/* --------------------------------------------------------------------------- Open Asset Import Library (ASSIMP) --------------------------------------------------------------------------- Copyright (c) 2006-2008, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file Implementation of the 3ds importer class */ #include "AssimpPCH.h" // internal headers #include "3DSLoader.h" #include "TextureTransform.h" using namespace Assimp; // ------------------------------------------------------------------------------------------------ // Begins a new parsing block // - Reads the current chunk and validates it // - computes its length #define ASSIMP_3DS_BEGIN_CHUNK() \ Discreet3DS::Chunk chunk; \ ReadChunk(&chunk); \ int chunkSize = chunk.Size-sizeof(Discreet3DS::Chunk); \ int oldReadLimit = stream->GetReadLimit(); \ stream->SetReadLimit(stream->GetCurrentPos() + chunkSize); // ------------------------------------------------------------------------------------------------ // End a parsing block // Must follow at the end of each parsing block #define ASSIMP_3DS_END_CHUNK() \ stream->SkipToReadLimit(); \ stream->SetReadLimit(oldReadLimit); \ if (stream->GetRemainingSizeToLimit() == 0)return; // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer Discreet3DSImporter::Discreet3DSImporter() { } // ------------------------------------------------------------------------------------------------ // Destructor, private as well Discreet3DSImporter::~Discreet3DSImporter() { } // ------------------------------------------------------------------------------------------------ // Returns whether the class can handle the format of the given file. bool Discreet3DSImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler) const { // simple check of file extension is enough for the moment std::string::size_type pos = pFile.find_last_of('.'); // no file extension - can't read if( pos == std::string::npos) return false; std::string extension = pFile.substr( pos); for (std::string::iterator i = extension.begin(); i != extension.end();++i) *i = ::tolower(*i); return (extension == ".3ds"); } // ------------------------------------------------------------------------------------------------ // Setup configuration properties void Discreet3DSImporter::SetupProperties(const Importer* pImp) { // nothing to be done for the moment } // ------------------------------------------------------------------------------------------------ // Imports the given file into the given scene structure. void Discreet3DSImporter::InternReadFile( const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler) { StreamReaderLE stream(pIOHandler->Open(pFile,"rb")); this->stream = &stream; // We should have at least one chunk if (stream.GetRemainingSize() < 16) throw new ImportErrorException("3DS file is either empty or corrupt: " + pFile); // Allocate our temporary 3DS representation mScene = new D3DS::Scene(); // Initialize members mLastNodeIndex = -1; mCurrentNode = new D3DS::Node(); mRootNode = mCurrentNode; mRootNode->mHierarchyPos = -1; mRootNode->mHierarchyIndex = -1; mRootNode->mParent = NULL; mMasterScale = 1.0f; mBackgroundImage = ""; bHasBG = false; // Parse the file ParseMainChunk(); // Process all meshes in the file. First check whether all // face indices haev valid values. The generate our // internal verbose representation. Finally compute normal // vectors from the smoothing groups we read from the // file. for (std::vector::iterator i = mScene->mMeshes.begin(), end = mScene->mMeshes.end(); i != end;++i) { CheckIndices(*i); MakeUnique (*i); ComputeNormalsWithSmoothingsGroups(*i); } // Replace all occurences of the default material with a // valid material. Generate it if no material containing // DEFAULT in its name has been found in the file ReplaceDefaultMaterial(); // Convert the scene from our internal representation to an // aiScene object. This involves copying all meshes, lights // and cameras to the scene ConvertScene(pScene); // Generate the node graph for the scene. This is a little bit // tricky since we'll need to split some meshes into submeshes GenerateNodeGraph(pScene); // Now apply the master scaling factor to the scene ApplyMasterScale(pScene); // Delete our internal scene representation and the root // node, so the whole hierarchy will follow delete mRootNode; delete