/* --------------------------------------------------------------------------- Open Asset Import Library (assimp) --------------------------------------------------------------------------- Copyright (c) 2006-2017, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file PlyLoader.cpp * @brief Implementation of the PLY importer class */ #ifndef ASSIMP_BUILD_NO_PLY_IMPORTER // internal headers #include "PlyLoader.h" #include "IOStreamBuffer.h" #include "Macros.h" #include #include #include #include using namespace Assimp; static const aiImporterDesc desc = { "Stanford Polygon Library (PLY) Importer", "", "", "", aiImporterFlags_SupportBinaryFlavour | aiImporterFlags_SupportTextFlavour, 0, 0, 0, 0, "ply" }; // ------------------------------------------------------------------------------------------------ // Internal stuff namespace { // ------------------------------------------------------------------------------------------------ // Checks that property index is within range template const T &GetProperty(const std::vector &props, int idx) { if (static_cast(idx) >= props.size()) { throw DeadlyImportError("Invalid .ply file: Property index is out of range."); } return props[idx]; } } // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer PLYImporter::PLYImporter() : mBuffer() , pcDOM() , mGeneratedMesh(NULL){ // empty } // ------------------------------------------------------------------------------------------------ // Destructor, private as well PLYImporter::~PLYImporter() { // empty } // ------------------------------------------------------------------------------------------------ // Returns whether the class can handle the format of the given file. bool PLYImporter::CanRead(const std::string& pFile, IOSystem* pIOHandler, bool checkSig) const { const std::string extension = GetExtension(pFile); if (extension == "ply") return true; else if (!extension.length() || checkSig) { if (!pIOHandler)return true; const char* tokens[] = { "ply" }; return SearchFileHeaderForToken(pIOHandler, pFile, tokens, 1); } return false; } // ------------------------------------------------------------------------------------------------ const aiImporterDesc* PLYImporter::GetInfo() const { return &desc; } // ------------------------------------------------------------------------------------------------ static bool isBigEndian(const char* szMe) { ai_assert(NULL != szMe); // binary_little_endian // binary_big_endian bool isBigEndian(false); #if (defined AI_BUILD_BIG_ENDIAN) if ( 'l' == *szMe || 'L' == *szMe ) { isBigEndian = true; } #else if ('b' == *szMe || 'B' == *szMe) { isBigEndian = true; } #endif // ! AI_BUILD_BIG_ENDIAN return isBigEndian; } // ------------------------------------------------------------------------------------------------ // Imports the given file into the given scene structure. void PLYImporter::InternReadFile(const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler) { static const std::string mode = "rb"; std::unique_ptr fileStream(pIOHandler->Open(pFile, mode)); if (!fileStream.get()) { throw DeadlyImportError("Failed to open file " + pFile + "."); } // Get the file-size size_t fileSize = fileStream->FileSize(); if ( 0 == fileSize ) { throw DeadlyImportError("File " + pFile + " is empty."); } IOStreamBuffer streamedBuffer(1024 * 1024); streamedBuffer.open(fileStream.get()); // the beginning of the file must be PLY - magic, magic std::vector headerCheck; streamedBuffer.getNextLine(headerCheck); if ((headerCheck.size() >= 3) && (headerCheck[0] != 'P' && headerCheck[0] != 'p') || (headerCheck[1] != 'L' && headerCheck[1] != 'l') || (headerCheck[2] != 'Y' && headerCheck[2] != 'y')) { streamedBuffer.close(); throw DeadlyImportError("Invalid .ply file: Magic number \'ply\' is no there"); } std::vector mBuffer2; streamedBuffer.getNextLine(mBuffer2); mBuffer = (unsigned char*)&mBuffer2[0]; char* szMe = (char*)&this->mBuffer[0]; SkipSpacesAndLineEnd(szMe, (const char**)&szMe); // determine the format of the file data and construct the aimesh PLY::DOM sPlyDom; this->pcDOM = &sPlyDom; if (TokenMatch(szMe, "format", 6)) { if (TokenMatch(szMe, "ascii", 5)) { SkipLine(szMe, (const char**)&szMe); if (!PLY::DOM::ParseInstance(streamedBuffer, &sPlyDom, this)) { if (mGeneratedMesh != NULL) delete(mGeneratedMesh); streamedBuffer.close(); throw DeadlyImportError("Invalid .ply file: Unable to build DOM (#1)"); } } else if (!::strncmp(szMe, "binary_", 7)) { szMe += 7; const bool bIsBE(isBigEndian(szMe)); // skip the line, parse the rest of the header and build the DOM if (!PLY::DOM::ParseInstanceBinary(streamedBuffer, &sPlyDom, this, bIsBE)) { if (mGeneratedMesh != NULL) delete(mGeneratedMesh); streamedBuffer.close(); throw DeadlyImportError("Invalid .ply file: Unable to build DOM (#2)"); } } else { if (mGeneratedMesh != NULL) delete(mGeneratedMesh); streamedBuffer.close(); throw DeadlyImportError("Invalid .ply file: Unknown file format"); } } else { AI_DEBUG_INVALIDATE_PTR(this->mBuffer); if (mGeneratedMesh != NULL) delete(mGeneratedMesh); streamedBuffer.close(); throw DeadlyImportError("Invalid .ply file: Missing format specification"); } //free the file buffer streamedBuffer.close(); if (mGeneratedMesh == NULL) { throw DeadlyImportError("Invalid .ply file: Unable to extract mesh data "); } // if no face list is existing we assume that the vertex // list is containing a list of points bool pointsOnly = mGeneratedMesh->mFaces == NULL ? true : false; if (pointsOnly) { if (mGeneratedMesh->mNumVertices < 3) { if (mGeneratedMesh != NULL) delete(mGeneratedMesh); streamedBuffer.close(); throw DeadlyImportError("Invalid .ply file: Not enough " "vertices to build a proper face list. "); } const unsigned int iNum = (unsigned int)mGeneratedMesh->mNumVertices / 3; mGeneratedMesh->mNumFaces = iNum; mGeneratedMesh->mFaces = new aiFace[mGeneratedMesh->mNumFaces]; for (unsigned int i = 0; i < iNum; ++i) { mGeneratedMesh->mFaces[i].mNumIndices = 3; mGeneratedMesh->mFaces[i].mIndices = new unsigned int[3]; mGeneratedMesh->mFaces[i].mIndices[0] = (i * 3); mGeneratedMesh->mFaces[i].mIndices[1] = (i * 3) + 1; mGeneratedMesh->mFaces[i].mIndices[2] = (i * 3) + 2; } } // now load a list of all materials std::vector avMaterials; std::string defaultTexture; LoadMaterial(&avMaterials, defaultTexture, pointsOnly); // now generate the output scene object. Fill the material list pScene->mNumMaterials = (unsigned int)avMaterials.size(); pScene->mMaterials = new aiMaterial*[pScene->mNumMaterials]; for (unsigned int i = 0; i < pScene->mNumMaterials; ++i) { pScene->mMaterials[i] = avMaterials[i]; } // fill