/* --------------------------------------------------------------------------- Open Asset Import Library (assimp) --------------------------------------------------------------------------- Copyright (c) 2006-2022, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file ASEParser.cpp * @brief Implementation of the ASE parser class */ #ifndef ASSIMP_BUILD_NO_ASE_IMPORTER #ifndef ASSIMP_BUILD_NO_3DS_IMPORTER // internal headers #include "ASELoader.h" #include "PostProcessing/TextureTransform.h" #include #include namespace Assimp { using namespace Assimp::ASE; // ------------------------------------------------------------------------------------------------ // Begin an ASE parsing function #define AI_ASE_PARSER_INIT() \ int iDepth = 0; // ------------------------------------------------------------------------------------------------ // Handle a "top-level" section in the file. EOF is no error in this case. #define AI_ASE_HANDLE_TOP_LEVEL_SECTION() \ else if ('{' == *filePtr) iDepth++; \ else if ('}' == *filePtr) { \ if (0 == --iDepth) { \ ++filePtr; \ SkipToNextToken(); \ return; \ } \ } \ if ('\0' == *filePtr) { \ return; \ } \ if (IsLineEnd(*filePtr) && !bLastWasEndLine) { \ ++iLineNumber; \ bLastWasEndLine = true; \ } else \ bLastWasEndLine = false; \ ++filePtr; // ------------------------------------------------------------------------------------------------ // Handle a nested section in the file. EOF is an error in this case // @param level "Depth" of the section // @param msg Full name of the section (including the asterisk) #define AI_ASE_HANDLE_SECTION(level, msg) \ if ('{' == *filePtr) \ iDepth++; \ else if ('}' == *filePtr) { \ if (0 == --iDepth) { \ ++filePtr; \ SkipToNextToken(); \ return; \ } \ } else if ('\0' == *filePtr) { \ LogError("Encountered unexpected EOL while parsing a " msg \ " chunk (Level " level ")"); \ } \ if (IsLineEnd(*filePtr) && !bLastWasEndLine) { \ ++iLineNumber; \ bLastWasEndLine = true; \ } else \ bLastWasEndLine = false; \ ++filePtr; // ------------------------------------------------------------------------------------------------ Parser::Parser(const char *szFile, unsigned int fileFormatDefault) { ai_assert(nullptr != szFile); filePtr = szFile; iFileFormat = fileFormatDefault; // make sure that the color values are invalid m_clrBackground.r = get_qnan(); m_clrAmbient.r = get_qnan(); // setup some default values iLineNumber = 0; iFirstFrame = 0; iLastFrame = 0; iFrameSpeed = 30; // use 30 as default value for this property iTicksPerFrame = 1; // use 1 as default value for this property bLastWasEndLine = false; // need to handle \r\n seqs due to binary file mapping } // ------------------------------------------------------------------------------------------------ void Parser::LogWarning(const char *szWarn) { ai_assert(nullptr != szWarn); char szTemp[2048]; #if _MSC_VER >= 1400 sprintf_s(szTemp, "Line %u: %s", iLineNumber, szWarn); #else ai_snprintf(szTemp, sizeof(szTemp), "Line %u: %s", iLineNumber, szWarn); #endif // output the warning to the logger ... ASSIMP_LOG_WARN(szTemp); } // ------------------------------------------------------------------------------------------------ void Parser::LogInfo(const char *szWarn) { ai_assert(nullptr != szWarn); char szTemp[1024]; #if _MSC_VER >= 1400 sprintf_s(szTemp, "Line %u: %s", iLineNumber, szWarn); #else ai_snprintf(szTemp, 1024, "Line %u: %s", iLineNumber, szWarn); #endif // output the information to the logger ... ASSIMP_LOG_INFO(szTemp); } // ------------------------------------------------------------------------------------------------ AI_WONT_RETURN void Parser::LogError(const char *szWarn) { ai_assert(nullptr != szWarn); char szTemp[1024]; #if _MSC_VER >= 1400 sprintf_s(szTemp, "Line %u: %s", iLineNumber, szWarn); #else ai_snprintf(szTemp, 1024, "Line %u: %s", iLineNumber, szWarn); #endif // throw an exception throw DeadlyImportError(szTemp); } // ------------------------------------------------------------------------------------------------ bool Parser::SkipToNextToken() { while (true) { char me = *filePtr; // increase the line number counter if necessary if (IsLineEnd(me) && !bLastWasEndLine) { ++iLineNumber; bLastWasEndLine = true; } else bLastWasEndLine = false; if ('*' == me || '}' == me || '{' == me) return true; if ('\0' == me) return false; ++filePtr; } } // ------------------------------------------------------------------------------------------------ bool Parser::SkipSection() { // must handle subsections ... int iCnt = 0; while (true) { if ('}' == *filePtr) { --iCnt; if (0 == iCnt) { // go to the next valid token ... ++filePtr; SkipToNextToken(); return true; } } else if ('{' == *filePtr) { ++iCnt; } else if ('\0' == *filePtr) { LogWarning("Unable to parse block: Unexpected EOF, closing bracket \'}\' was expected [#1]"); return false; } else if (IsLineEnd(*filePtr)) ++iLineNumber; ++filePtr; } } // ------------------------------------------------------------------------------------------------ void Parser::Parse() { AI_ASE_PARSER_INIT(); while (true) { if ('*' == *filePtr) { ++filePtr; // Version should be 200. Validate this ... if (TokenMatch(filePtr, "3DSMAX_ASCIIEXPORT", 18)) { unsigned int fmt; ParseLV4MeshLong(fmt); if (fmt > 200) { LogWarning("Unknown file format version: *3DSMAX_ASCIIEXPORT should \ be <= 200"); } // ************************************************************* // - fmt will be 0 if we're unable to read the version number // there are some faulty files without a version number ... // in this case we'll guess the exact file format by looking // at the file extension (ASE, ASK, ASC) // ************************************************************* if (fmt) { iFileFormat = fmt; } continue; } // main scene information if (TokenMatch(filePtr, "SCENE", 5)) { ParseLV1SceneBlock(); continue; } // "group" - no implementation yet, in facte // we're just ignoring them for the moment if (TokenMatch(filePtr, "GROUP", 5)) { Parse(); continue; } // material list if (TokenMatch(filePtr, "MATERIAL_LIST", 13)) { ParseLV1MaterialListBlock(); continue; } // geometric object (mesh) if (TokenMatch(filePtr, "GEOMOBJECT", 10)) { m_vMeshes.emplace_back("UNNAMED"); ParseLV1ObjectBlock(m_vMeshes.back()); continue; } // helper object = dummy in the hierarchy if (TokenMatch(filePtr, "HELPEROBJECT", 12)) { m_vDummies.emplace_back(); ParseLV1ObjectBlock(m_vDummies.back()); continue; } // light object if (TokenMatch(filePtr, "LIGHTOBJECT", 11)) { m_vLights.emplace_back("UNNAMED"); ParseLV1ObjectBlock(m_vLights.back()); continue; } // camera object if (TokenMatch(filePtr, "CAMERAOBJECT", 12)) { m_vCameras.emplace_back("UNNAMED"); ParseLV1ObjectBlock(m_vCameras.back()); continue; } // comment - print it on the console if (TokenMatch(filePtr, "COMMENT", 7)) { std::string out = ""; ParseString(out, "*COMMENT"); LogInfo(("Comment: " + out).c_str()); continue; } // ASC bone weights if (AI_ASE_IS_OLD_FILE_FORMAT() && TokenMatch(filePtr, "MESH_SOFTSKINVERTS", 18)) { ParseLV1SoftSkinBlock(); } } AI_ASE_HANDLE_TOP_LEVEL_SECTION(); } } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV1SoftSkinBlock() { // TODO: fix line counting here // ************************************************************** // The soft skin block is formatted differently. There are no // nested sections supported and the single elements aren't // marked by keywords starting with an asterisk. /** FORMAT BEGIN *MESH_SOFTSKINVERTS { [for times:] [for times:] } FORMAT END */ // ************************************************************** while (true) { if (*filePtr == '}') { ++filePtr; return; } else if (*filePtr == '\0') return; else if (*filePtr == '{') ++filePtr; else // if (!IsSpace(*filePtr) && !IsLineEnd(*filePtr)) { ASE::Mesh *curMesh = nullptr; unsigned int numVerts = 0; const char *sz = filePtr; while (!IsSpaceOrNewLine(*filePtr)) ++filePtr; const unsigned int diff = (unsigned int)(filePtr - sz); if (diff) { std::string name = std::string(sz, diff); for (std::vector::iterator it = m_vMeshes.begin(); it != m_vMeshes.end(); ++it) { if ((*it).mName == name) { curMesh = &(*it); break; } } if (!curMesh) { LogWarning("Encountered unknown mesh in *MESH_SOFTSKINVERTS section"); // Skip the mesh data - until we find a new mesh // or the end of the *MESH_SOFTSKINVERTS section while (true) { SkipSpacesAndLineEnd(&filePtr); if (*filePtr == '}') { ++filePtr; return; } else if (!IsNumeric(*filePtr)) break; SkipLine(&filePtr); } } else { SkipSpacesAndLineEnd(&filePtr); ParseLV4MeshLong(numVerts); // Reserve enough storage curMesh->mBoneVertices.reserve(numVerts); for (unsigned int i = 0; i < numVerts; ++i) { SkipSpacesAndLineEnd(&filePtr); unsigned int numWeights; ParseLV4MeshLong(numWeights); curMesh->mBoneVertices.emplace_back(); ASE::BoneVertex &vert = curMesh->mBoneVertices.back(); // Reserve enough storage vert.mBoneWeights.reserve(numWeights); std::string bone; for (unsigned int w = 0; w < numWeights; ++w) { bone.clear(); ParseString(bone, "*MESH_SOFTSKINVERTS.Bone"); // Find the bone in the mesh's list std::pair me; me.first = -1; for (unsigned int n = 0; n < curMesh->mBones.size(); ++n) { if (curMesh->mBones[n].mName == bone) { me.first = n; break; } } if (-1 == me.first) { // We don't have this bone yet, so add it to the list me.first = static_cast(curMesh->mBones.size()); curMesh->mBones.emplace_back(bone); } ParseLV4MeshFloat(me.second); // Add the new bone weight to list vert.mBoneWeights.push_back(me); } } } } } if (*filePtr == '\0') return; ++filePtr; SkipSpacesAndLineEnd(&filePtr); } } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV1SceneBlock() { AI_ASE_PARSER_INIT(); while (true) { if ('*' == *filePtr) { ++filePtr; if (TokenMatch(filePtr, "SCENE_BACKGROUND_STATIC", 23)) { // parse a color triple and assume it is really the bg color ParseLV4MeshFloatTriple(&m_clrBackground.r); continue; } if (TokenMatch(filePtr, "SCENE_AMBIENT_STATIC", 20)) { // parse a color triple and assume it is really the bg color ParseLV4MeshFloatTriple(&m_clrAmbient.r); continue; } if (TokenMatch(filePtr, "SCENE_FIRSTFRAME", 16)) { ParseLV4MeshLong(iFirstFrame); continue; } if (TokenMatch(filePtr, "SCENE_LASTFRAME", 15)) { ParseLV4MeshLong(iLastFrame); continue; } if (TokenMatch(filePtr, "SCENE_FRAMESPEED", 16)) { ParseLV4MeshLong(iFrameSpeed); continue; } if (TokenMatch(filePtr, "SCENE_TICKSPERFRAME", 19)) { ParseLV4MeshLong(iTicksPerFrame); continue; } } AI_ASE_HANDLE_TOP_LEVEL_SECTION(); } } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV1MaterialListBlock() { AI_ASE_PARSER_INIT(); unsigned int iMaterialCount = 0; unsigned int iOldMaterialCount = (unsigned int)m_vMaterials.size(); while (true) { if ('*' == *filePtr) { ++filePtr; if (TokenMatch(filePtr, "MATERIAL_COUNT", 14)) { ParseLV4MeshLong(iMaterialCount); if (UINT_MAX - iOldMaterialCount < iMaterialCount) { LogWarning("Out of range: material index is too large"); return; } // now allocate enough storage to hold all materials m_vMaterials.resize(iOldMaterialCount + iMaterialCount, Material("INVALID")); continue; } if (TokenMatch(filePtr, "MATERIAL", 8)) { unsigned int iIndex = 0; ParseLV4MeshLong(iIndex); if (iIndex >= iMaterialCount) { LogWarning("Out of range: material index is too large"); iIndex = iMaterialCount - 1; return; } // get a reference to the material Material &sMat = m_vMaterials[iIndex + iOldMaterialCount]; // parse the