// ---------------------------------------------------------------------------- // Simple sample to prove that Assimp is easy to use with OpenGL. // It takes a file name as command line parameter, loads it using standard // settings and displays it. // // If you intend to _use_ this code sample in your app, do yourself a favour // and replace immediate mode calls with VBOs ... // // The vc8 solution links against assimp-release-dll_win32 - be sure to // have this configuration built. // ---------------------------------------------------------------------------- #include #include // assimp include files. These three are usually needed. #include #include #include // the global Assimp scene object const struct aiScene* scene = NULL; GLuint scene_list = 0; struct aiVector3D scene_min, scene_max, scene_center; // current rotation angle static float angle = 0.f; #define aisgl_min(x,y) (xx?y:x) // ---------------------------------------------------------------------------- void reshape(int width, int height) { const double aspectRatio = (float) width / height, fieldOfView = 45.0; glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(fieldOfView, aspectRatio, 1.0, 1000.0); /* Znear and Zfar */ glViewport(0, 0, width, height); } // ---------------------------------------------------------------------------- void get_bounding_box_for_node (const struct aiNode* nd, struct aiVector3D* min, struct aiVector3D* max, struct aiMatrix4x4* trafo ){ struct aiMatrix4x4 prev; unsigned int n = 0, t; prev = *trafo; aiMultiplyMatrix4(trafo,&nd->mTransformation); for (; n < nd->mNumMeshes; ++n) { const struct aiMesh* mesh = scene->mMeshes[nd->mMeshes[n]]; for (t = 0; t < mesh->mNumVertices; ++t) { struct aiVector3D tmp = mesh->mVertices[t]; aiTransformVecByMatrix4(&tmp,trafo); min->x = aisgl_min(min->x,tmp.x); min->y = aisgl_min(min->y,tmp.y); min->z = aisgl_min(min->z,tmp.z); max->x = aisgl_max(max->x,tmp.x); max->y = aisgl_max(max->y,tmp.y); max->z = aisgl_max(max->z,tmp.z); } } for (n = 0; n < nd->mNumChildren; ++n) { get_bounding_box_for_node(nd->mChildren[n],min,max,trafo); } *trafo = prev; } // ---------------------------------------------------------------------------- void get_bounding_box (struct aiVector3D* min, struct aiVector3D* max) { struct aiMatrix4x4 trafo; aiIdentityMatrix4(&trafo); min->x = min->y = min->z = 1e10f; max->x = max->y = max->z = -1e10f; get_bounding_box_for_node(scene->mRootNode,min,max,&trafo); } // ---------------------------------------------------------------------------- void color4_to_float4(const struct aiColor4D *c, float f[4]) { f[0] = c->r; f[1] = c->g; f[2] = c->b; f[3] = c->a; } // ---------------------------------------------------------------------------- void set_float4(float f[4], float a, float b, float c, float d) { f[0] = a; f[1] = b; f[2] = c; f[3] = d; } // ---------------------------------------------------------------------------- void apply_material(const struct aiMaterial *mtl) { float c[4]; GLenum fill_mode; int ret1, ret2; struct aiColor4D diffuse; struct aiColor4D specular; struct aiColor4D ambient; struct aiColor4D emission; float shininess, strength; int two_sided; int wireframe; unsigned int max; set_float4(c, 0.8f, 0.8f, 0.8f, 1.0f); if(AI_SUCCESS == aiGetMaterialColor(mtl, AI_MATKEY_COLOR_DIFFUSE, &diffuse)) color4_to_float4(&diffuse, c); glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, c); set_float4(c, 0.0f, 0.0f, 0.0f, 1.0f); if(AI_SUCCESS == aiGetMaterialColor(mtl, AI_MATKEY_COLOR_SPECULAR, &specular)) color4_to_float4(&specular, c); glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, c); set_float4(c, 0.2f, 0.2f, 0.2f, 1.0f); if(AI_SUCCESS == aiGetMaterialColor(mtl, AI_MATKEY_COLOR_AMBIENT, &ambient)) color4_to_float4(&ambient, c); glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, c); set_float4(c, 0.0f, 0.0f, 0.0f, 1.0f); if(AI_SUCCESS == aiGetMaterialColor(mtl, AI_MATKEY_COLOR_EMISSIVE, &emission)) color4_to_float4(&emission, c); glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, c); max = 1; ret1 = aiGetMaterialFloatArray(mtl, AI_MATKEY_SHININESS, &shininess, &max); if(ret1 == AI_SUCCESS) { max = 1; ret2 = aiGetMaterialFloatArray(mtl, AI_MATKEY_SHININESS_STRENGTH, &strength, &max); if(ret2 == AI_SUCCESS) glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, shininess * strength); else glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, shininess); } else { glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 0.0f); set_float4(c, 0.0f, 0.0f, 0.0f, 0.0f); glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, c); } max = 1; if(AI_SUCCESS == aiGetMaterialIntegerArray(mtl, AI_MATKEY_ENABLE_WIREFRAME, &wireframe, &max)) fill_mode = wireframe ? GL_LINE : GL_FILL; else fill_mode = GL_FILL; glPolygonMode(GL_FRONT_AND_BACK, fill_mode); max = 1; if((AI_SUCCESS == aiGetMaterialIntegerArray(mtl, AI_MATKEY_TWOSIDED, &two_sided, &max)) && two_sided) glDisable(GL_CULL_FACE); else glEnable(GL_CULL_FACE); } // ---------------------------------------------------------------------------- void recursive_render (const struct aiScene *sc, const struct aiNode* nd) { unsigned int i; unsigned