the mesh list pScene->mNumMeshes = 1; pScene->mMeshes = new aiMesh*[pScene->mNumMeshes]; pScene->mMeshes[0] = mGeneratedMesh; // generate a simple node structure pScene->mRootNode = new aiNode(); pScene->mRootNode->mNumMeshes = pScene->mNumMeshes; pScene->mRootNode->mMeshes = new unsigned int[pScene->mNumMeshes]; for (unsigned int i = 0; i < pScene->mRootNode->mNumMeshes; ++i) { pScene->mRootNode->mMeshes[i] = i; } } void PLYImporter::LoadVertex(const PLY::Element* pcElement, const PLY::ElementInstance* instElement, unsigned int pos) { ai_assert(NULL != pcElement); ai_assert(NULL != instElement); ai_uint aiPositions[3] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; PLY::EDataType aiTypes[3] = { EDT_Char, EDT_Char, EDT_Char }; ai_uint aiNormal[3] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; PLY::EDataType aiNormalTypes[3] = { EDT_Char, EDT_Char, EDT_Char }; unsigned int aiColors[4] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; PLY::EDataType aiColorsTypes[4] = { EDT_Char, EDT_Char, EDT_Char, EDT_Char }; unsigned int aiTexcoord[2] = { 0xFFFFFFFF, 0xFFFFFFFF }; PLY::EDataType aiTexcoordTypes[2] = { EDT_Char, EDT_Char }; unsigned int cnt = 0; // now check whether which normal components are available unsigned int _a = 0; for (std::vector::const_iterator a = pcElement->alProperties.begin(); a != pcElement->alProperties.end(); ++a, ++_a) { if ((*a).bIsList)continue; // Positions if (PLY::EST_XCoord == (*a).Semantic) { cnt++; aiPositions[0] = _a; aiTypes[0] = (*a).eType; } else if (PLY::EST_YCoord == (*a).Semantic) { cnt++; aiPositions[1] = _a; aiTypes[1] = (*a).eType; } else if (PLY::EST_ZCoord == (*a).Semantic) { cnt++; aiPositions[2] = _a; aiTypes[2] = (*a).eType; } // Normals else if (PLY::EST_XNormal == (*a).Semantic) { cnt++; aiNormal[0] = _a; aiNormalTypes[0] = (*a).eType; } else if (PLY::EST_YNormal == (*a).Semantic) { cnt++; aiNormal[1] = _a; aiNormalTypes[1] = (*a).eType; } else if (PLY::EST_ZNormal == (*a).Semantic) { cnt++; aiNormal[2] = _a; aiNormalTypes[2] = (*a).eType; } // Colors else if (PLY::EST_Red == (*a).Semantic) { cnt++; aiColors[0] = _a; aiColorsTypes[0] = (*a).eType; } else if (PLY::EST_Green == (*a).Semantic) { cnt++; aiColors[1] = _a; aiColorsTypes[1] = (*a).eType; } else if (PLY::EST_Blue == (*a).Semantic) { cnt++; aiColors[2] = _a; aiColorsTypes[2] = (*a).eType; } else if (PLY::EST_Alpha == (*a).Semantic) { cnt++; aiColors[3] = _a; aiColorsTypes[3] = (*a).eType; } // Texture coordinates else if (PLY::EST_UTextureCoord == (*a).Semantic) { cnt++; aiTexcoord[0] = _a; aiTexcoordTypes[0] = (*a).eType; } else if (PLY::EST_VTextureCoord == (*a).Semantic) { cnt++; aiTexcoord[1] = _a; aiTexcoordTypes[1] = (*a).eType; } } // check whether we have a valid source for the vertex data if (0 != cnt) { // Position aiVector3D vOut; if (0xFFFFFFFF != aiPositions[0]) { vOut.x = PLY::PropertyInstance::ConvertTo( GetProperty(instElement->alProperties, aiPositions[0]).avList.front(), aiTypes[0]); } if (0xFFFFFFFF != aiPositions[1]) { vOut.y = PLY::PropertyInstance::ConvertTo( GetProperty(instElement->alProperties, aiPositions[1]).avList.front(), aiTypes[1]); } if (0xFFFFFFFF != aiPositions[2]) { vOut.z = PLY::PropertyInstance::ConvertTo( GetProperty(instElement->alProperties, aiPositions[2]).avList.front(), aiTypes[2]); } // Normals