/* --------------------------------------------------------------------------- Open Asset Import Library (ASSIMP) --------------------------------------------------------------------------- Copyright (c) 2006-2008, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file MD5Loader.cpp * @brief Implementation of the MD5 importer class */ #include "AssimpPCH.h" #ifndef ASSIMP_BUILD_NO_MD5_IMPORTER // internal headers #include "MaterialSystem.h" #include "RemoveComments.h" #include "MD5Loader.h" #include "StringComparison.h" #include "fast_atof.h" #include "SkeletonMeshBuilder.h" using namespace Assimp; // Minimum weight value. Weights inside [-n ... n] are ignored #define AI_MD5_WEIGHT_EPSILON 1e-5f // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer MD5Importer::MD5Importer() : configNoAutoLoad (false) {} // ------------------------------------------------------------------------------------------------ // Destructor, private as well MD5Importer::~MD5Importer() {} // ------------------------------------------------------------------------------------------------ // Returns whether the class can handle the format of the given file. bool MD5Importer::CanRead( const std::string& pFile, IOSystem* pIOHandler, bool checkSig) const { const std::string extension = GetExtension(pFile); if (extension == "md5anim" || extension == "md5mesh" || extension == "md5camera") return true; else if (!extension.length() || checkSig) { if (!pIOHandler) return true; const char* tokens[] = {"MD5Version"}; return SearchFileHeaderForToken(pIOHandler,pFile,tokens,1); } return false; } // ------------------------------------------------------------------------------------------------ // Get list of all supported extensions void MD5Importer::GetExtensionList(std::string& append) { append.append("*.md5mesh;*.md5anim;*.md5camera"); } // ------------------------------------------------------------------------------------------------ // Setup import properties void MD5Importer::SetupProperties(const Importer* pImp) { // AI_CONFIG_IMPORT_MD5_NO_ANIM_AUTOLOAD configNoAutoLoad = (0 != pImp->GetPropertyInteger(AI_CONFIG_IMPORT_MD5_NO_ANIM_AUTOLOAD,0)); } // ------------------------------------------------------------------------------------------------ // Imports the given file into the given scene structure. void MD5Importer::InternReadFile( const std::string& pFile, aiScene* _pScene, IOSystem* _pIOHandler) { pIOHandler = _pIOHandler; pScene = _pScene; bHadMD5Mesh = bHadMD5Anim = bHadMD5Camera = false; // remove the file extension std::string::size_type pos = pFile.find_last_of('.'); mFile = (std::string::npos == pos ? pFile : pFile.substr(0,pos+1)); const std::string extension = GetExtension(pFile); try { if (extension == "md5camera") { LoadMD5CameraFile(); } else if (configNoAutoLoad || extension == "md5anim") { // determine file extension and process just *one* file if (extension.length() == 0) { /* fixme */ } if (extension == "md5anim") { LoadMD5AnimFile(); } else if (extension == "md5mesh") { LoadMD5MeshFile(); } } else { LoadMD5MeshFile(); LoadMD5AnimFile(); } } catch ( ImportErrorException* ex) { UnloadFileFromMemory(); throw ex; } // make sure we have at least one file if (!bHadMD5Mesh && !bHadMD5Anim && !bHadMD5Camera) throw new ImportErrorException("Failed to read valid contents from this MD5* file"); // Now rotate the whole scene 90 degrees around the x axis to convert to internal coordinate system pScene->mRootNode->mTransformation = aiMatrix4x4(1.f,0.f,0.f,0.f, 0.f,0.f,1.f,0.f,0.f,-1.f,0.f,0.f,0.f,0.f,0.f,1.f); // the output scene wouldn't pass the validation without this flag if (!bHadMD5Mesh) pScene->mFlags |= AI_SCENE_FLAGS_INCOMPLETE; } // ------------------------------------------------------------------------------------------------ // Load a