mScene; AI_DEBUG_INVALIDATE_PTR(mRootNode); AI_DEBUG_INVALIDATE_PTR(mScene); AI_DEBUG_INVALIDATE_PTR(this->stream); } // ------------------------------------------------------------------------------------------------ // Applies a master-scaling factor to the imported scene void Discreet3DSImporter::ApplyMasterScale(aiScene* pScene) { // There are some 3DS files with a zero scaling factor if (!mMasterScale)mMasterScale = 1.0f; else mMasterScale = 1.0f / mMasterScale; // Construct an uniform scaling matrix and multiply with it pScene->mRootNode->mTransformation *= aiMatrix4x4( mMasterScale,0.0f, 0.0f, 0.0f, 0.0f, mMasterScale,0.0f, 0.0f, 0.0f, 0.0f, mMasterScale,0.0f, 0.0f, 0.0f, 0.0f, 1.0f); // Check whether a scaling track is assigned to the root node. } // ------------------------------------------------------------------------------------------------ // Reads a new chunk from the file void Discreet3DSImporter::ReadChunk(Discreet3DS::Chunk* pcOut) { ai_assert(pcOut != NULL); pcOut->Flag = stream->GetI2(); pcOut->Size = stream->GetI4(); if (pcOut->Size - sizeof(Discreet3DS::Chunk) > stream->GetRemainingSize()) throw new ImportErrorException("Chunk is too large"); if (pcOut->Size - sizeof(Discreet3DS::Chunk) > stream->GetRemainingSizeToLimit()) DefaultLogger::get()->error("3DS: Chunk overflow"); } // ------------------------------------------------------------------------------------------------ // Skip a chunk void Discreet3DSImporter::SkipChunk() { Discreet3DS::Chunk psChunk; ReadChunk(&psChunk); stream->IncPtr(psChunk.Size-sizeof(Discreet3DS::Chunk)); return; } // ------------------------------------------------------------------------------------------------ // Process the primary chunk of the file void Discreet3DSImporter::ParseMainChunk() { ASSIMP_3DS_BEGIN_CHUNK(); // get chunk type switch (chunk.Flag) { case Discreet3DS::CHUNK_MAIN: ParseEditorChunk(); break; }; ASSIMP_3DS_END_CHUNK(); // recursively continue processing this hierarchy level return ParseMainChunk(); } // ------------------------------------------------------------------------------------------------ void Discreet3DSImporter::ParseEditorChunk() { ASSIMP_3DS_BEGIN_CHUNK(); // get chunk type switch (chunk.Flag) { case Discreet3DS::CHUNK_OBJMESH: ParseObjectChunk(); break; // NOTE: In several documentations in the internet this // chunk appears at different locations case Discreet3DS::CHUNK_KEYFRAMER: ParseKeyframeChunk(); break; case Discreet3DS::CHUNK_VERSION: { // print the version number char buff[10]; itoa10(buff,stream->GetI2()); DefaultLogger::get()->info(std::string("3DS file format version: ") + buff); } break; }; ASSIMP_3DS_END_CHUNK(); // recursively continue processing this hierarchy level return ParseEditorChunk(); } // ------------------------------------------------------------------------------------------------ void Discreet3DSImporter::ParseObjectChunk() { ASSIMP_3DS_BEGIN_CHUNK(); // get chunk type switch (chunk.Flag) { case Discreet3DS::CHUNK_OBJBLOCK: { unsigned int cnt = 0; const char* sz = (const char*)stream->GetPtr(); // Get the name of the geometry object while (stream->GetI1())++cnt; ParseChunk(sz,cnt); } break; case Discreet3DS::CHUNK_MAT_MATERIAL: // Add a new material to the list mScene->mMaterials.push_back(D3DS::Material()); ParseMaterialChunk(); break; case Discreet3DS::CHUNK_AMBCOLOR: // This is the ambient base color of the scene. // We add it to the ambient color of all materials ParseColorChunk(&mClrAmbient,true); if (is_qnan(mClrAmbient.r)) { // We failed to read the ambient base color. // Set it to black so it won't have affect // the rendering mClrAmbient.r = 0.0f; mClrAmbient.g = 0.0f; mClrAmbient.b = 0.0f; } break; case Discreet3DS::CHUNK_BIT_MAP: { // Specifies the background image. The string // should already be properly 0 terminated but we // need to be sure unsigned int cnt = 0; const char* sz = (const char*)stream->GetPtr(); while (stream->GetI1())++cnt; mBackgroundImage = std::string(sz,cnt); } break; case Discreet3DS::CHUNK_BIT_MAP_EXISTS: bHasBG = true; break; case Discreet3DS::CHUNK_MASTER_SCALE: // Scene master scaling factor mMasterScale = stream->GetF4(); break; }; ASSIMP_3DS_END_CHUNK(); // recursively continue processing this hierarchy level return ParseObjectChunk(); } // ------------------------------------------------------------------------------------------------ void Discreet3DSImporter::ParseChunk(const char* name, unsigned int num) { ASSIMP_3DS_BEGIN_CHUNK(); // get chunk type switch (chunk.Flag) { case Discreet3DS::CHUNK_TRIMESH: { // this starts a new triangle mesh mScene->mMeshes.push_back(D3DS::Mesh()); D3DS::Mesh& m = mScene->mMeshes.back(); // Setup the name of the mesh m.mName = std::string(name, num); // Read mesh chunks ParseMeshChunk(); } break; case Discreet3DS::CHUNK_LIGHT: { // This starts a new light aiLight* light = new aiLight(); mScene->mLights.push_back(light); light->mName.Set(std::string(name, num)); // First read the position of the light light->mPosition.x = stream->GetF4(); light->mPosition.y = stream->GetF4(); light->mPosition.z = stream->GetF4(); // Now check for further subchunks (excluding color) int8_t* p = stream->GetPtr(); ParseLightChunk(); // Now read the color stream->SetPtr(p); ParseColorChunk(&light->mColorDiffuse,true); if (is_qnan(light->mColorDiffuse.r)) { // it could be there is no color subchunk light->mColorDiffuse = aiColor3D(1.f,1.f,1.f); } // The specular light color is identical to // the diffuse light color. The ambient light // color is equal to the ambient base color of // the whole scene. light->mColorSpecular = light->mColorDiffuse; light->mColorAmbient = mClrAmbient; if (light->mType == aiLightSource_UNDEFINED) { // It must be a point light light->mType = aiLightSource_POINT; }} break; case Discreet3DS::CHUNK_CAMERA: { // This starts a new camera aiCamera* camera = new aiCamera(); mScene->mCameras.push_back(camera); camera->mName.Set(std::string(name, num)); // The camera position and look-at vector are // difficult to handle. Later we'll copy these // values to the local transformation of the // camera's node. // First read the position of the camera camera->mPosition.x = stream->GetF4(); camera->mPosition.y = stream->GetF4(); camera->mPosition.z = stream->GetF4(); // Then the camera target camera->mLookAt.x = stream->GetF4() - camera->mPosition.x; camera->mLookAt.y = stream->GetF4() - camera->mPosition.y; camera->mLookAt.z = stream->GetF4() - camera->mPosition.z; // We wouldn't need to normalize here, but we do it camera->mLookAt.Normalize(); // And finally - the camera rotation angle, in // counter clockwise direction float angle = AI_DEG_TO_RAD( stream->GetF4() ); aiQuaternion quat(camera->mLookAt,angle); camera->mUp = quat.GetMatrix() * aiVector3D(0.f,1.f,0.f); // Read the lense angle // TODO camera->mHorizontalFOV = AI_DEG_TO_RAD ( stream->GetF4() ); } break; }; ASSIMP_3DS_END_CHUNK(); // recursively continue processing this hierarchy level return ParseChunk(name,num); } // ------------------------------------------------------------------------------------------------ void Discreet3DSImporter::ParseLightChunk() { ASSIMP_3DS_BEGIN_CHUNK(); aiLight* light = mScene->mLights.back(); // get chunk type switch (chunk.Flag) { case Discreet3DS::CHUNK_SPOTLIGHT: { // Now we can be sure that the light is a spot light light->mType = aiLightSource_SPOT; // We wouldn't need to normalize here, but we do it light->mDirection.x = stream->GetF4() - light->mPosition.x; light->mDirection.y = stream->GetF4() - light->mPosition.y; light->mDirection.z = stream->GetF4() - light->mPosition.z; light->mDirection.Normalize(); // Now the hotspot and falloff angles - in degrees light->mAngleInnerCone = AI_DEG_TO_RAD( stream->GetF4() ); light->mAngleOuterCone = AI_DEG_TO_RAD( stream->GetF4() ); // We assume linear attenuation light->mAttenuationLinear = 1; } break; }; ASSIMP_3DS_END_CHUNK(); // recursively continue processing this hierarchy level return ParseLightChunk(); } // ------------------------------------------------------------------------------------------------ void Discreet3DSImporter::ParseKeyframeChunk() { ASSIMP_3DS_BEGIN_CHUNK(); // get chunk type switch (chunk.Flag) { case Discreet3DS::CHUNK_TRACKCAMTGT: case Discreet3DS::CHUNK_SPOTLIGHT: case Discreet3DS::CHUNK_TRACKCAMERA: case Discreet3DS::CHUNK_TRACKINFO: case Discreet3DS::CHUNK_TRACKLIGHT: case Discreet3DS::CHUNK_TRACKLIGTGT: // this starts a new mesh hierarchy chunk ParseHierarchyChunk(chunk.Flag); break; }; ASSIMP_3DS_END_CHUNK(); // recursively continue processing this hierarchy level return ParseKeyframeChunk(); } // ------------------------------------------------------------------------------------------------ // Little helper function for ParseHierarchyChunk void Discreet3DSImporter::InverseNodeSearch(D3DS::Node* pcNode,D3DS::Node* pcCurrent) { if (!pcCurrent) { mRootNode->push_back(pcNode); return; } if (pcCurrent->mHierarchyPos == pcNode->mHierarchyPos) { if(pcCurrent->mParent)pcCurrent->mParent->push_back(pcNode); else pcCurrent->push_back(pcNode); return; } return InverseNodeSearch(pcNode,pcCurrent->mParent); } // ------------------------------------------------------------------------------------------------ D3DS::Node* FindNode(D3DS::Node* root, const std::string& name) { if (root->mName == name)return root; for (std::vector::iterator it = root->mChildren.begin(); it != root->mChildren.end(); ++it) { D3DS::Node* nd; if (( nd = FindNode(*it,name)))return nd; } return NULL; } // ------------------------------------------------------------------------------------------------ // Binary predicate for std::unique() template bool KeyUniqueCompare(const T& first, const T& second) { return first.mTime == second.mTime; } // ------------------------------------------------------------------------------------------------ void Discreet3DSImporter::ParseHierarchyChunk(uint16_t parent) { ASSIMP_3DS_BEGIN_CHUNK(); // get chunk type switch (chunk.Flag) { case Discreet3DS::CHUNK_TRACKOBJNAME: // This is the name of the object to which the track applies // The chunk also defines the position of this object in the // hierarchy. { // First of all: get the name of the object unsigned int cnt = 0; const char* sz = (const char*)stream->GetPtr(); while (stream->GetI1())++cnt; std::string name = std::string(sz,cnt); // Now find out whether we have this node already // (target animation channels are stored with a // separate object ID) D3DS::Node* pcNode = FindNode(mRootNode,name); if (pcNode) { // Make this node the current node mCurrentNode = pcNode; break; } pcNode = new D3DS::Node(); pcNode->mName = name; // There are two unknown values which we can safely ignore stream->IncPtr(4); // Now read the hierarchy position of the object uint16_t hierarchy = stream->GetI2() + 1; pcNode->mHierarchyPos = hierarchy; pcNode->mHierarchyIndex = mLastNodeIndex; // And find a proper position in the graph for it if (mCurrentNode && mCurrentNode->mHierarchyPos == hierarchy) { // add to the parent of the last touched node mCurrentNode->mParent->push_back(pcNode); mLastNodeIndex++; } else if(hierarchy >= mLastNodeIndex) { // place it at the current position in the hierarchy mCurrentNode->push_back(pcNode); mLastNodeIndex = hierarchy; } else { // need to go back to the specified position in the hierarchy. InverseNodeSearch(pcNode,mCurrentNode); mLastNodeIndex++; } // Make this node the current node mCurrentNode = pcNode; } break; case Discreet3DS::CHUNK_TRACKDUMMYOBJNAME: // This is the "real" name of a $$$DUMMY object { if (mCurrentNode->mName != "$$$DUMMY") { DefaultLogger::get()->warn("3DS: Skipping dummy object name for non-dummy object"); break; } const char* sz = (const char*)stream->GetPtr(); while (stream->GetI1()); mCurrentNode->mDummyName = std::string(sz); } break; case Discreet3DS::CHUNK_TRACKPIVOT: if ( Discreet3DS::CHUNK_TRACKINFO != parent) { DefaultLogger::get()->warn("3DS: Skipping pivot subchunk for non usual object"); break; } // Pivot = origin of rotation and scaling mCurrentNode->vPivot.x = stream->GetF4(); mCurrentNode->vPivot.y = stream->GetF4(); mCurrentNode->vPivot.z = stream->GetF4(); break; // ************************************************************** // POSITION KEYFRAME case Discreet3DS::CHUNK_TRACKPOS: { stream->IncPtr(10); unsigned int numFrames = stream->GetI2(); stream->IncPtr(2); bool sortKeys = false; // This could also be meant as the target position for // (targeted) lights and cameras std::vector* l; if ( Discreet3DS::CHUNK_TRACKCAMTGT == parent || Discreet3DS::CHUNK_TRACKLIGTGT == parent) { l = & mCurrentNode->aTargetPositionKeys; } else l = & mCurrentNode->aPositionKeys; l->reserve(numFrames); for (unsigned int i = 0; i < numFrames;++i) { unsigned int fidx = stream->GetI2(); // Setup a new position key aiVectorKey v; v.mTime = (double)fidx; stream->IncPtr(4); v.mValue.x = stream->GetF4(); v.mValue.y = stream->GetF4(); v.mValue.z = stream->GetF4(); // check whether we'll need to sort the keys if (!l->empty() && v.mTime <= l->back().mTime) sortKeys = true; // Add the new keyframe to the list l->push_back(v); } // Sort all keys with ascending time values? if (sortKeys) { std::sort (l->begin(),l->end()); std::unique (l->begin(),l->end(), std::ptr_fun(&KeyUniqueCompare)); }} break; // ************************************************************** // CAMERA ROLL KEYFRAME case Discreet3DS::CHUNK_TRACKROLL: { // roll keys are accepted for cameras only if (parent != Discreet3DS::CHUNK_TRACKCAMERA) { DefaultLogger::get()->warn("3DS: Ignoring roll track for non-camera object"); break; } bool sortKeys = false; std::vector* l = &mCurrentNode->aCameraRollKeys; stream->IncPtr(10); unsigned int numFrames = stream->GetI2(); l->reserve(numFrames); stream->IncPtr(2); for (unsigned int i = 0; i < numFrames;++i) { unsigned int fidx = stream->GetI2(); // Setup a new position key aiFloatKey v; v.mTime = (double)fidx; // This is just a single float stream->IncPtr(4); v.mValue = stream->GetF4(); // Check whether we'll need to sort the keys if (!l->empty() && v.mTime <= l->back().mTime) sortKeys = true; // Add the new keyframe to the list l->push_back(v); } // Sort all keys with ascending time values? if (sortKeys) { std::sort (l->begin(),l->end()); std::unique (l->begin(),l->end(), std::ptr_fun(&KeyUniqueCompare)); }} break; // ************************************************************** // CAMERA FOV KEYFRAME case Discreet3DS::CHUNK_TRACKFOV: { DefaultLogger::get()->error("3DS: Skipping FOV animation track. " "This is not supported"); } break; // ************************************************************** // ROTATION KEYFRAME case Discreet3DS::CHUNK_TRACKROTATE: { stream->IncPtr(10); unsigned int numFrames = stream->GetI2(); stream->IncPtr(2); bool sortKeys = false; std::vector* l = &mCurrentNode->aRotationKeys; l->reserve(numFrames); for (unsigned int i = 0; i < numFrames;++i) { unsigned int fidx = stream->GetI2(); stream->IncPtr(4); aiQuatKey v; v.mTime = (double)fidx; // The rotation keyframe is given as an axis-angle pair float rad = stream->GetF4(); aiVector3D axis; axis.x = stream->GetF4(); axis.y = stream->GetF4(); axis.z = stream->GetF4(); if (!axis.x && !axis.y && !axis.z) axis.y = 1.f; // Construct a rotation quaternion from the axis-angle pair v.mValue = aiQuaternion(axis,rad); // Check whether we'll need to sort the keys if (!l->empty() && v.mTime <= l->back().mTime) sortKeys = true; // add the new keyframe to the list l->push_back(v); } // Sort all keys with ascending time values? if (sortKeys) { std::sort (l->begin(),l->end()); std::unique (l->begin(),l->end(), std::ptr_fun(&KeyUniqueCompare)); }} break; // ************************************************************** // SCALING KEYFRAME case Discreet3DS::CHUNK_TRACKSCALE: { stream->IncPtr(10); unsigned int numFrames = stream->GetI2(); stream->IncPtr(2); bool sortKeys = false; std::vector* l = &mCurrentNode->aScalingKeys; l->reserve(numFrames); for (unsigned int i = 0; i < numFrames;++i) { unsigned int fidx = stream->GetI2(); stream->IncPtr(4); // Setup a new key aiVectorKey v; v.mTime = (double)fidx; // ... and read its value v.mValue.x = stream->GetF4(); v.mValue.y = stream->GetF4(); v.mValue.z = stream->GetF4(); // check whether we'll need to sort the keys if (!l->empty() && v.mTime <= l->back().mTime) sortKeys = true; // Remove zero-scalings if (!v.mValue.x)v.mValue.x = 1.f; if (!v.mValue.y)v.mValue.y = 1.f; if (!v.mValue.z)v.mValue.z = 1.f; l->push_back(v); } // Sort all keys with ascending time values? if (sortKeys) { std::sort (l->begin(),l->end()); std::unique (l->begin(),l->end(), std::ptr_fun(&KeyUniqueCompare)); }} break; }; ASSIMP_3DS_END_CHUNK(); // recursively continue processing this hierarchy level return ParseHierarchyChunk(parent); } // ------------------------------------------------------------------------------------------------ void Discreet3DSImporter::ParseFaceChunk() { ASSIMP_3DS_BEGIN_CHUNK(); // Get the mesh we're currently working on D3DS::Mesh& mMesh = mScene->mMeshes.back(); // Get chunk type switch (chunk.Flag) { case Discreet3DS::CHUNK_SMOOLIST: { // This is the list of smoothing groups - a bitfield for // every frame. Up to 32 smoothing groups assigned to a // face. unsigned int num = chunkSize/4, m = 0; for (std::vector::iterator i = mMesh.mFaces.begin(); m != num;++i, ++m) { // nth bit is set for nth smoothing group (*i).iSmoothGroup = stream->GetI4(); }} break; case Discreet3DS::CHUNK_FACEMAT: { // at fist an asciiz with the material name const char* sz = (const char*)stream->GetPtr(); while (stream->GetI1()); // find the index of the material unsigned int idx = 0xcdcdcdcd, cnt = 0; for (std::vector::const_iterator i = mScene->mMaterials.begin(); i != mScene->mMaterials.end();++i,++cnt) { // compare case-independent to be sure it works if ((*i).mName.length() && !ASSIMP_stricmp(sz, (*i).mName.c_str())) { idx = cnt; break; } } if (0xcdcdcdcd == idx) { DefaultLogger::get()->error(std::string("3DS: Unknown material: ") + sz); // ********************************************************* // This material is not known. Ignore this. We will later // assign the default material to all faces using *this* // material. Use 0xcdcdcdcd as special value to indicate // this. // ********************************************************* } // Now continue and read all material indices cnt = (uint16_t)stream->GetI2(); for (unsigned int i = 0; i < cnt;++i) { unsigned int fidx = (uint16_t)stream->GetI2(); // check range if (fidx >= mMesh.mFaceMaterials.size()) { DefaultLogger::get()->error("3DS: Invalid face index in face material list"); } else mMesh.mFaceMaterials[fidx] = idx; }} break; }; ASSIMP_3DS_END_CHUNK(); // recursively continue processing this hierarchy level return ParseFaceChunk(); } // ------------------------------------------------------------------------------------------------ void Discreet3DSImporter::ParseMeshChunk() { ASSIMP_3DS_BEGIN_CHUNK(); // Get the mesh we're currently working on D3DS::Mesh& mMesh = mScene->mMeshes.back(); // get chunk type switch (chunk.Flag) { case Discreet3DS::CHUNK_VERTLIST: { // This is the list of all vertices in the current mesh int num = (int)(uint16_t)stream->GetI2(); mMesh.mPositions.reserve(num); while (num-- > 0) { aiVector3D v; v.x = stream->GetF4(); v.y = stream->GetF4(); v.z = stream->GetF4(); mMesh.mPositions.push_back(v); }} break; case Discreet3DS::CHUNK_TRMATRIX: { // This is the RLEATIVE transformation matrix of the // current mesh. However, all vertices are pretransformed mMesh.mMat.a1 = stream->GetF4(); mMesh.mMat.b1 = stream->GetF4(); mMesh.mMat.c1 = stream->GetF4(); mMesh.mMat.a2 = stream->GetF4(); mMesh.mMat.b2 = stream->GetF4(); mMesh.mMat.c2 = stream->GetF4(); mMesh.mMat.a3 = stream->GetF4(); mMesh.mMat.b3 = stream->GetF4(); mMesh.mMat.c3 = stream->GetF4(); mMesh.mMat.a4 = stream->GetF4(); mMesh.mMat.b4 = stream->GetF4(); mMesh.mMat.c4 = stream->GetF4(); // Now check whether the matrix has got a negative determinant // If yes, we need to flip all vertices' Z axis .... // This code has been taken from lib3ds if (mMesh.mMat.Determinant() < 0.0f) { // Compute the inverse of the matrix aiMatrix4x4 mInv = mMesh.mMat; mInv.Inverse(); aiMatrix4x4 mMe = mMesh.mMat; mMe.c1 *= -1.0f; mMe.c2 *= -1.0f; mMe.c3 *= -1.0f; mMe.c4 *= -1.0f; mInv = mInv * mMe; // Now transform all vertices for (unsigned int i = 0; i < (unsigned int)mMesh.mPositions.size();++i) { aiVector3D a,c; a = mMesh.mPositions[i]; c[0]= mInv[0][0]*a[0] + mInv[1][0]*a[1] + mInv[2][0]*a[2] + mInv[3][0]; c[1]= mInv[0][1]*a[0] + mInv[1][1]*a[1] + mInv[2][1]*a[2] + mInv[3][1]; c[2]= mInv[0][2]*a[0] + mInv[1][2]*a[1] + mInv[2][2]*a[2] + mInv[3][2]; mMesh.mPositions[i] = c; } DefaultLogger::get()->info("3DS: Flipping mesh Z-Axis"); }} break; case Discreet3DS::CHUNK_MAPLIST: { // This is the list of all UV coords in the current mesh int num = (int)(uint16_t)stream->GetI2(); mMesh.mTexCoords.reserve(num); while (num-- > 0) { aiVector3D v; v.x = stream->GetF4(); v.y = stream->GetF4(); mMesh.mTexCoords.push_back(v); }} break; case Discreet3DS::CHUNK_FACELIST: { // This is the list of all faces in the current mesh int num = (int)(uint16_t)stream->GetI2(); mMesh.mFaces.reserve(num); while (num-- > 0) { // 3DS faces are ALWAYS triangles mMesh.mFaces.push_back(D3DS::Face()); D3DS::Face& sFace = mMesh.mFaces.back(); sFace.mIndices[0] = (uint16_t)stream->GetI2(); sFace.mIndices[1] = (uint16_t)stream->GetI2(); sFace.mIndices[2] = (uint16_t)stream->GetI2(); stream->IncPtr(2); // skip edge visibility flag } // Resize the material array (0xcdcdcdcd marks the // default material; so if a face is not referenced // by a material $$DEFAULT will be assigned to it) mMesh.mFaceMaterials.resize(mMesh.mFaces.size(),0xcdcdcdcd); // Larger 3DS files could have multiple FACE chunks here chunkSize = stream->GetRemainingSizeToLimit(); if (chunkSize > sizeof(Discreet3DS::Chunk)) ParseFaceChunk(); } break; }; ASSIMP_3DS_END_CHUNK(); // recursively continue processing this hierarchy level return ParseMeshChunk(); } // ------------------------------------------------------------------------------------------------ void Discreet3DSImporter::ParseMaterialChunk() { ASSIMP_3DS_BEGIN_CHUNK(); // get chunk type switch (chunk.Flag) { case Discreet3DS::CHUNK_MAT_MATNAME: { // The material name string is already zero-terminated, but // we need to be sure ... const char* sz = (const char*)stream->GetPtr(); unsigned int cnt = 0; while (stream->GetI1())++cnt; if (!cnt) { // This may not be, we use the default name instead DefaultLogger::get()->error("3DS: Empty material name"); } else mScene->mMaterials.back().mName = std::string(sz,cnt); } break; case Discreet3DS::CHUNK_MAT_DIFFUSE: { // This is the diffuse material color aiColor3D* pc = &mScene->mMaterials.back().mDiffuse; ParseColorChunk(pc); if (is_qnan(pc->r)) { // color chunk is invalid. Simply ignore it DefaultLogger::get()->error("Unable to read DIFFUSE chunk"); pc->r = pc->g = pc->b = 1.0f; }} break; case Discreet3DS::CHUNK_MAT_SPECULAR: { // This is the specular material color aiColor3D* pc = &mScene->mMaterials.back().mSpecular; ParseColorChunk(pc); if (is_qnan(pc->r)) { // color chunk is invalid. Simply ignore it DefaultLogger::get()->error("Unable to read SPECULAR chunk"); pc->r = pc->g = pc->b = 1.0f; }} break; case Discreet3DS::CHUNK_MAT_AMBIENT: { // This is the ambient material color aiColor3D* pc = &mScene->mMaterials.back().mAmbient; ParseColorChunk(pc); if (is_qnan(pc->r)) { // color chunk is invalid. Simply ignore it DefaultLogger::get()->error("Unable to read AMBIENT chunk"); pc->r = pc->g = pc->b = 0.0f; }} break; case Discreet3DS::CHUNK_MAT_SELF_ILLUM: { // This is the emissive material color aiColor3D* pc = &mScene->mMaterials.back().mEmissive; ParseColorChunk(pc); if (is_qnan(pc->r)) { // color chunk is invalid. Simply ignore it DefaultLogger::get()->error("Unable to read EMISSIVE chunk"); pc->r = pc->g = pc->b = 0.0f; }} break; case Discreet3DS::CHUNK_MAT_TRANSPARENCY: { // This is the material's transparency float* pcf = &mScene->mMaterials.back().mTransparency; *pcf = ParsePercentageChunk(); // NOTE: transparency, not opacity if (is_qnan(*pcf))*pcf = 1.0f; else *pcf = 1.0f - *pcf * (float)0xFFFF / 100.0f; } break; case Discreet3DS::CHUNK_MAT_SHADING: // This is the material shading mode mScene->mMaterials.back().mShading = (D3DS::Discreet3DS::shadetype3ds)stream->GetI2(); break; case Discreet3DS::CHUNK_MAT_TWO_SIDE: // This is the two-sided flag mScene->mMaterials.back().mTwoSided = true; break; case Discreet3DS::CHUNK_MAT_SHININESS: { // This is the shininess of the material float* pcf = &mScene->mMaterials.back().mSpecularExponent; *pcf = ParsePercentageChunk(); if (is_qnan(*pcf))*pcf = 0.0f; else *pcf *= (float)0xFFFF; } break; case Discreet3DS::CHUNK_MAT_SHININESS_PERCENT: { // This is the shininess strength of the material float* pcf = &mScene->mMaterials.back().mShininessStrength; *pcf = ParsePercentageChunk(); if (is_qnan(*pcf))*pcf = 0.0f; else *pcf *= (float)0xffff / 100.0f; } break; case Discreet3DS::CHUNK_MAT_SELF_ILPCT: { // This is the self illumination strength of the material // TODO: need to multiply with emissive base color? float* pcf = &mScene->mMaterials.back().sTexEmissive.mTextureBlend; *pcf = ParsePercentageChunk(); if (is_qnan(*pcf))*pcf = 0.0f; else *pcf = *pcf * (float)0xFFFF / 100.0f; } break; // Parse texture chunks case Discreet3DS::CHUNK_MAT_TEXTURE: // Diffuse texture ParseTextureChunk(&mScene->mMaterials.back().sTexDiffuse); break; case Discreet3DS::CHUNK_MAT_BUMPMAP: // Height map ParseTextureChunk(&mScene->mMaterials.back().sTexBump); break; case Discreet3DS::CHUNK_MAT_OPACMAP: // Opacity texture ParseTextureChunk(&mScene->mMaterials.back().sTexOpacity); break; case Discreet3DS::CHUNK_MAT_MAT_SHINMAP: // Shininess map ParseTextureChunk(&mScene->mMaterials.back().sTexShininess); break; case Discreet3DS::CHUNK_MAT_SPECMAP: // Specular map ParseTextureChunk(&mScene->mMaterials.back().sTexSpecular); break; case Discreet3DS::CHUNK_MAT_SELFIMAP: // Self-illumination (emissive) map ParseTextureChunk(&mScene->mMaterials.back().sTexEmissive); break; case Discreet3DS::CHUNK_MAT_REFLMAP: // Reflection map - no support in Assimp DefaultLogger::get()->warn("3DS: Found reflection map in file. This is not supported"); break; }; ASSIMP_3DS_END_CHUNK(); // recursively continue processing this hierarchy level return ParseMaterialChunk(); } // ------------------------------------------------------------------------------------------------ void Discreet3DSImporter::ParseTextureChunk(D3DS::Texture* pcOut) { ASSIMP_3DS_BEGIN_CHUNK(); // get chunk type switch (chunk.Flag) { case Discreet3DS::CHUNK_MAPFILE: { // The