aiVector3D nOut; bool haveNormal = false; if (0xFFFFFFFF != aiNormal[0]) { nOut.x = PLY::PropertyInstance::ConvertTo( GetProperty(instElement->alProperties, aiNormal[0]).avList.front(), aiNormalTypes[0]); haveNormal = true; } if (0xFFFFFFFF != aiNormal[1]) { nOut.y = PLY::PropertyInstance::ConvertTo( GetProperty(instElement->alProperties, aiNormal[1]).avList.front(), aiNormalTypes[1]); haveNormal = true; } if (0xFFFFFFFF != aiNormal[2]) { nOut.z = PLY::PropertyInstance::ConvertTo( GetProperty(instElement->alProperties, aiNormal[2]).avList.front(), aiNormalTypes[2]); haveNormal = true; } //Colors aiColor4D cOut; bool haveColor = false; if (0xFFFFFFFF != aiColors[0]) { cOut.r = NormalizeColorValue(GetProperty(instElement->alProperties, aiColors[0]).avList.front(), aiColorsTypes[0]); haveColor = true; } if (0xFFFFFFFF != aiColors[1]) { cOut.g = NormalizeColorValue(GetProperty(instElement->alProperties, aiColors[1]).avList.front(), aiColorsTypes[1]); haveColor = true; } if (0xFFFFFFFF != aiColors[2]) { cOut.b = NormalizeColorValue(GetProperty(instElement->alProperties, aiColors[2]).avList.front(), aiColorsTypes[2]); haveColor = true; } // assume 1.0 for the alpha channel ifit is not set if (0xFFFFFFFF == aiColors[3]) { cOut.a = 1.0; } else { cOut.a = NormalizeColorValue(GetProperty(instElement->alProperties, aiColors[3]).avList.front(), aiColorsTypes[3]); haveColor = true; } //Texture coordinates aiVector3D tOut; tOut.z = 0; bool haveTextureCoords = false; if (0xFFFFFFFF != aiTexcoord[0]) { tOut.x = PLY::PropertyInstance::ConvertTo( GetProperty(instElement->alProperties, aiTexcoord[0]).avList.front(), aiTexcoordTypes[0]); haveTextureCoords = true; } if (0xFFFFFFFF != aiTexcoord[1]) { tOut.y = PLY::PropertyInstance::ConvertTo( GetProperty(instElement->alProperties, aiTexcoord[1]).avList.front(), aiTexcoordTypes[1]); haveTextureCoords = true; } //create aiMesh if needed if (mGeneratedMesh == NULL) { mGeneratedMesh = new aiMesh(); mGeneratedMesh->mMaterialIndex = 0; } if (mGeneratedMesh->mVertices == NULL) { mGeneratedMesh->mNumVertices = pcElement->NumOccur; mGeneratedMesh->mVertices = new aiVector3D[mGeneratedMesh->mNumVertices]; } mGeneratedMesh->mVertices[pos] = vOut; if (haveNormal) { if (mGeneratedMesh->mNormals == NULL) mGeneratedMesh->mNormals = new aiVector3D[mGeneratedMesh->mNumVertices]; mGeneratedMesh->mNormals[pos] = nOut; } if (haveColor) { if (mGeneratedMesh->mColors[0] == NULL) mGeneratedMesh->mColors[0] = new aiColor4D[mGeneratedMesh->mNumVertices]; mGeneratedMesh->mColors[0][pos] = cOut; } if (haveTextureCoords) { if (mGeneratedMesh->mTextureCoords[0] == NULL) { mGeneratedMesh->mNumUVComponents[0] = 2; mGeneratedMesh->mTextureCoords[0] = new aiVector3D[mGeneratedMesh->mNumVertices]; } mGeneratedMesh->mTextureCoords[0][pos] = tOut; } } } // ------------------------------------------------------------------------------------------------ // Convert a color component to [0...1] ai_real PLYImporter::NormalizeColorValue(PLY::PropertyInstance::ValueUnion val, PLY::EDataType eType) { switch (eType) { case EDT_Float: return val.fFloat; case EDT_Double: return (ai_real)val.fDouble; case EDT_UChar: return (ai_real)val.iUInt / (ai_real)0xFF; case EDT_Char: return (ai_real)(val.iInt + (0xFF / 2)) / (ai_real)0xFF; case