material block ParseLV2MaterialBlock(sMat); continue; } if( iDepth == 1 ){ // CRUDE HACK: support missing brace after "Ascii Scene Exporter v2.51" LogWarning("Missing closing brace in material list"); --filePtr; return; } } AI_ASE_HANDLE_TOP_LEVEL_SECTION(); } } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV2MaterialBlock(ASE::Material &mat) { AI_ASE_PARSER_INIT(); unsigned int iNumSubMaterials = 0; while (true) { if ('*' == *filePtr) { ++filePtr; if (TokenMatch(filePtr, "MATERIAL_NAME", 13)) { if (!ParseString(mat.mName, "*MATERIAL_NAME")) SkipToNextToken(); continue; } // ambient material color if (TokenMatch(filePtr, "MATERIAL_AMBIENT", 16)) { ParseLV4MeshFloatTriple(&mat.mAmbient.r); continue; } // diffuse material color if (TokenMatch(filePtr, "MATERIAL_DIFFUSE", 16)) { ParseLV4MeshFloatTriple(&mat.mDiffuse.r); continue; } // specular material color if (TokenMatch(filePtr, "MATERIAL_SPECULAR", 17)) { ParseLV4MeshFloatTriple(&mat.mSpecular.r); continue; } // material shading type if (TokenMatch(filePtr, "MATERIAL_SHADING", 16)) { if (TokenMatch(filePtr, "Blinn", 5)) { mat.mShading = Discreet3DS::Blinn; } else if (TokenMatch(filePtr, "Phong", 5)) { mat.mShading = Discreet3DS::Phong; } else if (TokenMatch(filePtr, "Flat", 4)) { mat.mShading = Discreet3DS::Flat; } else if (TokenMatch(filePtr, "Wire", 4)) { mat.mShading = Discreet3DS::Wire; } else { // assume gouraud shading mat.mShading = Discreet3DS::Gouraud; SkipToNextToken(); } continue; } // material transparency if (TokenMatch(filePtr, "MATERIAL_TRANSPARENCY", 21)) { ParseLV4MeshFloat(mat.mTransparency); mat.mTransparency = ai_real(1.0) - mat.mTransparency; continue; } // material self illumination if (TokenMatch(filePtr, "MATERIAL_SELFILLUM", 18)) { ai_real f = 0.0; ParseLV4MeshFloat(f); mat.mEmissive.r = f; mat.mEmissive.g = f; mat.mEmissive.b = f; continue; } // material shininess if (TokenMatch(filePtr, "MATERIAL_SHINE", 14)) { ParseLV4MeshFloat(mat.mSpecularExponent); mat.mSpecularExponent *= 15; continue; } // two-sided material if (TokenMatch(filePtr, "MATERIAL_TWOSIDED", 17)) { mat.mTwoSided = true; continue; } // material shininess strength if (TokenMatch(filePtr, "MATERIAL_SHINESTRENGTH", 22)) { ParseLV4MeshFloat(mat.mShininessStrength); continue; } // diffuse color map if (TokenMatch(filePtr, "MAP_DIFFUSE", 11)) { // parse the texture block ParseLV3MapBlock(mat.sTexDiffuse); continue; } // ambient color map if (TokenMatch(filePtr, "MAP_AMBIENT", 11)) { // parse the texture block ParseLV3MapBlock(mat.sTexAmbient); continue; } // specular color map if (TokenMatch(filePtr, "MAP_SPECULAR", 12)) { // parse the texture block ParseLV3MapBlock(mat.sTexSpecular); continue; } // opacity map if (TokenMatch(filePtr, "MAP_OPACITY", 11)) { // parse the texture block ParseLV3MapBlock(mat.sTexOpacity); continue; } // emissive map if (TokenMatch(filePtr, "MAP_SELFILLUM", 13)) { // parse the texture block ParseLV3MapBlock(mat.sTexEmissive); continue; } // bump map if (TokenMatch(filePtr, "MAP_BUMP", 8)) { // parse the texture block ParseLV3MapBlock(mat.sTexBump); } // specular/shininess map if (TokenMatch(filePtr, "MAP_SHINESTRENGTH", 17)) { // parse the texture block ParseLV3MapBlock(mat.sTexShininess); continue; } // number of submaterials if (TokenMatch(filePtr, "NUMSUBMTLS", 10)) { ParseLV4MeshLong(iNumSubMaterials); // allocate enough storage mat.avSubMaterials.resize(iNumSubMaterials, Material("INVALID SUBMATERIAL")); } // submaterial chunks if (TokenMatch(filePtr, "SUBMATERIAL", 11)) { unsigned int iIndex = 0; ParseLV4MeshLong(iIndex); if (iIndex >= iNumSubMaterials) { LogWarning("Out of range: submaterial index is too large"); iIndex = iNumSubMaterials - 1; } // get a reference to the material if (iIndex < mat.avSubMaterials.size()) { Material &sMat = mat.avSubMaterials[iIndex]; // parse the material block ParseLV2MaterialBlock(sMat); } continue; } } AI_ASE_HANDLE_SECTION("2", "*MATERIAL"); } } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV3MapBlock(Texture &map) { AI_ASE_PARSER_INIT(); // *********************************************************** // *BITMAP should not be there if *MAP_CLASS is not BITMAP, // but we need to expect that case ... if the path is // empty the texture won't be used later. // *********************************************************** bool parsePath = true; std::string temp; while (true) { if ('*' == *filePtr) { ++filePtr; // type of map if (TokenMatch(filePtr, "MAP_CLASS", 9)) { temp.clear(); if (!ParseString(temp, "*MAP_CLASS")) SkipToNextToken(); if (temp != "Bitmap" && temp != "Normal Bump") { ASSIMP_LOG_WARN("ASE: Skipping unknown map type: ", temp); parsePath = false; } continue; } // path to the texture if (parsePath && TokenMatch(filePtr, "BITMAP", 6)) { if (!ParseString(map.mMapName, "*BITMAP")) SkipToNextToken(); if (map.mMapName == "None") { // Files with 'None' as map name are produced by // an Maja to ASE exporter which name I forgot .. ASSIMP_LOG_WARN("ASE: Skipping invalid map entry"); map.mMapName = std::string(); } continue; } // offset on the u axis if (TokenMatch(filePtr, "UVW_U_OFFSET", 12)) { ParseLV4MeshFloat(map.mOffsetU); continue; } // offset on the v axis if (TokenMatch(filePtr, "UVW_V_OFFSET", 12)) { ParseLV4MeshFloat(map.mOffsetV); continue; } // tiling on the u axis if (TokenMatch(filePtr, "UVW_U_TILING", 12)) { ParseLV4MeshFloat(map.mScaleU); continue; } // tiling on the v axis if (TokenMatch(filePtr, "UVW_V_TILING", 12)) { ParseLV4MeshFloat(map.mScaleV); continue; } // rotation around the z-axis if (TokenMatch(filePtr, "UVW_ANGLE", 9)) { ParseLV4MeshFloat(map.mRotation); continue; } // map blending factor if (TokenMatch(filePtr, "MAP_AMOUNT", 