int n = 0, t; struct aiMatrix4x4 m = nd->mTransformation; // update transform aiTransposeMatrix4(&m); glPushMatrix(); glMultMatrixf((float*)&m); // draw all meshes assigned to this node for (; n < nd->mNumMeshes; ++n) { const struct aiMesh* mesh = scene->mMeshes[nd->mMeshes[n]]; apply_material(sc->mMaterials[mesh->mMaterialIndex]); if(mesh->mNormals == NULL) { glDisable(GL_LIGHTING); } else { glEnable(GL_LIGHTING); } for (t = 0; t < mesh->mNumFaces; ++t) { const struct aiFace* face = &mesh->mFaces[t]; GLenum face_mode; switch(face->mNumIndices) { case 1: face_mode = GL_POINTS; break; case 2: face_mode = GL_LINES; break; case 3: face_mode = GL_TRIANGLES; break; default: face_mode = GL_POLYGON; break; } glBegin(face_mode); for(i = 0; i < face->mNumIndices; i++) { int index = face->mIndices[i]; if(mesh->mColors[0] != NULL) glColor4fv((GLfloat*)&mesh->mColors[0][index]); if(mesh->mNormals != NULL) glNormal3fv(&mesh->mNormals[index].x); glVertex3fv(&mesh->mVertices[index].x); } glEnd(); } } // draw all children for (n = 0; n < nd->mNumChildren; ++n) { recursive_render(sc, nd->mChildren[n]); } glPopMatrix(); } // ---------------------------------------------------------------------------- void do_motion (void) { static GLint prev_time = 0; int time = glutGet(GLUT_ELAPSED_TIME); angle += (time-prev_time)*0.01; prev_time = time; glutPostRedisplay (); } // ---------------------------------------------------------------------------- void display(void) { float tmp; glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); gluLookAt(0.f,0.f,3.f,0.f,0.f,-5.f,0.f,1.f,0.f); // rotate it around the y axis glRotatef(angle,0.f,1.f,0.f); // scale the whole asset to fit into our view frustum tmp = scene_max.x-scene_min.x; tmp = aisgl_max(scene_max.y - scene_min.y,tmp); tmp = aisgl_max(scene_max.z - scene_min.z,tmp); tmp = 1.f / tmp; glScalef(tmp, tmp, tmp); // center the model glTranslatef( -scene_center.x, -scene_center.y, -scene_center.z ); // if the display list has not been made yet, create a new one and // fill it with scene contents if(scene_list == 0) { scene_list = glGenLists(1); glNewList(scene_list, GL_COMPILE); // now begin at the root node of the imported data and traverse // the scenegraph by multiplying subsequent local transforms // together on GL's matrix stack. recursive_render(scene, scene->mRootNode); glEndList(); } glCallList(scene_list); glutSwapBuffers(); do_motion(); } // ---------------------------------------------------------------------------- int loadasset (const char* path) { // we are taking one of the postprocessing presets to avoid // spelling out 20+ single postprocessing flags here. scene = aiImportFile(path,aiProcessPreset_TargetRealtime_MaxQuality); if (scene) { get_bounding_box(&scene_min,&scene_max); scene_center.x = (scene_min.x + scene_max.x) / 2.0f; scene_center.y = (scene_min.y + scene_max.y) / 2.0f; scene_center.z = (scene_min.z + scene_max.z) / 2.0f; return 0; } return 1; } // ---------------------------------------------------------------------------- int main(int argc, char **argv) { struct aiLogStream stream; glutInitWindowSize(900,600); glutInitWindowPosition(100,100); glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH); glutInit(&argc, argv); glutCreateWindow("Assimp - Very simple OpenGL sample"); glutDisplayFunc(display); glutReshapeFunc(reshape); // get a handle to the predefined STDOUT log stream and attach // it to the logging system. It remains active for all further // calls to aiImportFile(Ex) and aiApplyPostProcessing. stream = aiGetPredefinedLogStream(aiDefaultLogStream_STDOUT,NULL); aiAttachLogStream(&stream); // ... same procedure, but this stream now writes the // log messages to assimp_log.txt stream = aiGetPredefinedLogStream(aiDefaultLogStream_FILE,"assimp_log.txt"); aiAttachLogStream(&stream); // the model name can be specified on the command line. If none // is specified, we try to locate one of the more expressive test // models from the repository (/models-nonbsd may be missing in // some distributions so we need a fallback from /models!). if( 0 != loadasset( argc >= 2 ? argv[1] : "../../test/models-nonbsd/X/dwarf.x")) { if( argc != 1 || (0 != loadasset( "../../../../test/models-nonbsd/X/dwarf.x") && 0 != loadasset( "../../test/models/X/Testwuson.X"))) { return -1; } } glClearColor(0.1f,0.1f,0.1f,1.f); glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); // Uses default lighting parameters glEnable(GL_DEPTH_TEST); glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE); glEnable(GL_NORMALIZE); // XXX docs say all polygons are emitted CCW, but tests show that some aren't. if(getenv("MODEL_IS_BROKEN")) glFrontFace(GL_CW); glColorMaterial(GL_FRONT_AND_BACK, GL_DIFFUSE); glutGet(GLUT_ELAPSED_TIME); glutMainLoop(); // cleanup - calling 'aiReleaseImport' is important, as the library // keeps internal resources until the scene is freed again. Not // doing so can cause severe resource leaking. aiReleaseImport(scene); // We added a log stream to the library, it's our job to disable it // again. This will definitely release the last resources allocated // by Assimp. aiDetachAllLogStreams(); return 0; }