material name string is already zero-terminated, but // we need to be sure ... const char* sz = (const char*)stream->GetPtr(); unsigned int cnt = 0; while (stream->GetI1())++cnt; pcOut->mMapName = std::string(sz,cnt); } break; case Discreet3DS::CHUNK_PERCENTF: // Manually parse the blend factor pcOut->mTextureBlend = stream->GetF4(); break; case Discreet3DS::CHUNK_PERCENTW: // Manually parse the blend factor pcOut->mTextureBlend = (float)((uint16_t)stream->GetI2()) / 100.0f; break; case Discreet3DS::CHUNK_MAT_MAP_USCALE: // Texture coordinate scaling in the U direction pcOut->mScaleU = stream->GetF4(); if (0.0f == pcOut->mScaleU) { DefaultLogger::get()->warn("Texture coordinate scaling in the " "x direction is zero. Assuming 1"); pcOut->mScaleU = 1.0f; } break; case Discreet3DS::CHUNK_MAT_MAP_VSCALE: // Texture coordinate scaling in the V direction pcOut->mScaleV = stream->GetF4(); if (0.0f == pcOut->mScaleV) { DefaultLogger::get()->warn("Texture coordinate scaling in the " "y direction is zero. Assuming 1"); pcOut->mScaleV = 1.0f; } break; case Discreet3DS::CHUNK_MAT_MAP_UOFFSET: // Texture coordinate offset in the U direction pcOut->mOffsetU = -stream->GetF4(); break; case Discreet3DS::CHUNK_MAT_MAP_VOFFSET: // Texture coordinate offset in the V direction pcOut->mOffsetV = stream->GetF4(); break; case Discreet3DS::CHUNK_MAT_MAP_ANG: // Texture coordinate rotation, CCW in DEGREES pcOut->mRotation = -AI_DEG_TO_RAD( stream->GetF4() ); break; case Discreet3DS::CHUNK_MAT_MAP_TILING: { uint16_t iFlags = stream->GetI2(); // Get the mapping mode (for both axes) if (iFlags & 0x2u) pcOut->mMapMode = aiTextureMapMode_Mirror; else if (iFlags & 0x10u) pcOut->mMapMode = aiTextureMapMode_Decal; // wrapping in all remaining cases else pcOut->mMapMode = aiTextureMapMode_Wrap; } break; }; ASSIMP_3DS_END_CHUNK(); // recursively continue processing this hierarchy level return ParseTextureChunk(pcOut); } // ------------------------------------------------------------------------------------------------ // Read a percentage chunk float Discreet3DSImporter::ParsePercentageChunk() { Discreet3DS::Chunk chunk; ReadChunk(&chunk); if (Discreet3DS::CHUNK_PERCENTF == chunk.Flag) { return stream->GetF4(); } else if (Discreet3DS::CHUNK_PERCENTW == chunk.Flag) { return (float)((uint16_t)stream->GetI2()) / (float)0xFFFF; } return std::numeric_limits::quiet_NaN(); } // ------------------------------------------------------------------------------------------------ // Read a color chunk. If a percentage chunk is found instead, it will be converted // to a grayscale color value void Discreet3DSImporter::ParseColorChunk(aiColor3D* p_pcOut, bool p_bAcceptPercent) { ai_assert(p_pcOut != NULL); // error return value static const aiColor3D clrError = aiColor3D(std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN()); Discreet3DS::Chunk chunk; ReadChunk(&chunk); const unsigned int diff = chunk.Size - sizeof(Discreet3DS::Chunk); bool bGamma = false; // Get the type of the chunk switch(chunk.Flag) { case Discreet3DS::CHUNK_LINRGBF: bGamma = true; case Discreet3DS::CHUNK_RGBF: if (sizeof(float) * 3 > diff) { *p_pcOut = clrError; return; } p_pcOut->r = stream->GetF4(); p_pcOut->g = stream->GetF4(); p_pcOut->b = stream->GetF4(); break; case Discreet3DS::CHUNK_LINRGBB: bGamma = true; case Discreet3DS::CHUNK_RGBB: if (sizeof(char) * 3 > diff) { *p_pcOut = clrError; return; } p_pcOut->r = (float)(uint8_t)stream->GetI1() / 255.0f; p_pcOut->g = (float)(uint8_t)stream->GetI1() / 255.0f; p_pcOut->b = (float)(uint8_t)stream->GetI1() / 255.0f; break; // Percentage chunks: accepted to be compatible with various // .3ds files with very curious content case Discreet3DS::CHUNK_PERCENTF: if (p_bAcceptPercent && 4 <= diff) { p_pcOut->r = stream->GetF4(); p_pcOut->g = p_pcOut->b = p_pcOut->r; break; } *p_pcOut = clrError; return; case Discreet3DS::CHUNK_PERCENTW: if (p_bAcceptPercent && 1 <= diff) { p_pcOut->r = (float)(uint8_t)stream->GetI1() / 255.0f; p_pcOut->g = p_pcOut->b = p_pcOut->r; break; } *p_pcOut = clrError; return; default: // skip unknown chunks, hope this won't cause any problems. return ParseColorChunk(p_pcOut,p_bAcceptPercent); }; // Do a gamma correction ... I'm not sure whether this is correct // or not but I'm too tired now to think of it if (bGamma) { p_pcOut->r = powf(p_pcOut->r, 1.0f / 2.2f); p_pcOut->g = powf(p_pcOut->g, 1.0f / 2.2f); p_pcOut->b = powf(p_pcOut->b, 1.0f / 2.2f); } return; }