10)) { ParseLV4MeshFloat(map.mTextureBlend); continue; } } AI_ASE_HANDLE_SECTION("3", "*MAP_XXXXXX"); } } // ------------------------------------------------------------------------------------------------ bool Parser::ParseString(std::string &out, const char *szName) { char szBuffer[1024]; if (!SkipSpaces(&filePtr)) { ai_snprintf(szBuffer, 1024, "Unable to parse %s block: Unexpected EOL", szName); LogWarning(szBuffer); return false; } // there must be '"' if ('\"' != *filePtr) { ai_snprintf(szBuffer, 1024, "Unable to parse %s block: Strings are expected " "to be enclosed in double quotation marks", szName); LogWarning(szBuffer); return false; } ++filePtr; const char *sz = filePtr; while (true) { if ('\"' == *sz) break; else if ('\0' == *sz) { ai_snprintf(szBuffer, 1024, "Unable to parse %s block: Strings are expected to " "be enclosed in double quotation marks but EOF was reached before " "a closing quotation mark was encountered", szName); LogWarning(szBuffer); return false; } sz++; } out = std::string(filePtr, (uintptr_t)sz - (uintptr_t)filePtr); filePtr = sz + 1; return true; } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV1ObjectBlock(ASE::BaseNode &node) { AI_ASE_PARSER_INIT(); while (true) { if ('*' == *filePtr) { ++filePtr; // first process common tokens such as node name and transform // name of the mesh/node if (TokenMatch(filePtr, "NODE_NAME", 9)) { if (!ParseString(node.mName, "*NODE_NAME")) SkipToNextToken(); continue; } // name of the parent of the node if (TokenMatch(filePtr, "NODE_PARENT", 11)) { if (!ParseString(node.mParent, "*NODE_PARENT")) SkipToNextToken(); continue; } // transformation matrix of the node if (TokenMatch(filePtr, "NODE_TM", 7)) { ParseLV2NodeTransformBlock(node); continue; } // animation data of the node if (TokenMatch(filePtr, "TM_ANIMATION", 12)) { ParseLV2AnimationBlock(node); continue; } if (node.mType == BaseNode::Light) { // light settings if (TokenMatch(filePtr, "LIGHT_SETTINGS", 14)) { ParseLV2LightSettingsBlock((ASE::Light &)node); continue; } // type of the light source if (TokenMatch(filePtr, "LIGHT_TYPE", 10)) { if (!ASSIMP_strincmp("omni", filePtr, 4)) { ((ASE::Light &)node).mLightType = ASE::Light::OMNI; } else if (!ASSIMP_strincmp("target", filePtr, 6)) { ((ASE::Light &)node).mLightType = ASE::Light::TARGET; } else if (!ASSIMP_strincmp("free", filePtr, 4)) { ((ASE::Light &)node).mLightType = ASE::Light::FREE; } else if (!ASSIMP_strincmp("directional", filePtr, 11)) { ((ASE::Light &)node).mLightType = ASE::Light::DIRECTIONAL; } else { LogWarning("Unknown kind of light source"); } continue; } } else if (node.mType == BaseNode::Camera) { // Camera settings if (TokenMatch(filePtr, "CAMERA_SETTINGS", 15)) { ParseLV2CameraSettingsBlock((ASE::Camera &)node); continue; } else if (TokenMatch(filePtr, "CAMERA_TYPE", 11)) { if (!ASSIMP_strincmp("target", filePtr, 6)) { ((ASE::Camera &)node).mCameraType = ASE::Camera::TARGET; } else if (!ASSIMP_strincmp("free", filePtr, 4)) { ((ASE::Camera &)node).mCameraType = ASE::Camera::FREE; } else { LogWarning("Unknown kind of camera"); } continue; } } else if (node.mType == BaseNode::Mesh) { // mesh data // FIX: Older files use MESH_SOFTSKIN if (TokenMatch(filePtr, "MESH", 4) || TokenMatch(filePtr, "MESH_SOFTSKIN", 13)) { ParseLV2MeshBlock((ASE::Mesh &)node); continue; } // mesh material index if (TokenMatch(filePtr, "MATERIAL_REF", 12)) { ParseLV4MeshLong(((ASE::Mesh &)node).iMaterialIndex); continue; } } } AI_ASE_HANDLE_TOP_LEVEL_SECTION(); } } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV2CameraSettingsBlock(ASE::Camera &camera) { AI_ASE_PARSER_INIT(); while (true) { if ('*' == *filePtr) { ++filePtr; if (TokenMatch(filePtr, "CAMERA_NEAR", 11)) { ParseLV4MeshFloat(camera.mNear); continue; } if (TokenMatch(filePtr, "CAMERA_FAR", 10)) { ParseLV4MeshFloat(camera.mFar); continue; } if (TokenMatch(filePtr, "CAMERA_FOV", 10)) { ParseLV4MeshFloat(camera.mFOV); continue; } } AI_ASE_HANDLE_SECTION("2", "CAMERA_SETTINGS"); } } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV2LightSettingsBlock(ASE::Light &light) { AI_ASE_PARSER_INIT(); while (true) { if ('*' == *filePtr) { ++filePtr; if (TokenMatch(filePtr, "LIGHT_COLOR", 11)) { ParseLV4MeshFloatTriple(&light.mColor.r); continue; } if (TokenMatch(filePtr, "LIGHT_INTENS", 12)) { ParseLV4MeshFloat(light.mIntensity); continue; } if (TokenMatch(filePtr, "LIGHT_HOTSPOT", 13)) { ParseLV4MeshFloat(light.mAngle); continue; } if (TokenMatch(filePtr, "LIGHT_FALLOFF", 13)) { ParseLV4MeshFloat(light.mFalloff); continue; } } AI_ASE_HANDLE_SECTION("2", "LIGHT_SETTINGS"); } } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV2AnimationBlock(ASE::BaseNode &mesh) { AI_ASE_PARSER_INIT(); ASE::Animation *anim = &mesh.mAnim; while (true) { if ('*' == *filePtr) { ++filePtr; if (TokenMatch(filePtr, "NODE_NAME", 9)) { std::string temp; if (!ParseString(temp, "*NODE_NAME")) SkipToNextToken(); // If the name of the node contains .target it // represents an animated camera or spot light // target. if (std::string::npos != temp.find(".Target")) { if ((mesh.mType != BaseNode::Camera || ((ASE::Camera &)mesh).mCameraType != ASE::Camera::TARGET) && (mesh.mType != BaseNode::Light || ((ASE::Light &)mesh).mLightType != ASE::Light::TARGET)) { ASSIMP_LOG_ERROR("ASE: Found target animation channel " "but the node is neither a camera nor a spot light"); anim = nullptr; } else anim = &mesh.mTargetAnim; } continue; } // position keyframes if (TokenMatch(filePtr, "CONTROL_POS_TRACK", 17) || TokenMatch(filePtr, "CONTROL_POS_BEZIER", 18) || TokenMatch(filePtr, "CONTROL_POS_TCB", 15)) { if (!anim) SkipSection(); else ParseLV3PosAnimationBlock(*anim); continue; } // scaling keyframes if (TokenMatch(filePtr, "CONTROL_SCALE_TRACK", 19) || TokenMatch(filePtr, "CONTROL_SCALE_BEZIER", 20) || TokenMatch(filePtr, "CONTROL_SCALE_TCB", 17)) { if (!anim || anim == &mesh.mTargetAnim) { // Target animation channels may have no rotation channels ASSIMP_LOG_ERROR("ASE: Ignoring scaling channel in target animation"); SkipSection(); } else ParseLV3ScaleAnimationBlock(*anim); continue; } // rotation keyframes if (TokenMatch(filePtr, "CONTROL_ROT_TRACK", 17) || TokenMatch(filePtr, "CONTROL_ROT_BEZIER", 18) || TokenMatch(filePtr, "CONTROL_ROT_TCB", 15)) { if (!anim || anim == &mesh.mTargetAnim) { // Target animation channels may have no rotation channels ASSIMP_LOG_ERROR("ASE: Ignoring rotation channel in target animation"); SkipSection(); } else ParseLV3RotAnimationBlock(*anim); continue; } } AI_ASE_HANDLE_SECTION("2", "TM_ANIMATION"); } } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV3ScaleAnimationBlock(ASE::Animation &anim) { AI_ASE_PARSER_INIT(); unsigned int iIndex; while (true) { if ('*' == *filePtr) { ++filePtr; bool b = false; // For the moment we're just reading the three floats - // we ignore the additional information for bezier's and TCBs // simple scaling keyframe if (TokenMatch(filePtr, "CONTROL_SCALE_SAMPLE", 20)) { b = true; anim.mScalingType = ASE::Animation::TRACK; } // Bezier scaling keyframe if (TokenMatch(filePtr, "CONTROL_BEZIER_SCALE_KEY", 24)) { b = true; anim.mScalingType = ASE::Animation::BEZIER; } // TCB scaling keyframe if (TokenMatch(filePtr, "CONTROL_TCB_SCALE_KEY", 21)) { b = true; anim.mScalingType = ASE::Animation::TCB; } if (b) { anim.akeyScaling.emplace_back(); aiVectorKey &key = anim.akeyScaling.back(); ParseLV4MeshFloatTriple(&key.mValue.x, iIndex); key.mTime = (double)iIndex; } } AI_ASE_HANDLE_SECTION("3", "*CONTROL_POS_TRACK"); } } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV3PosAnimationBlock(ASE::Animation &anim) { AI_ASE_PARSER_INIT(); unsigned int iIndex; while (true) { if ('*' == *filePtr) { ++filePtr; bool b = false; // For the moment we're just reading the three floats - // we ignore the additional information for bezier's and TCBs // simple scaling keyframe if (TokenMatch(filePtr, "CONTROL_POS_SAMPLE", 18)) { b = true; anim.mPositionType = ASE::Animation::TRACK; } // Bezier scaling keyframe if (TokenMatch(filePtr, "CONTROL_BEZIER_POS_KEY", 22)) { b = true; anim.mPositionType = ASE::Animation::BEZIER; } // TCB scaling keyframe if (TokenMatch(filePtr, "CONTROL_TCB_POS_KEY", 19)) { b = true; anim.mPositionType = ASE::Animation::TCB; } if (b) { anim.akeyPositions.emplace_back(); aiVectorKey &key = anim.akeyPositions.back(); ParseLV4MeshFloatTriple(&key.mValue.x, iIndex); key.mTime = (double)iIndex; } } AI_ASE_HANDLE_SECTION("3", "*CONTROL_POS_TRACK"); } } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV3RotAnimationBlock(ASE::Animation &anim) { AI_ASE_PARSER_INIT(); unsigned int iIndex; while (true) { if ('*' == *filePtr) { ++filePtr; bool b = false; // For the moment we're just reading the floats - // we ignore the additional information for bezier's and TCBs // simple scaling keyframe if (TokenMatch(filePtr, "CONTROL_ROT_SAMPLE", 18)) { b = true; anim.mRotationType = ASE::Animation::TRACK; } // Bezier scaling keyframe if (TokenMatch(filePtr, "CONTROL_BEZIER_ROT_KEY", 22)) { b = true; anim.mRotationType = ASE::Animation::BEZIER; } // TCB scaling keyframe if (TokenMatch(filePtr, "CONTROL_TCB_ROT_KEY", 19)) { b = true; anim.mRotationType = ASE::Animation::TCB; } if (b) { anim.akeyRotations.emplace_back(); aiQuatKey &key = anim.akeyRotations.back(); aiVector3D v; ai_real f; ParseLV4MeshFloatTriple(&v.x, iIndex); ParseLV4MeshFloat(f); key.mTime = (double)iIndex; key.mValue = aiQuaternion(v, f); } } AI_ASE_HANDLE_SECTION("3", "*CONTROL_ROT_TRACK"); } } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV2NodeTransformBlock(ASE::BaseNode &mesh) { AI_ASE_PARSER_INIT(); int mode = 0; while (true) { if ('*' == *filePtr) { ++filePtr; // name of the node if (TokenMatch(filePtr, "NODE_NAME", 9)) { std::string temp; if (!ParseString(temp, "*NODE_NAME")) SkipToNextToken(); std::string::size_type s; if (temp == mesh.mName) { mode = 1; } else if (std::string::npos != (s = temp.find(".Target")) && mesh.mName == temp.substr(0, s)) { // This should be either a target light or a target camera if ((mesh.mType == BaseNode::Light && ((ASE::Light &)mesh).mLightType == ASE::Light::TARGET) || (mesh.mType == BaseNode::Camera && ((ASE::Camera &)mesh).mCameraType == ASE::Camera::TARGET)) { mode = 2; } else { ASSIMP_LOG_ERROR("ASE: Ignoring target transform, " "this is no spot light or target camera"); } } else { ASSIMP_LOG_ERROR("ASE: Unknown node transformation: ", temp); // mode = 0 } continue; } if (mode) { // fourth row of the transformation matrix - and also the // only information here that is interesting for targets if (TokenMatch(filePtr, "TM_ROW3", 7)) { ParseLV4MeshFloatTriple((mode == 1 ? mesh.mTransform[3] : &mesh.mTargetPosition.x)); continue; } if (mode == 1) { // first row of the transformation matrix if (TokenMatch(filePtr, "TM_ROW0", 7)) { ParseLV4MeshFloatTriple(mesh.mTransform[0]); continue; } // second row of the transformation matrix if (TokenMatch(filePtr, "TM_ROW1", 7)) { ParseLV4MeshFloatTriple(mesh.mTransform[1]); continue; } // third row of the transformation matrix if (TokenMatch(filePtr, "TM_ROW2", 7)) { ParseLV4MeshFloatTriple(mesh.mTransform[2]); continue; } // inherited position axes if (TokenMatch(filePtr, "INHERIT_POS", 11)) { unsigned int aiVal[3]; ParseLV4MeshLongTriple(aiVal); for (unsigned int i = 0; i < 3; ++i) mesh.inherit.abInheritPosition[i] = aiVal[i] != 0; continue; } // inherited rotation axes if (TokenMatch(filePtr, "INHERIT_ROT", 11)) { unsigned int aiVal[3]; ParseLV4MeshLongTriple(aiVal); for (unsigned int i = 0; i < 3; ++i) mesh.inherit.abInheritRotation[i] = aiVal[i] != 0; continue; } // inherited scaling axes if (TokenMatch(filePtr, "INHERIT_SCL", 11)) { unsigned int aiVal[3]; ParseLV4MeshLongTriple(aiVal); for (unsigned int i = 0; i < 3; ++i) mesh.inherit.abInheritScaling[i] = aiVal[i] != 0; continue; } } } } AI_ASE_HANDLE_SECTION("2", "*NODE_TM"); } } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV2MeshBlock(ASE::Mesh &mesh) { AI_ASE_PARSER_INIT(); unsigned int iNumVertices = 0; unsigned int iNumFaces = 0; unsigned int iNumTVertices = 0; unsigned int iNumTFaces = 0; unsigned int iNumCVertices = 0; unsigned int iNumCFaces = 0; while (true) { if ('*' == *filePtr) { ++filePtr; // Number of vertices in the mesh if (TokenMatch(filePtr, "MESH_NUMVERTEX", 14)) { ParseLV4MeshLong(iNumVertices); continue; } // Number of texture coordinates in the mesh if (TokenMatch(filePtr, "MESH_NUMTVERTEX", 15)) { ParseLV4MeshLong(iNumTVertices); continue; } // Number of vertex colors in the mesh if (TokenMatch(filePtr, "MESH_NUMCVERTEX", 15)) { ParseLV4MeshLong(iNumCVertices); continue; } // Number of regular faces in the mesh if (TokenMatch(filePtr, "MESH_NUMFACES", 13)) { ParseLV4MeshLong(iNumFaces); continue; } // Number of UVWed faces in the mesh if (TokenMatch(filePtr, "MESH_NUMTVFACES", 15)) { ParseLV4MeshLong(iNumTFaces); continue; } // Number of colored faces in the mesh if (TokenMatch(filePtr, "MESH_NUMCVFACES", 15)) { ParseLV4MeshLong(iNumCFaces); continue; } // mesh vertex list block if (TokenMatch(filePtr, "MESH_VERTEX_LIST", 16)) { ParseLV3MeshVertexListBlock(iNumVertices, mesh); continue; } // mesh face list block if (TokenMatch(filePtr, "MESH_FACE_LIST", 14)) { ParseLV3MeshFaceListBlock(iNumFaces, mesh); continue; } // mesh texture vertex list block if (TokenMatch(filePtr, "MESH_TVERTLIST", 14)) { ParseLV3MeshTListBlock(iNumTVertices, mesh); continue; } // mesh texture face block if (TokenMatch(filePtr, "MESH_TFACELIST", 14)) { ParseLV3MeshTFaceListBlock(iNumTFaces, mesh); continue; } // mesh color vertex list block if (TokenMatch(filePtr, "MESH_CVERTLIST", 14)) { ParseLV3MeshCListBlock(iNumCVertices, mesh); continue; } // mesh color face block if (TokenMatch(filePtr, "MESH_CFACELIST", 14)) { ParseLV3MeshCFaceListBlock(iNumCFaces, mesh); continue; } // mesh normals if (TokenMatch(filePtr, "MESH_NORMALS", 12)) { ParseLV3MeshNormalListBlock(mesh); continue; } // another mesh UV channel ... if (TokenMatch(filePtr, "MESH_MAPPINGCHANNEL", 19)) { unsigned int iIndex(0); ParseLV4MeshLong(iIndex); if (0 == iIndex) { LogWarning("Mapping channel has an invalid index. Skipping UV channel"); // skip it ... SkipSection(); } else { if (iIndex < 2) { LogWarning("Mapping channel has an invalid index. Skipping UV channel"); // skip it ... SkipSection(); } if (iIndex > AI_MAX_NUMBER_OF_TEXTURECOORDS) { LogWarning("Too many UV channels specified. Skipping channel .."); // skip it ... SkipSection(); } else { // parse the mapping channel ParseLV3MappingChannel(iIndex - 1, mesh); } continue; } } // mesh animation keyframe. Not supported if (TokenMatch(filePtr, "MESH_ANIMATION", 14)) { LogWarning("Found *MESH_ANIMATION element in ASE/ASK file. " "Keyframe animation is not supported by Assimp, this element " "will be ignored"); //SkipSection(); continue; } if (TokenMatch(filePtr, "MESH_WEIGHTS", 12)) { ParseLV3MeshWeightsBlock(mesh); continue; } } AI_ASE_HANDLE_SECTION("2", "*MESH"); } } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV3MeshWeightsBlock(ASE::Mesh &mesh) { AI_ASE_PARSER_INIT(); unsigned int iNumVertices = 0, iNumBones = 0; while (true) { if ('*' == *filePtr) { ++filePtr; // Number of bone vertices ... if (TokenMatch(filePtr, "MESH_NUMVERTEX", 14)) { ParseLV4MeshLong(iNumVertices); continue; } // Number of bones if (TokenMatch(filePtr, "MESH_NUMBONE", 12)) { ParseLV4MeshLong(iNumBones); continue; } // parse the list of bones if (TokenMatch(filePtr, "MESH_BONE_LIST", 14)) { ParseLV4MeshBones(iNumBones, mesh); continue; } // parse the list of bones vertices if (TokenMatch(filePtr, "MESH_BONE_VERTEX_LIST", 21)) { ParseLV4MeshBonesVertices(iNumVertices, mesh); continue; } } AI_ASE_HANDLE_SECTION("3", "*MESH_WEIGHTS"); } } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV4MeshBones(unsigned int iNumBones, ASE::Mesh &mesh) { AI_ASE_PARSER_INIT(); mesh.mBones.resize(iNumBones, Bone("UNNAMED")); while (true) { if ('*' == *filePtr) { ++filePtr; // Mesh bone with name ... if (TokenMatch(filePtr, "MESH_BONE_NAME", 14)) { // parse an index ... if (SkipSpaces(&filePtr)) { unsigned int iIndex = strtoul10(filePtr, &filePtr); if (iIndex >= iNumBones) { LogWarning("Bone index is out of bounds"); continue; } if (!ParseString(mesh.mBones[iIndex].mName, "*MESH_BONE_NAME")) SkipToNextToken(); continue; } } } AI_ASE_HANDLE_SECTION("3", "*MESH_BONE_LIST"); } } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV4MeshBonesVertices(unsigned int iNumVertices, ASE::Mesh &mesh) { AI_ASE_PARSER_INIT(); mesh.mBoneVertices.resize(iNumVertices); while (true) { if ('*' == *filePtr) { ++filePtr; // Mesh bone vertex if (TokenMatch(filePtr, "MESH_BONE_VERTEX", 16)) { // read the vertex index unsigned int iIndex = strtoul10(filePtr, &filePtr); if (iIndex >= mesh.mPositions.size()) { iIndex = (unsigned int)mesh.mPositions.size() - 1; LogWarning("Bone vertex index is out of bounds. Using the largest valid " "bone vertex index instead"); } // --- ignored ai_real afVert[3]; ParseLV4MeshFloatTriple(afVert); std::pair pairOut; while (true) { // first parse the bone index ... if (!SkipSpaces(&filePtr)) break; pairOut.first = strtoul10(filePtr, &filePtr); // then parse the vertex weight if (!SkipSpaces(&filePtr)) break; filePtr = fast_atoreal_move(filePtr, pairOut.second); // -1 marks unused entries if (-1 != pairOut.first) { mesh.mBoneVertices[iIndex].mBoneWeights.push_back(pairOut); } } continue; } } AI_ASE_HANDLE_SECTION("4", "*MESH_BONE_VERTEX"); } } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV3MeshVertexListBlock( unsigned int iNumVertices, ASE::Mesh &mesh) { AI_ASE_PARSER_INIT(); // allocate enough storage in the array mesh.mPositions.resize(iNumVertices); while (true) { if ('*' == *filePtr) { ++filePtr; // Vertex entry if (TokenMatch(filePtr, "MESH_VERTEX", 11)) { aiVector3D vTemp; unsigned int iIndex; ParseLV4MeshFloatTriple(&vTemp.x, iIndex); if (iIndex >= iNumVertices) { LogWarning("Invalid vertex index. It will be ignored"); } else mesh.mPositions[iIndex] = vTemp; continue; } } AI_ASE_HANDLE_SECTION("3", "*MESH_VERTEX_LIST"); } } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV3MeshFaceListBlock(unsigned int iNumFaces, ASE::Mesh &mesh) { AI_ASE_PARSER_INIT(); // allocate enough storage in the face array mesh.mFaces.resize(iNumFaces); while (true) { if ('*' == *filePtr) { ++filePtr; // Face entry if (TokenMatch(filePtr, "MESH_FACE", 9)) { ASE::Face mFace; ParseLV4MeshFace(mFace); if (mFace.iFace >= iNumFaces) { LogWarning("Face has an invalid index. It will be ignored"); } else mesh.mFaces[mFace.iFace] = mFace; continue; } } AI_ASE_HANDLE_SECTION("3", "*MESH_FACE_LIST"); } } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV3MeshTListBlock(unsigned int iNumVertices, ASE::Mesh &mesh, unsigned int iChannel) { AI_ASE_PARSER_INIT(); // allocate enough storage in the array mesh.amTexCoords[iChannel].resize(iNumVertices); while (true) { if ('*' == *filePtr) { ++filePtr; // Vertex entry if (TokenMatch(filePtr, "MESH_TVERT", 10)) { aiVector3D vTemp; unsigned int iIndex; ParseLV4MeshFloatTriple(&vTemp.x, iIndex); if (iIndex >= iNumVertices) { LogWarning("Tvertex has an invalid index. It will be ignored"); } else mesh.amTexCoords[iChannel][iIndex] = vTemp; if (0.0f != vTemp.z) { // we need 3 coordinate channels mesh.mNumUVComponents[iChannel] = 3; } continue; } } AI_ASE_HANDLE_SECTION("3", "*MESH_TVERT_LIST"); } } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV3MeshTFaceListBlock(unsigned int iNumFaces, ASE::Mesh &mesh, unsigned int iChannel) { AI_ASE_PARSER_INIT(); while (true) { if ('*' == *filePtr) { ++filePtr; // Face entry if (TokenMatch(filePtr, "MESH_TFACE", 10)) { unsigned int aiValues[3]; unsigned int iIndex = 0; ParseLV4MeshLongTriple(aiValues, iIndex); if (iIndex >= iNumFaces || iIndex >= mesh.mFaces.size()) { LogWarning("UV-Face has an invalid index. It will be ignored"); } else { // copy UV indices mesh.mFaces[iIndex].amUVIndices[iChannel][0] = aiValues[0]; mesh.mFaces[iIndex].amUVIndices[iChannel][1] = aiValues[1]; mesh.mFaces[iIndex].amUVIndices[iChannel][2] = aiValues[2]; } continue; } } AI_ASE_HANDLE_SECTION("3", "*MESH_TFACE_LIST"); } } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV3MappingChannel(unsigned int iChannel, ASE::Mesh &mesh) { AI_ASE_PARSER_INIT(); unsigned int iNumTVertices = 0; unsigned int iNumTFaces = 0; while (true) { if ('*' == *filePtr) { ++filePtr; // Number of texture coordinates in the mesh if (TokenMatch(filePtr, "MESH_NUMTVERTEX", 15)) { ParseLV4MeshLong(iNumTVertices); continue; } // Number of UVWed faces in the mesh if (TokenMatch(filePtr, "MESH_NUMTVFACES", 15)) { ParseLV4MeshLong(iNumTFaces); continue; } // mesh texture vertex list block if (TokenMatch(filePtr, "MESH_TVERTLIST", 14)) { ParseLV3MeshTListBlock(iNumTVertices, mesh, iChannel); continue; } // mesh texture face block if (TokenMatch(filePtr, "MESH_TFACELIST", 14)) { ParseLV3MeshTFaceListBlock(iNumTFaces, mesh, iChannel); continue; } } AI_ASE_HANDLE_SECTION("3", "*MESH_MAPPING_CHANNEL"); } } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV3MeshCListBlock(unsigned int iNumVertices, ASE::Mesh &mesh) { AI_ASE_PARSER_INIT(); // allocate enough storage in the array mesh.mVertexColors.resize(iNumVertices); while (true) { if ('*' == *filePtr) { ++filePtr; // Vertex entry if (TokenMatch(filePtr, "MESH_VERTCOL", 12)) { aiColor4D vTemp; vTemp.a = 1.0f; unsigned int iIndex; ParseLV4MeshFloatTriple(&vTemp.r, iIndex); if (iIndex >= iNumVertices) { LogWarning("Vertex color has an invalid index. It will be ignored"); } else mesh.mVertexColors[iIndex] = vTemp; continue; } } AI_ASE_HANDLE_SECTION("3", "*MESH_CVERTEX_LIST"); } } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV3MeshCFaceListBlock(unsigned int iNumFaces, ASE::Mesh &mesh) { AI_ASE_PARSER_INIT(); while (true) { if ('*' == *filePtr) { ++filePtr; // Face entry if (TokenMatch(filePtr, "MESH_CFACE", 10)) { unsigned int aiValues[3]; unsigned int iIndex = 0; ParseLV4MeshLongTriple(aiValues, iIndex); if (iIndex >= iNumFaces || iIndex >= mesh.mFaces.size()) { LogWarning("UV-Face has an invalid index. It will be ignored"); } else { // copy color indices mesh.mFaces[iIndex].mColorIndices[0] = aiValues[0]; mesh.mFaces[iIndex].mColorIndices[1] = aiValues[1]; mesh.mFaces[iIndex].mColorIndices[2] = aiValues[2]; } continue; } } AI_ASE_HANDLE_SECTION("3", "*MESH_CFACE_LIST"); } } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV3MeshNormalListBlock(ASE::Mesh &sMesh) { AI_ASE_PARSER_INIT(); // Allocate enough storage for the normals sMesh.mNormals.resize(sMesh.mFaces.size() * 3, aiVector3D(0.f, 0.f, 0.f)); unsigned int index, faceIdx = UINT_MAX; // FIXME: rewrite this and find out how to interpret the normals // correctly. This is crap. // Smooth the vertex and face normals together. The result // will be edgy