EDT_UShort: return (ai_real)val.iUInt / (ai_real)0xFFFF; case EDT_Short: return (ai_real)(val.iInt + (0xFFFF / 2)) / (ai_real)0xFFFF; case EDT_UInt: return (ai_real)val.iUInt / (ai_real)0xFFFF; case EDT_Int: return ((ai_real)val.iInt / (ai_real)0xFF) + 0.5f; default:; }; return 0.0f; } // ------------------------------------------------------------------------------------------------ // Try to extract proper faces from the PLY DOM void PLYImporter::LoadFace(const PLY::Element* pcElement, const PLY::ElementInstance* instElement, unsigned int pos) { ai_assert(NULL != pcElement); ai_assert(NULL != instElement); if (mGeneratedMesh == NULL) throw DeadlyImportError("Invalid .ply file: Vertices shoud be declared before faces"); bool bOne = false; // index of the vertex index list unsigned int iProperty = 0xFFFFFFFF; PLY::EDataType eType = EDT_Char; bool bIsTriStrip = false; // index of the material index property //unsigned int iMaterialIndex = 0xFFFFFFFF; //PLY::EDataType eType2 = EDT_Char; // texture coordinates unsigned int iTextureCoord = 0xFFFFFFFF; PLY::EDataType eType3 = EDT_Char; // face = unique number of vertex indices if (PLY::EEST_Face == pcElement->eSemantic) { unsigned int _a = 0; for (std::vector::const_iterator a = pcElement->alProperties.begin(); a != pcElement->alProperties.end(); ++a, ++_a) { if (PLY::EST_VertexIndex == (*a).Semantic) { // must be a dynamic list! if (!(*a).bIsList) continue; iProperty = _a; bOne = true; eType = (*a).eType; } /*else if (PLY::EST_MaterialIndex == (*a).Semantic) { if ((*a).bIsList) continue; iMaterialIndex = _a; bOne = true; eType2 = (*a).eType; }*/ else if (PLY::EST_TextureCoordinates == (*a).Semantic) { // must be a dynamic list! if (!(*a).bIsList) continue; iTextureCoord = _a; bOne = true; eType3 = (*a).eType; } } } // triangle strip // TODO: triangle strip and material index support??? else if (PLY::EEST_TriStrip == pcElement->eSemantic) { unsigned int _a = 0; for (std::vector::const_iterator a = pcElement->alProperties.begin(); a != pcElement->alProperties.end(); ++a, ++_a) { // must be a dynamic list! if (!(*a).bIsList) continue; iProperty = _a; bOne = true; bIsTriStrip = true; eType = (*a).eType; break; } } // check whether we have at least one per-face information set if (bOne) { if (mGeneratedMesh->mFaces == NULL) { mGeneratedMesh->mNumFaces = pcElement->NumOccur; mGeneratedMesh->mFaces = new aiFace[mGeneratedMesh->mNumFaces]; } if (!bIsTriStrip) { // parse the list of vertex indices if (0xFFFFFFFF != iProperty) { const unsigned int iNum = (unsigned int)GetProperty(instElement->alProperties, iProperty).avList.size(); mGeneratedMesh->mFaces[pos].mNumIndices = iNum; mGeneratedMesh->mFaces[pos].mIndices = new unsigned int[iNum]; std::vector::const_iterator p = GetProperty(instElement->alProperties, iProperty).avList.begin(); for (unsigned int a = 0; a < iNum; ++a, ++p) { mGeneratedMesh->mFaces[pos].mIndices[a] = PLY::PropertyInstance::ConvertTo(*p, eType); } } // parse the material index // cannot be handled without processing the whole file first /*if (0xFFFFFFFF != iMaterialIndex) { mGeneratedMesh->mFaces[pos]. = PLY::PropertyInstance::ConvertTo( GetProperty(instElement->alProperties, iMaterialIndex).avList.front(), eType2); }*/ if (0xFFFFFFFF != iTextureCoord) { const