; } else { IFCImporter::LogWarn("skipping unknown IfcGeometricRepresentationItem entity, type is " + geo.GetClassName()); return false; } meshtmp->RemoveAdjacentDuplicates(); meshtmp->RemoveDegenerates(); // Do we just collect openings for a parent element (i.e. a wall)? // In such a case, we generate the polygonal extrusion mesh as usual, // but attach it to a TempOpening instance which will later be applied // to the wall it pertains to. if(conv.collect_openings) { conv.collect_openings->push_back(TempOpening(geo.ToPtr(),IfcVector3(0,0,0),meshtmp)); return true; } if(fix_orientation) { meshtmp->FixupFaceOrientation(); } aiMesh* const mesh = meshtmp->ToMesh(); if(mesh) { mesh->mMaterialIndex = ProcessMaterials(geo,conv); mesh_indices.push_back(conv.meshes.size()); conv.meshes.push_back(mesh); return true; } return false; } // ------------------------------------------------------------------------------------------------ void AssignAddedMeshes(std::vector& mesh_indices,aiNode* nd, ConversionData& /*conv*/) { if (!mesh_indices.empty()) { // make unique std::sort(mesh_indices.begin(),mesh_indices.end()); std::vector::iterator it_end = std::unique(mesh_indices.begin(),mesh_indices.end()); const size_t size = std::distance(mesh_indices.begin(),it_end); nd->mNumMeshes = size; nd->mMeshes = new unsigned int[nd->mNumMeshes]; for(unsigned int i = 0; i < nd->mNumMeshes; ++i) { nd->mMeshes[i] = mesh_indices[i]; } } } // ------------------------------------------------------------------------------------------------ bool TryQueryMeshCache(const IfcRepresentationItem& item, std::vector& mesh_indices, ConversionData& conv) { ConversionData::MeshCache::const_iterator it = conv.cached_meshes.find(&item); if (it != conv.cached_meshes.end()) { std::copy((*it).second.begin(),(*it).second.end(),std::back_inserter(mesh_indices)); return true; } return false; } // ------------------------------------------------------------------------------------------------ void PopulateMeshCache(const IfcRepresentationItem& item, const std::vector& mesh_indices, ConversionData& conv) { conv.cached_meshes[&item] = mesh_indices; } // ------------------------------------------------------------------------------------------------ bool ProcessRepresentationItem(const IfcRepresentationItem& item, std::vector& mesh_indices, ConversionData& conv) { if (!TryQueryMeshCache(item,mesh_indices,conv)) { if(ProcessGeometricItem(item,mesh_indices,conv)) { if(mesh_indices.size()) { PopulateMeshCache(item,mesh_indices,conv); } } else return false; } return true; } #undef to_int64 #undef from_int64 #undef one_vec } // ! IFC } // ! Assimp #endif