/* Open Asset Import Library (assimp) ---------------------------------------------------------------------- Copyright (c) 2006-2021, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------- */ #ifndef ASSIMP_BUILD_NO_IQM_IMPORTER #include #include #include #include #include #include #include #include #include #include #include "IQMImporter.h" #include "iqm.h" // RESOURCES: // http://sauerbraten.org/iqm/ // https://github.com/lsalzman/iqm inline void swap_block( uint32_t *block, size_t size ){ (void)block; // suppress 'unreferenced formal parameter' MSVC warning size >>= 2; for ( size_t i = 0; i < size; ++i ) AI_SWAP4( block[ i ] ); } static constexpr aiImporterDesc desc = { "Inter-Quake Model Importer", "", "", "", aiImporterFlags_SupportBinaryFlavour, 0, 0, 0, 0, "iqm" }; namespace Assimp { // ------------------------------------------------------------------------------------------------ // Default constructor IQMImporter::IQMImporter() : mScene(nullptr) { // empty } // ------------------------------------------------------------------------------------------------ // Returns true, if file is a binary Inter-Quake Model file. bool IQMImporter::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool checkSig) const { const std::string extension = GetExtension(pFile); if (extension == "iqm") return true; else if (!extension.length() || checkSig) { if (!pIOHandler) { return true; } std::unique_ptr pStream(pIOHandler->Open(pFile, "rb")); unsigned char data[15]; if (!pStream || 15 != pStream->Read(data, 1, 15)) { return false; } return !memcmp(data, "INTERQUAKEMODEL", 15); } return false; } // ------------------------------------------------------------------------------------------------ const aiImporterDesc *IQMImporter::GetInfo() const { return &desc; } // ------------------------------------------------------------------------------------------------ // Model 3D import implementation void IQMImporter::InternReadFile(const std::string &file, aiScene *pScene, IOSystem *pIOHandler) { // Read file into memory std::unique_ptr pStream(pIOHandler->Open(file, "rb")); if (!pStream) { throw DeadlyImportError("Failed to open file ", file, "."); } // Get the file-size and validate it, throwing an exception when fails const size_t fileSize = pStream->FileSize(); if (fileSize < sizeof( iqmheader )) { throw DeadlyImportError("IQM-file ", file, " is too small."); } std::vector buffer(fileSize); unsigned char *data = buffer.data(); if (fileSize != pStream->Read(data, 1, fileSize)) { throw DeadlyImportError("Failed to read the file ", file, "."); } // get header iqmheader &hdr = reinterpret_cast( *data ); swap_block( &hdr.version, sizeof( iqmheader ) - sizeof( iqmheader::magic ) ); // extra check for header if (memcmp(data, IQM_MAGIC, sizeof( IQM_MAGIC ) ) || hdr.version != IQM_VERSION || hdr.filesize != fileSize) { throw DeadlyImportError("Bad binary header in file ", file, "."); } ASSIMP_LOG_DEBUG("IQM: loading ", file); // create the root node pScene->mRootNode = new aiNode( "" ); // Now rotate the whole scene 90 degrees around the x axis to convert to internal coordinate system pScene->mRootNode->mTransformation = aiMatrix4x4( 1.f, 0.f, 0.f, 0.f, 0.f, 0.f, 1.f, 0.f, 0.f, -1.f, 0.f, 0.f, 0.f, 0.f, 0.f, 1.f); pScene->mRootNode->mNumMeshes = hdr.num_meshes; pScene->mRootNode->mMeshes = new unsigned int[hdr.num_meshes]; std::iota( pScene->mRootNode->mMeshes, pScene->mRootNode->mMeshes + pScene->mRootNode->mNumMeshes, 0 ); mScene = pScene; // Allocate output storage pScene->mNumMeshes = 0; pScene->mMeshes = new aiMesh *[hdr.num_meshes](); // Set arrays to zero to ensue proper destruction if an exception is raised pScene->mNumMaterials = 0; pScene->mMaterials = new aiMaterial *[hdr.num_meshes](); // swap vertex arrays beforehand... for( auto array = reinterpret_cast( data + hdr.ofs_vertexarrays ), end = array + hdr.num_vertexarrays; array != end; ++array ) { swap_block( &array->type, sizeof( iqmvertexarray ) ); } // Read all surfaces from the file for( auto imesh = reinterpret_cast( data + hdr.ofs_meshes ), end_ = imesh + hdr.num_meshes; imesh != end_; ++imesh ) { swap_block( &imesh->name, sizeof( iqmmesh ) ); // Allocate output mesh & material auto mesh = pScene->mMeshes[pScene->mNumMeshes++] = new aiMesh(); mesh->mMaterialIndex = pScene->mNumMaterials; auto mat = pScene->mMaterials[pScene->mNumMaterials++] = new aiMaterial(); { auto text = reinterpret_cast( data + hdr.ofs_text ); aiString name( text + imesh->material ); mat->AddProperty( &name, AI_MATKEY_NAME ); mat->AddProperty( &name, AI_MATKEY_TEXTURE_DIFFUSE(0) ); } // Fill mesh information mesh->mPrimitiveTypes = aiPrimitiveType_TRIANGLE; mesh->mNumFaces = 0; mesh->mFaces = new aiFace[imesh->num_triangles]; // Fill in all triangles for( auto tri = reinterpret_cast( data + hdr.ofs_triangles ) + imesh->first_triangle, end = tri + imesh->num_triangles; tri != end; ++tri ) { swap_block( tri->vertex, sizeof( tri->vertex ) ); auto& face = mesh->mFaces[mesh->mNumFaces++]; face.mNumIndices = 3; face.mIndices = new unsigned int[3]{ tri->vertex[0] - imesh->first_vertex, tri->vertex[2] - imesh->first_vertex, tri->vertex[1] - imesh->first_vertex }; } // Fill in all vertices for( auto array = reinterpret_cast( data + hdr.ofs_vertexarrays ), end__ = array + hdr.num_vertexarrays; array != end__; ++array ) { const unsigned int nVerts = imesh->num_vertexes; const unsigned int step = array->size; switch ( array->type ) { case IQM_POSITION: if( array->format == IQM_FLOAT && step >= 3 ){ mesh->mNumVertices = nVerts; auto v = mesh->mVertices = new aiVector3D[nVerts]; for( auto f = reinterpret_cast( data + array->offset ) + imesh->first_vertex * step, end = f + nVerts * step; f != end; f += step, ++v ) { *v = { AI_BE( f[0] ), AI_BE( f[1] ), AI_BE( f[2] ) }; } } break; case IQM_TEXCOORD: if( array->format == IQM_FLOAT && step >= 2) { auto v = mesh->mTextureCoords[0] = new aiVector3D[nVerts]; mesh->mNumUVComponents[0] = 2; for( auto f = reinterpret_cast( data + array->offset ) + imesh->first_vertex * step, end = f + nVerts * step; f != end; f += step, ++v ) { *v = { AI_BE( f[0] ), 1 - AI_BE( f[1] ), 0 }; } } break; case IQM_NORMAL: if (array->format == IQM_FLOAT && step >= 3) { auto v = mesh->mNormals = new aiVector3D[nVerts]; for( auto f = reinterpret_cast( data + array->offset ) + imesh->first_vertex * step, end = f + nVerts * step; f != end; f += step, ++v ) { *v = { AI_BE( f[0] ), AI_BE( f[1] ), AI_BE( f[2] ) }; } } break; case IQM_COLOR: if (array->format == IQM_UBYTE && step >= 3) { auto v = mesh->mColors[0] = new aiColor4D[nVerts]; for( auto f = ( data + array->offset ) + imesh->first_vertex * step, end = f + nVerts * step; f != end; f += step, ++v ) { *v = { ( f[0] ) / 255.f, ( f[1] ) / 255.f, ( f[2] ) / 255.f, step == 3? 1 : ( f[3] ) / 255.f }; } } else if (array->format == IQM_FLOAT && step >= 3) { auto v = mesh->mColors[0] = new aiColor4D[nVerts]; for( auto f = reinterpret_cast( data + array->offset ) + imesh->first_vertex * step, end = f + nVerts * step; f != end; f += step, ++v ) { *v = { AI_BE( f[0] ), AI_BE( f[1] ), AI_BE( f[2] ), step == 3? 1 : AI_BE( f[3] ) }; } } break; case IQM_TANGENT: #if 0 if (array->format == IQM_FLOAT && step >= 3) { auto v = mesh->mTangents = new aiVector3D[nVerts]; for( auto f = reinterpret_cast( data + array->offset ) + imesh->first_vertex * step, end = f + nVerts * step; f != end; f += step, ++v ) { *v = { AI_BE( f[0] ), AI_BE( f[1] ), AI_BE( f[2] ) }; } } #endif break; case IQM_BLENDINDEXES: case IQM_BLENDWEIGHTS: case IQM_CUSTOM: break; // these attributes are not relevant. default: break; } } } } // ------------------------------------------------------------------------------------------------ } // Namespace Assimp #endif // !! ASSIMP_BUILD_NO_IQM_IMPORTER