unsigned int iNum = (unsigned int)GetProperty(instElement->alProperties, iTextureCoord).avList.size(); //should be 6 coords std::vector::const_iterator p = GetProperty(instElement->alProperties, iTextureCoord).avList.begin(); if ((iNum / 3) == 2) // X Y coord { for (unsigned int a = 0; a < iNum; ++a, ++p) { unsigned int vindex = mGeneratedMesh->mFaces[pos].mIndices[a / 2]; if (vindex < mGeneratedMesh->mNumVertices) { if (mGeneratedMesh->mTextureCoords[0] == NULL) { mGeneratedMesh->mNumUVComponents[0] = 2; mGeneratedMesh->mTextureCoords[0] = new aiVector3D[mGeneratedMesh->mNumVertices]; } if (a % 2 == 0) mGeneratedMesh->mTextureCoords[0][vindex].x = PLY::PropertyInstance::ConvertTo(*p, eType3); else mGeneratedMesh->mTextureCoords[0][vindex].y = PLY::PropertyInstance::ConvertTo(*p, eType3); mGeneratedMesh->mTextureCoords[0][vindex].z = 0; } } } } } else // triangle strips { // normally we have only one triangle strip instance where // a value of -1 indicates a restart of the strip bool flip = false; const std::vector& quak = GetProperty(instElement->alProperties, iProperty).avList; //pvOut->reserve(pvOut->size() + quak.size() + (quak.size()>>2u)); //Limits memory consumption int aiTable[2] = { -1, -1 }; for (std::vector::const_iterator a = quak.begin(); a != quak.end(); ++a) { const int p = PLY::PropertyInstance::ConvertTo(*a, eType); if (-1 == p) { // restart the strip ... aiTable[0] = aiTable[1] = -1; flip = false; continue; } if (-1 == aiTable[0]) { aiTable[0] = p; continue; } if (-1 == aiTable[1]) { aiTable[1] = p; continue; } if (mGeneratedMesh->mFaces == NULL) { mGeneratedMesh->mNumFaces = pcElement->NumOccur; mGeneratedMesh->mFaces = new aiFace[mGeneratedMesh->mNumFaces]; } mGeneratedMesh->mFaces[pos].mNumIndices = 3; mGeneratedMesh->mFaces[pos].mIndices = new unsigned int[3]; mGeneratedMesh->mFaces[pos].mIndices[0] = aiTable[0]; mGeneratedMesh->mFaces[pos].mIndices[1] = aiTable[1]; mGeneratedMesh->mFaces[pos].mIndices[2] = aiTable[2]; if ((flip = !flip)) { std::swap(mGeneratedMesh->mFaces[pos].mIndices[0], mGeneratedMesh->mFaces[pos].mIndices[1]); } aiTable[0] = aiTable[1]; aiTable[1] = p; } } } } // ------------------------------------------------------------------------------------------------ // Get a RGBA color in [0...1] range void PLYImporter::GetMaterialColor(const std::vector& avList, unsigned int aiPositions[4], PLY::EDataType aiTypes[4], aiColor4D* clrOut) { ai_assert(NULL != clrOut); if (0xFFFFFFFF == aiPositions[0])clrOut->r = 0.0f; else { clrOut->r = NormalizeColorValue(GetProperty(avList, aiPositions[0]).avList.front(), aiTypes[0]); } if (0xFFFFFFFF == aiPositions[1])clrOut->g = 0.0f; else { clrOut->g = NormalizeColorValue(GetProperty(avList, aiPositions[1]).avList.front(), aiTypes[1]); } if (0xFFFFFFFF == aiPositions[2])clrOut->b = 0.0f; else { clrOut->b = NormalizeColorValue(GetProperty(avList, aiPositions[2]).avList.front(), aiTypes[2]); } // assume 1.0 for the alpha channel ifit is not set if (0xFFFFFFFF == aiPositions[3])clrOut->a = 1.0f; else { clrOut->a = NormalizeColorValue(GetProperty(avList, aiPositions[3]).avList.front(), aiTypes[3]); } } // ------------------------------------------------------------------------------------------------ // Extract a material from the PLY DOM void