file into a memory buffer void MD5Importer::LoadFileIntoMemory (IOStream* file) { ai_assert(NULL != file); fileSize = (unsigned int)file->FileSize(); // allocate storage and copy the contents of the file to a memory buffer pScene = pScene; mBuffer = new char[fileSize+1]; file->Read( (void*)mBuffer, 1, fileSize); iLineNumber = 1; // append a terminal 0 mBuffer[fileSize] = '\0'; // now remove all line comments from the file CommentRemover::RemoveLineComments("//",mBuffer,' '); } // ------------------------------------------------------------------------------------------------ // Unload the current memory buffer void MD5Importer::UnloadFileFromMemory () { // delete the file buffer delete[] mBuffer; mBuffer = NULL; fileSize = 0; } // ------------------------------------------------------------------------------------------------ // Build unique vertices void MD5Importer::MakeDataUnique (MD5::MeshDesc& meshSrc) { std::vector abHad(meshSrc.mVertices.size(),false); // allocate enough storage to keep the output structures const unsigned int iNewNum = meshSrc.mFaces.size()*3; unsigned int iNewIndex = meshSrc.mVertices.size(); meshSrc.mVertices.resize(iNewNum); // try to guess how much storage we'll need for new weights const float fWeightsPerVert = meshSrc.mWeights.size() / (float)iNewIndex; const unsigned int guess = (unsigned int)(fWeightsPerVert*iNewNum); meshSrc.mWeights.reserve(guess + (guess >> 3)); // + 12.5% as buffer for (FaceList::const_iterator iter = meshSrc.mFaces.begin(),iterEnd = meshSrc.mFaces.end();iter != iterEnd;++iter){ const aiFace& face = *iter; for (unsigned int i = 0; i < 3;++i) { if (face.mIndices[0] >= meshSrc.mVertices.size()) throw new ImportErrorException("MD5MESH: Invalid vertex index"); if (abHad[face.mIndices[i]]) { // generate a new vertex meshSrc.mVertices[iNewIndex] = meshSrc.mVertices[face.mIndices[i]]; face.mIndices[i] = iNewIndex++; } else abHad[face.mIndices[i]] = true; } // swap face order std::swap(face.mIndices[0],face.mIndices[2]); } } // ------------------------------------------------------------------------------------------------ // Recursive node graph construction from a MD5MESH void MD5Importer::AttachChilds_Mesh(int iParentID,aiNode* piParent, BoneList& bones) { ai_assert(NULL != piParent && !piParent->mNumChildren); // First find out how many children we'll have for (int i = 0; i < (int)bones.size();++i) { if (iParentID != i && bones[i].mParentIndex == iParentID) { ++piParent->mNumChildren; } } if (piParent->mNumChildren) { piParent->mChildren = new aiNode*[piParent->mNumChildren]; for (int i = 0; i < (int)bones.size();++i) { // (avoid infinite recursion) if (iParentID != i && bones[i].mParentIndex == iParentID) { aiNode* pc; // setup a new node *piParent->mChildren++ = pc = new aiNode(); pc->mName = aiString(bones[i].mName); pc->mParent = piParent; // get the transformation matrix from rotation and translational components aiQuaternion quat; MD5::ConvertQuaternion ( bones[i].mRotationQuat, quat ); // FIX to get to Assimp's quaternion conventions quat.w *= -1.f; bones[i].mTransform = aiMatrix4x4 ( quat.GetMatrix()); bones[i].mTransform.a4 = bones[i].mPositionXYZ.x; bones[i].mTransform.b4 = bones[i].mPositionXYZ.y; bones[i].mTransform.c4 = bones[i].mPositionXYZ.z; // store it for later use pc->mTransformation = bones[i].mInvTransform = bones[i].mTransform; bones[i].mInvTransform.Inverse(); // the transformations for each bone are absolute, so we need to multiply them // with the inverse of the absolute matrix of the parent joint if (-1 != iParentID) { pc->mTransformation = bones[iParentID].mInvTransform * pc->mTransformation; } // add children to this node, too AttachChilds_Mesh( i, pc, bones); } } // undo offset computations piParent->mChildren -= piParent->mNumChildren; } } // ------------------------------------------------------------------------------------------------ // Recursive node graph construction from a MD5ANIM void MD5Importer::AttachChilds_Anim(int iParentID,aiNode* piParent, AnimBoneList& bones,const aiNodeAnim** node_anims) { ai_assert(NULL != piParent && !piParent->mNumChildren); // First find out how many children we'll have for (int i = 0; i < (int)bones.size();++i) { if (iParentID != i && bones[i].mParentIndex == iParentID) { ++piParent->mNumChildren; } } if (piParent->mNumChildren) { piParent->mChildren = new aiNode*[piParent->mNumChildren]; for (int i = 0; i < (int)bones.size();++i) { // (avoid infinite recursion) if (iParentID != i && bones[i].mParentIndex == iParentID) { aiNode* pc; // setup a new node *piParent->mChildren++ = pc = new aiNode(); pc->mName = aiString(bones[i].mName); pc->mParent = piParent; // get the corresponding animation channel and its first frame const aiNodeAnim** cur = node_anims; while ((**cur).mNodeName != pc->mName)++cur; aiMatrix4x4::Translation((**cur).mPositionKeys[0].mValue,pc->mTransformation); pc->mTransformation = pc->mTransformation * aiMatrix4x4((**cur).mRotationKeys[0].mValue.GetMatrix()) ; // add children to this node, too AttachChilds_Anim( i, pc, bones,node_anims); } } // undo offset computations piParent->mChildren -= piParent->mNumChildren; } } // ------------------------------------------------------------------------------------------------ // Load a MD5MESH file void MD5Importer::LoadMD5MeshFile () { std::string pFile = mFile + "md5mesh"; boost::scoped_ptr file( pIOHandler->Open( pFile, "rb")); // Check whether we can read from the file if( file.get() == NULL) { DefaultLogger::get()->warn("Failed to read MD5MESH file: " + pFile); return; } bHadMD5Mesh = true; LoadFileIntoMemory(file.get()); // now construct a parser and parse the file MD5::MD5Parser parser(mBuffer,fileSize); // load the mesh information from it MD5::MD5MeshParser meshParser(parser.mSections); // create the bone hierarchy - first the root node and dummy nodes for all meshes pScene->mRootNode = new aiNode(""); pScene->mRootNode->mNumChildren = 2; pScene->mRootNode->mChildren = new aiNode*[2]; // build the hierarchy from the MD5MESH file aiNode* pcNode = pScene->mRootNode->mChildren[1] = new aiNode(); pcNode->mName.Set(""); pcNode->mParent = pScene->mRootNode; AttachChilds_Mesh(-1,pcNode,meshParser.mJoints); pcNode = pScene->mRootNode->mChildren[0] = new aiNode(); pcNode->mName.Set(""); pcNode->mParent = pScene->mRootNode; #if 0 if (pScene->mRootNode->mChildren[1]->mNumChildren) /* start at the right hierarchy level */ SkeletonMeshBuilder skeleton_maker(pScene,pScene->mRootNode->mChildren[1]->mChildren[0]); #else std::vector::const_iterator end = meshParser.mMeshes.end(); // FIX: MD5 files exported from Blender can have empty meshes for (std::vector::const_iterator it = meshParser.mMeshes.begin(),end = meshParser.mMeshes.end(); it != end;++it) { if (!(*it).mFaces.empty() && !(*it).mVertices.empty()) ++pScene->mNumMaterials; } // generate all meshes pScene->mNumMeshes = pScene->mNumMaterials; pScene->mMeshes = new aiMesh*[pScene->mNumMeshes]; pScene->mMaterials = new aiMaterial*[pScene->mNumMeshes]; // storage for node mesh indices pcNode->mNumMeshes = pScene->mNumMeshes; pcNode->mMeshes = new unsigned int[pcNode->mNumMeshes]; for (unsigned int m = 0; m < pcNode->mNumMeshes;++m) pcNode->mMeshes[m] = m; unsigned int n = 0; for (std::vector::iterator it = meshParser.mMeshes.begin(),end = meshParser.mMeshes.end(); it != end;++it) { MD5::MeshDesc& meshSrc = *it; if (meshSrc.mFaces.empty() || meshSrc.mVertices.empty()) continue; aiMesh* mesh = pScene->mMeshes[n] = new aiMesh(); mesh->mPrimitiveTypes = aiPrimitiveType_TRIANGLE; // generate unique vertices in our internal verbose format