then, but otherwise everything would be soft ... while (true) { if ('*' == *filePtr) { ++filePtr; if (faceIdx != UINT_MAX && TokenMatch(filePtr, "MESH_VERTEXNORMAL", 17)) { aiVector3D vNormal; ParseLV4MeshFloatTriple(&vNormal.x, index); if (faceIdx >= sMesh.mFaces.size()) continue; // Make sure we assign it to the correct face const ASE::Face &face = sMesh.mFaces[faceIdx]; if (index == face.mIndices[0]) index = 0; else if (index == face.mIndices[1]) index = 1; else if (index == face.mIndices[2]) index = 2; else { ASSIMP_LOG_ERROR("ASE: Invalid vertex index in MESH_VERTEXNORMAL section"); continue; } // We'll renormalize later sMesh.mNormals[faceIdx * 3 + index] += vNormal; continue; } if (TokenMatch(filePtr, "MESH_FACENORMAL", 15)) { aiVector3D vNormal; ParseLV4MeshFloatTriple(&vNormal.x, faceIdx); if (faceIdx >= sMesh.mFaces.size()) { ASSIMP_LOG_ERROR("ASE: Invalid vertex index in MESH_FACENORMAL section"); continue; } // We'll renormalize later sMesh.mNormals[faceIdx * 3] += vNormal; sMesh.mNormals[faceIdx * 3 + 1] += vNormal; sMesh.mNormals[faceIdx * 3 + 2] += vNormal; continue; } } AI_ASE_HANDLE_SECTION("3", "*MESH_NORMALS"); } } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV4MeshFace(ASE::Face &out) { // skip spaces and tabs if (!SkipSpaces(&filePtr)) { LogWarning("Unable to parse *MESH_FACE Element: Unexpected EOL [#1]"); SkipToNextToken(); return; } // parse the face index out.iFace = strtoul10(filePtr, &filePtr); // next character should be ':' if (!SkipSpaces(&filePtr)) { // FIX: there are some ASE files which haven't got : here .... LogWarning("Unable to parse *MESH_FACE Element: Unexpected EOL. \':\' expected [#2]"); SkipToNextToken(); return; } // FIX: There are some ASE files which haven't got ':' here if (':' == *filePtr) ++filePtr; // Parse all mesh indices for (unsigned int i = 0; i < 3; ++i) { unsigned int iIndex = 0; if (!SkipSpaces(&filePtr)) { LogWarning("Unable to parse *MESH_FACE Element: Unexpected EOL"); SkipToNextToken(); return; } switch (*filePtr) { case 'A': case 'a': break; case 'B': case 'b': iIndex = 1; break; case 'C': case 'c': iIndex = 2; break; default: LogWarning("Unable to parse *MESH_FACE Element: Unexpected EOL. " "A,B or C expected [#3]"); SkipToNextToken(); return; }; ++filePtr; // next character should be ':' if (!SkipSpaces(&filePtr) || ':' != *filePtr) { LogWarning("Unable to parse *MESH_FACE Element: " "Unexpected EOL. \':\' expected [#2]"); SkipToNextToken(); return; } ++filePtr; if (!SkipSpaces(&filePtr)) { LogWarning("Unable to parse *MESH_FACE Element: Unexpected EOL. " "Vertex index ecpected [#4]"); SkipToNextToken(); return; } out.mIndices[iIndex] = strtoul10(filePtr, &filePtr); } // now we need to skip the AB, BC, CA blocks. while (true) { if ('*' == *filePtr) break; if (IsLineEnd(*filePtr)) { //iLineNumber++; return; } filePtr++; } // parse the smoothing group of the face if (TokenMatch(filePtr, "*MESH_SMOOTHING", 15)) { if (!SkipSpaces(&filePtr)) { LogWarning("Unable to parse *MESH_SMOOTHING Element: " "Unexpected EOL. Smoothing group(s) expected [#5]"); SkipToNextToken(); return; } // Parse smoothing groups until we don't anymore see commas // FIX: There needn't always be a value, sad but true while (true) { if (*filePtr < '9' && *filePtr >= '0') { uint32_t value = strtoul10(filePtr, &filePtr); if (value < 32) { out.iSmoothGroup |= (1 << strtoul10(filePtr, &filePtr)); } else { const std::string message = std::string("Unable to set smooth group, value with ") + ai_to_string(value) + std::string(" out of range"); LogWarning(message.c_str()); } } SkipSpaces(&filePtr); if (',' != *filePtr) { break; } ++filePtr; SkipSpaces(&filePtr); } } // *MESH_MTLID is optional, too while (true) { if ('*' == *filePtr) { break; } if (IsLineEnd(*filePtr)) { return; } filePtr++; } if (TokenMatch(filePtr, "*MESH_MTLID", 11)) { if (!SkipSpaces(&filePtr)) { LogWarning("Unable to parse *MESH_MTLID Element: Unexpected EOL. " "Material index expected [#6]"); SkipToNextToken(); return; } out.iMaterial = strtoul10(filePtr, &filePtr); } return; } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV4MeshLongTriple(unsigned int *apOut) { ai_assert(nullptr != apOut); for (unsigned int i = 0; i < 3; ++i) ParseLV4MeshLong(apOut[i]); } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV4MeshLongTriple(unsigned int *apOut, unsigned int &rIndexOut) { ai_assert(nullptr != apOut); // parse the index ParseLV4MeshLong(rIndexOut); // parse the three others ParseLV4MeshLongTriple(apOut); } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV4MeshFloatTriple(ai_real *apOut, unsigned int &rIndexOut) { ai_assert(nullptr != apOut); // parse the index ParseLV4MeshLong(rIndexOut); // parse the three others ParseLV4MeshFloatTriple(apOut); } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV4MeshFloatTriple(ai_real *apOut) { ai_assert(nullptr != apOut); for (unsigned int i = 0; i < 3; ++i) { ParseLV4MeshFloat(apOut[i]); } } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV4MeshFloat(ai_real &fOut) { // skip spaces and tabs if (!SkipSpaces(&filePtr)) { // LOG LogWarning("Unable to parse float: unexpected EOL [#1]"); fOut = 0.0; ++iLineNumber; return; } // parse the first float filePtr = fast_atoreal_move(filePtr, fOut); } // ------------------------------------------------------------------------------------------------ void Parser::ParseLV4MeshLong(unsigned int &iOut) { // Skip spaces and tabs if (!SkipSpaces(&filePtr)) { // LOG LogWarning("Unable to parse long: unexpected EOL [#1]"); iOut = 0; ++iLineNumber; return; } // parse the value iOut = strtoul10(filePtr, &filePtr); } } #endif // ASSIMP_BUILD_NO_3DS_IMPORTER #endif // !! ASSIMP_BUILD_NO_BASE_IMPORTER