PLYImporter::LoadMaterial(std::vector* pvOut, std::string &defaultTexture, const bool pointsOnly) { ai_assert(NULL != pvOut); // diffuse[4], specular[4], ambient[4] // rgba order unsigned int aaiPositions[3][4] = { { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }, { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }, { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }, }; PLY::EDataType aaiTypes[3][4] = { { EDT_Char, EDT_Char, EDT_Char, EDT_Char }, { EDT_Char, EDT_Char, EDT_Char, EDT_Char }, { EDT_Char, EDT_Char, EDT_Char, EDT_Char } }; PLY::ElementInstanceList* pcList = NULL; unsigned int iPhong = 0xFFFFFFFF; PLY::EDataType ePhong = EDT_Char; unsigned int iOpacity = 0xFFFFFFFF; PLY::EDataType eOpacity = EDT_Char; // search in the DOM for a vertex entry unsigned int _i = 0; for (std::vector::const_iterator i = this->pcDOM->alElements.begin(); i != this->pcDOM->alElements.end(); ++i, ++_i) { if (PLY::EEST_Material == (*i).eSemantic) { pcList = &this->pcDOM->alElementData[_i]; // now check whether which coordinate sets are available unsigned int _a = 0; for (std::vector::const_iterator a = (*i).alProperties.begin(); a != (*i).alProperties.end(); ++a, ++_a) { if ((*a).bIsList)continue; // pohng specularity ----------------------------------- if (PLY::EST_PhongPower == (*a).Semantic) { iPhong = _a; ePhong = (*a).eType; } // general opacity ----------------------------------- if (PLY::EST_Opacity == (*a).Semantic) { iOpacity = _a; eOpacity = (*a).eType; } // diffuse color channels ----------------------------------- if (PLY::EST_DiffuseRed == (*a).Semantic) { aaiPositions[0][0] = _a; aaiTypes[0][0] = (*a).eType; } else if (PLY::EST_DiffuseGreen == (*a).Semantic) { aaiPositions[0][1] = _a; aaiTypes[0][1] = (*a).eType; } else if (PLY::EST_DiffuseBlue == (*a).Semantic) { aaiPositions[0][2] = _a; aaiTypes[0][2] = (*a).eType; } else if (PLY::EST_DiffuseAlpha == (*a).Semantic) { aaiPositions[0][3] = _a; aaiTypes[0][3] = (*a).eType; } // specular color channels ----------------------------------- else if (PLY::EST_SpecularRed == (*a).Semantic) { aaiPositions[1][0] = _a; aaiTypes[1][0] = (*a).eType; } else if (PLY::EST_SpecularGreen == (*a).Semantic) { aaiPositions[1][1] = _a; aaiTypes[1][1] = (*a).eType; } else if (PLY::EST_SpecularBlue == (*a).Semantic) { aaiPositions[1][2] = _a; aaiTypes[1][2] = (*a).eType; } else if (PLY::EST_SpecularAlpha == (*a).Semantic) { aaiPositions[1][3] = _a; aaiTypes[1][3] = (*a).eType; } // ambient color channels ----------------------------------- else if (PLY::EST_AmbientRed == (*a).Semantic) { aaiPositions[2][0] = _a; aaiTypes[2][0] = (*a).eType; } else if (PLY::EST_AmbientGreen == (*a).Semantic) { aaiPositions[2][1] = _a; aaiTypes[2][1] = (*a).eType; } else if (PLY::EST_AmbientBlue == (*a).Semantic) { aaiPositions[2][2] = _a; aaiTypes[2][2] = (*a).eType; } else if (PLY::EST_AmbientAlpha == (*a).Semantic) { aaiPositions[2][3] = _a; aaiTypes[2][3] = (*a).eType; } } break; } else if (PLY::EEST_TextureFile == (*i).eSemantic) { defaultTexture = (*i).szName; } } // check whether we have a valid source for the material data if (NULL != pcList) { for (std::vector::const_iterator i = pcList->alInstances.begin(); i != pcList->alInstances.end(); ++i) { aiColor4D clrOut; aiMaterial* pcHelper = new aiMaterial(); // build the diffuse