MakeDataUnique(meshSrc); mesh->mNumVertices = (unsigned int) meshSrc.mVertices.size(); mesh->mVertices = new aiVector3D[mesh->mNumVertices]; mesh->mTextureCoords[0] = new aiVector3D[mesh->mNumVertices]; mesh->mNumUVComponents[0] = 2; // copy texture coordinates aiVector3D* pv = mesh->mTextureCoords[0]; for (MD5::VertexList::const_iterator iter = meshSrc.mVertices.begin();iter != meshSrc.mVertices.end();++iter,++pv) { pv->x = (*iter).mUV.x; pv->y = 1.0f-(*iter).mUV.y; // D3D to OpenGL pv->z = 0.0f; } // sort all bone weights - per bone unsigned int* piCount = new unsigned int[meshParser.mJoints.size()]; ::memset(piCount,0,sizeof(unsigned int)*meshParser.mJoints.size()); for (MD5::VertexList::const_iterator iter = meshSrc.mVertices.begin();iter != meshSrc.mVertices.end();++iter,++pv) { for (unsigned int jub = (*iter).mFirstWeight, w = jub; w < jub + (*iter).mNumWeights;++w) { MD5::WeightDesc& desc = meshSrc.mWeights[w]; /* FIX for some invalid exporters */ if (!(desc.mWeight < AI_MD5_WEIGHT_EPSILON && desc.mWeight >= -AI_MD5_WEIGHT_EPSILON )) ++piCount[desc.mBone]; } } // check how many we will need for (unsigned int p = 0; p < meshParser.mJoints.size();++p) if (piCount[p])mesh->mNumBones++; if (mesh->mNumBones) // just for safety { mesh->mBones = new aiBone*[mesh->mNumBones]; for (unsigned int q = 0,h = 0; q < meshParser.mJoints.size();++q) { if (!piCount[q])continue; aiBone* p = mesh->mBones[h] = new aiBone(); p->mNumWeights = piCount[q]; p->mWeights = new aiVertexWeight[p->mNumWeights]; p->mName = aiString(meshParser.mJoints[q].mName); p->mOffsetMatrix = meshParser.mJoints[q].mInvTransform; // store the index for later use MD5::BoneDesc& boneSrc = meshParser.mJoints[q]; boneSrc.mMap = h++; // compute w-component of quaternion MD5::ConvertQuaternion( boneSrc.mRotationQuat, boneSrc.mRotationQuatConverted ); } //unsigned int g = 0; pv = mesh->mVertices; for (MD5::VertexList::const_iterator iter = meshSrc.mVertices.begin();iter != meshSrc.mVertices.end();++iter,++pv) { // compute the final vertex position from all single weights *pv = aiVector3D(); // there are models which have weights which don't sum to 1 ... float fSum = 0.0f; for (unsigned int jub = (*iter).mFirstWeight, w = jub; w < jub + (*iter).mNumWeights;++w) fSum += meshSrc.mWeights[w].mWeight; if (!fSum) { DefaultLogger::get()->error("MD5MESH: The sum of all vertex bone weights is 0"); continue; } // process bone weights for (unsigned int jub = (*iter).mFirstWeight, w = jub; w < jub + (*iter).mNumWeights;++w) { if (w >= meshSrc.mWeights.size()) throw new ImportErrorException("MD5MESH: Invalid weight index"); MD5::WeightDesc& desc = meshSrc.mWeights[w]; if ( desc.mWeight < AI_MD5_WEIGHT_EPSILON && desc.mWeight >= -AI_MD5_WEIGHT_EPSILON) continue; const float fNewWeight = desc.mWeight / fSum; // transform the local position into worldspace MD5::BoneDesc& boneSrc = meshParser.mJoints[desc.mBone]; const aiVector3D v = boneSrc.mRotationQuatConverted.Rotate (desc.vOffsetPosition); // use the original weight to compute the vertex position // (some MD5s seem to depend on the invalid weight values ...) *pv += ((boneSrc.mPositionXYZ+v)* desc.mWeight); aiBone* bone = mesh->mBones[boneSrc.mMap]; *bone->mWeights++ = aiVertexWeight((unsigned int)(pv-mesh->mVertices),fNewWeight); } } // undo our nice offset tricks ... for (unsigned int p = 0; p < mesh->mNumBones;++p) mesh->mBones[p]->mWeights -= mesh->mBones[p]->mNumWeights; } delete[] piCount; // now setup all faces - we can directly copy the list // (however, take care that the aiFace destructor doesn't delete the mIndices array) mesh->mNumFaces = (unsigned int)meshSrc.mFaces.size(); mesh->mFaces = new aiFace[mesh->mNumFaces]; for (unsigned int c = 0; c < mesh->mNumFaces;++c) { mesh->mFaces[c].mNumIndices = 3; mesh->mFaces[c].mIndices = meshSrc.mFaces[c].mIndices; meshSrc.mFaces[c].mIndices = NULL; } // generate a material for the mesh MaterialHelper* mat = new MaterialHelper(); pScene->mMaterials[n] = mat; // insert the typical doom3 textures: // nnn_local.tga - normal map // nnn_h.tga - height map // nnn_s.tga - specular map // nnn_d.tga - diffuse map if (meshSrc.mShader.length && !strchr(meshSrc.mShader.data,'.')) { aiString temp(meshSrc.mShader); temp.Append("_local.tga"); mat->AddProperty(&temp,AI_MATKEY_TEXTURE_NORMALS(0)); temp = aiString(meshSrc.mShader); temp.Append("_s.tga"); mat->AddProperty(&temp,AI_MATKEY_TEXTURE_SPECULAR(0)); temp = aiString(meshSrc.mShader); temp.Append("_d.tga"); mat->AddProperty(&temp,AI_MATKEY_TEXTURE_DIFFUSE(0)); temp = aiString(meshSrc.mShader); temp.Append("_h.tga"); mat->AddProperty(&temp,AI_MATKEY_TEXTURE_HEIGHT(0)); // set this also as material name mat->AddProperty(&meshSrc.mShader,AI_MATKEY_NAME); } else mat->AddProperty(&meshSrc.mShader,AI_MATKEY_TEXTURE_DIFFUSE(0)); mesh->mMaterialIndex = n++; } #endif // delete the file again UnloadFileFromMemory(); } // ------------------------------------------------------------------------------------------------ // Load an MD5ANIM file void MD5Importer::LoadMD5AnimFile () { std::string pFile = mFile + "md5anim"; boost::scoped_ptr file( pIOHandler->Open( pFile, "rb")); // Check whether we can read from the file if( file.get() == NULL) { DefaultLogger::get()->warn("Failed to read MD5ANIM file: " + pFile); return; } LoadFileIntoMemory(file.get()); // parse the basic file structure MD5::MD5Parser parser(mBuffer,fileSize); // load the animation information from the parse tree MD5::MD5AnimParser animParser(parser.mSections); // generate and fill the output animation if (animParser.mAnimatedBones.empty() || animParser.mFrames.empty() || animParser.mBaseFrames.size() != animParser.mAnimatedBones.size()) { DefaultLogger::get()->error("MD5ANIM: No frames or animated bones loaded"); } else { bHadMD5Anim = true; pScene->mAnimations = new aiAnimation*[pScene->mNumAnimations = 1]; aiAnimation* anim = pScene->mAnimations[0] = new aiAnimation(); anim->mNumChannels = (unsigned int)animParser.mAnimatedBones.size(); anim->mChannels = new aiNodeAnim*[anim->mNumChannels]; for (unsigned int i = 0; i < anim->mNumChannels;++i) { aiNodeAnim* node = anim->mChannels[i] = new aiNodeAnim(); node->mNodeName = aiString( animParser.mAnimatedBones[i].mName ); // allocate storage for the keyframes node->mPositionKeys = new aiVectorKey[animParser.mFrames.size()]; node->mRotationKeys = new aiQuatKey[animParser.mFrames.size()]; } // 1 tick == 1 frame anim->mTicksPerSecond = animParser.fFrameRate; for (FrameList::const_iterator iter = animParser.mFrames.begin(), iterEnd = animParser.mFrames.end();iter != iterEnd;++iter){ double dTime = (double)(*iter).iIndex; aiNodeAnim** pcAnimNode = anim->mChannels; if (!(*iter).mValues.empty() || iter == animParser.mFrames.begin()) /* be sure we have at least one frame */ { // now process all values in there ... read all joints MD5::BaseFrameDesc* pcBaseFrame = &animParser.mBaseFrames[0]; for (AnimBoneList::const_iterator iter2 = animParser.mAnimatedBones.begin(); iter2 != animParser.mAnimatedBones.end();++iter2, ++pcAnimNode,++pcBaseFrame) { if((*iter2).iFirstKeyIndex >= (*iter).mValues.size()) { // Allow for empty frames if ((*iter2).iFlags != 0) { throw new ImportErrorException("MD5: Keyframe index is out of range"); } continue; } const float* fpCur = &(*iter).mValues[(*iter2).iFirstKeyIndex]; aiNodeAnim* pcCurAnimBone = *pcAnimNode; aiVectorKey* vKey = &pcCurAnimBone->mPositionKeys[pcCurAnimBone->mNumPositionKeys++]; aiQuatKey* qKey = &pcCurAnimBone->mRotationKeys [pcCurAnimBone->mNumRotationKeys++]; aiVector3D vTemp; // translational component for (unsigned int i = 0; i < 3; ++i) { if ((*iter2).iFlags & (1u << i)) vKey->mValue[i] = *fpCur++; else vKey->mValue[i] = pcBaseFrame->vPositionXYZ[i]; } // orientation component for (unsigned int i = 0; i < 3; ++i) { if ((*iter2).iFlags & (8u << i)) vTemp[i] = *fpCur++; else vTemp[i] = pcBaseFrame->vRotationQuat[i]; } MD5::ConvertQuaternion(vTemp, qKey->mValue); qKey->mTime = vKey->mTime = dTime; // we need this to get to Assimp quaternion conventions qKey->mValue.w *= -1.f; } } // compute the duration of the animation anim->mDuration = std::max(dTime,anim->mDuration); } // If we didn't build the hierarchy yet (== we didn't load a MD5MESH), // construct it now from the data given in the MD5ANIM. if (!pScene->mRootNode) { pScene->mRootNode = new aiNode(); pScene->mRootNode->mName.Set(""); AttachChilds_Anim(-1,pScene->mRootNode,animParser.mAnimatedBones,(const aiNodeAnim**)anim->mChannels); // Call SkeletonMeshBuilder to construct a mesh to represent the shape if (pScene->mRootNode->mNumChildren) { SkeletonMeshBuilder skeleton_maker(pScene,pScene->mRootNode->mChildren[0]); } } } // delete the file again UnloadFileFromMemory(); } // ------------------------------------------------------------------------------------------------ // Load an MD5CAMERA file void MD5Importer::LoadMD5CameraFile () { std::string pFile = mFile + "md5camera"; boost::scoped_ptr file( pIOHandler->Open( pFile, "rb")); // Check whether we can read from the file if( file.get() == NULL) { throw new ImportErrorException("Failed to read MD5CAMERA file: " + pFile); } bHadMD5Camera = true; LoadFileIntoMemory(file.get()); // parse the basic file structure MD5::MD5Parser parser(mBuffer,fileSize); // load the camera animation data from the parse tree MD5::MD5CameraParser cameraParser(parser.mSections); if (cameraParser.frames.empty()) throw new ImportErrorException("MD5CAMERA: No frames parsed"); std::vector& cuts = cameraParser.cuts; std::vector& frames = cameraParser.frames; // Construct output graph - a simple root with a dummy child. // The root node performs the coordinate system conversion aiNode* root = pScene->mRootNode = new aiNode(""); root->mChildren = new aiNode*[root->mNumChildren = 1]; root->mChildren[0] = new aiNode(""); root->mChildren[0]->mParent = root; // ... but with one camera assigned to it pScene->mCameras = new aiCamera*[pScene->mNumCameras = 1]; aiCamera* cam = pScene->mCameras[0] = new aiCamera(); cam->mName = ""; // FIXME: Fov is currently set to the first frame's value cam->mHorizontalFOV = AI_DEG_TO_RAD( frames.front().fFOV ); // every cut is written to a separate aiAnimation if (!cuts.size()) { cuts.push_back(0); cuts.push_back(frames.size()-1); } else { cuts.insert(cuts.begin(),0); if (cuts.back() < frames.size()-1) cuts.push_back(frames.size()-1); } pScene->mNumAnimations = cuts.size()-1; aiAnimation** tmp = pScene->mAnimations = new aiAnimation*[pScene->mNumAnimations]; for (std::vector::const_iterator it = cuts.begin(); it != cuts.end()-1; ++it) { aiAnimation* anim = *tmp++ = new aiAnimation(); anim->mName.length = ::sprintf(anim->mName.data,"anim%u_from_%u_to_%u",(unsigned int)(it-cuts.begin()),(*it),*(it+1)); anim->mTicksPerSecond = cameraParser.fFrameRate; anim->mChannels = new aiNodeAnim*[anim->mNumChannels = 1]; aiNodeAnim* nd = anim->mChannels[0] = new aiNodeAnim(); nd->mNodeName.Set(""); nd->mNumPositionKeys = nd->mNumRotationKeys = *(it+1) - (*it); nd->mPositionKeys = new aiVectorKey[nd->mNumPositionKeys]; nd->mRotationKeys = new aiQuatKey [nd->mNumRotationKeys]; for (unsigned int i = 0; i < nd->mNumPositionKeys; ++i) { nd->mPositionKeys[i].mValue = frames[*it+i].vPositionXYZ; MD5::ConvertQuaternion(frames[*it+i].vRotationQuat,nd->mRotationKeys[i].mValue); nd->mRotationKeys[i].mTime = nd->mPositionKeys[i].mTime = *it+i; } } } #endif // !! ASSIMP_BUILD_NO_MD5_IMPORTER