material color GetMaterialColor((*i).alProperties, aaiPositions[0], aaiTypes[0], &clrOut); pcHelper->AddProperty(&clrOut, 1, AI_MATKEY_COLOR_DIFFUSE); // build the specular material color GetMaterialColor((*i).alProperties, aaiPositions[1], aaiTypes[1], &clrOut); pcHelper->AddProperty(&clrOut, 1, AI_MATKEY_COLOR_SPECULAR); // build the ambient material color GetMaterialColor((*i).alProperties, aaiPositions[2], aaiTypes[2], &clrOut); pcHelper->AddProperty(&clrOut, 1, AI_MATKEY_COLOR_AMBIENT); // handle phong power and shading mode int iMode = (int)aiShadingMode_Gouraud; if (0xFFFFFFFF != iPhong) { ai_real fSpec = PLY::PropertyInstance::ConvertTo(GetProperty((*i).alProperties, iPhong).avList.front(), ePhong); // if shininess is 0 (and the pow() calculation would therefore always // become 1, not depending on the angle), use gouraud lighting if (fSpec) { // scale this with 15 ... hopefully this is correct fSpec *= 15; pcHelper->AddProperty(&fSpec, 1, AI_MATKEY_SHININESS); iMode = (int)aiShadingMode_Phong; } } pcHelper->AddProperty(&iMode, 1, AI_MATKEY_SHADING_MODEL); // handle opacity if (0xFFFFFFFF != iOpacity) { ai_real fOpacity = PLY::PropertyInstance::ConvertTo(GetProperty((*i).alProperties, iPhong).avList.front(), eOpacity); pcHelper->AddProperty(&fOpacity, 1, AI_MATKEY_OPACITY); } // The face order is absolutely undefined for PLY, so we have to // use two-sided rendering to be sure it's ok. const int two_sided = 1; pcHelper->AddProperty(&two_sided, 1, AI_MATKEY_TWOSIDED); //default texture if (!defaultTexture.empty()) { const aiString name(defaultTexture.c_str()); pcHelper->AddProperty(&name, _AI_MATKEY_TEXTURE_BASE, aiTextureType_DIFFUSE, 0); } if (!pointsOnly) { const int two_sided = 1; pcHelper->AddProperty(&two_sided, 1, AI_MATKEY_TWOSIDED); } //set to wireframe, so when using this material info we can switch to points rendering if (pointsOnly) { const int wireframe = 1; pcHelper->AddProperty(&wireframe, 1, AI_MATKEY_ENABLE_WIREFRAME); } // add the newly created material instance to the list pvOut->push_back(pcHelper); } } else { // generate a default material aiMaterial* pcHelper = new aiMaterial(); // fill in a default material int iMode = (int)aiShadingMode_Gouraud; pcHelper->AddProperty(&iMode, 1, AI_MATKEY_SHADING_MODEL); //generate white material most 3D engine just multiply ambient / diffuse color with actual ambient / light color aiColor3D clr; clr.b = clr.g = clr.r = 1.0f; pcHelper->AddProperty(&clr, 1, AI_MATKEY_COLOR_DIFFUSE); pcHelper->AddProperty(&clr, 1, AI_MATKEY_COLOR_SPECULAR); clr.b = clr.g = clr.r = 1.0f; pcHelper->AddProperty(&clr, 1, AI_MATKEY_COLOR_AMBIENT); // The face order is absolutely undefined for PLY, so we have to // use two-sided rendering to be sure it's ok. if (!pointsOnly) { const int two_sided = 1; pcHelper->AddProperty(&two_sided, 1, AI_MATKEY_TWOSIDED); } //default texture if (!defaultTexture.empty()) { const aiString name(defaultTexture.c_str()); pcHelper->AddProperty(&name, _AI_MATKEY_TEXTURE_BASE, aiTextureType_DIFFUSE, 0); } //set to wireframe, so when using this material info we can switch to points rendering if (pointsOnly) { const int wireframe = 1; pcHelper->AddProperty(&wireframe, 1, AI_MATKEY_ENABLE_WIREFRAME); } pvOut->push_back(pcHelper); } } #endif // !! ASSIMP_BUILD_NO_PLY_IMPORTER