/* Open Asset Import Library (ASSIMP) ---------------------------------------------------------------------- Copyright (c) 2006-2008, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------- */ #ifndef AI_PROCESS_HELPER_H_INCLUDED #define AI_PROCESS_HELPER_H_INCLUDED #include "../include/aiPostProcess.h" #include "SpatialSort.h" #include "BaseProcess.h" #include "ParsingUtils.h" // ------------------------------------------------------------------------------- // Some extensions to std namespace. Mainly std::min and std::max for all // flat data types in the aiScene. They're used to quickly determine the // min/max bounds of data arrays. #ifdef __cplusplus namespace std { // std::min for aiVector3D inline ::aiVector3D min (const ::aiVector3D& a, const ::aiVector3D& b) { return ::aiVector3D (min(a.x,b.x),min(a.y,b.y),min(a.z,b.z)); } // std::max for aiVector3D inline ::aiVector3D max (const ::aiVector3D& a, const ::aiVector3D& b) { return ::aiVector3D (max(a.x,b.x),max(a.y,b.y),max(a.z,b.z)); } // std::min for aiColor4D inline ::aiColor4D min (const ::aiColor4D& a, const ::aiColor4D& b) { return ::aiColor4D (min(a.r,b.r),min(a.g,b.g),min(a.b,b.b),min(a.a,b.a)); } // std::max for aiColor4D inline ::aiColor4D max (const ::aiColor4D& a, const ::aiColor4D& b) { return ::aiColor4D (max(a.r,b.r),max(a.g,b.g),max(a.b,b.b),max(a.a,b.a)); } // std::min for aiQuaternion inline ::aiQuaternion min (const ::aiQuaternion& a, const ::aiQuaternion& b) { return ::aiQuaternion (min(a.w,b.w),min(a.x,b.x),min(a.y,b.y),min(a.z,b.z)); } // std::max for aiQuaternion inline ::aiQuaternion max (const ::aiQuaternion& a, const ::aiQuaternion& b) { return ::aiQuaternion (max(a.w,b.w),max(a.x,b.x),max(a.y,b.y),max(a.z,b.z)); } // std::min for aiVectorKey inline ::aiVectorKey min (const ::aiVectorKey& a, const ::aiVectorKey& b) { return ::aiVectorKey (min(a.mTime,b.mTime),min(a.mValue,b.mValue)); } // std::max for aiVectorKey inline ::aiVectorKey max (const ::aiVectorKey& a, const ::aiVectorKey& b) { return ::aiVectorKey (max(a.mTime,b.mTime),max(a.mValue,b.mValue)); } // std::min for aiQuatKey inline ::aiQuatKey min (const ::aiQuatKey& a, const ::aiQuatKey& b) { return ::aiQuatKey (min(a.mTime,b.mTime),min(a.mValue,b.mValue)); } // std::max for aiQuatKey inline ::aiQuatKey max (const ::aiQuatKey& a, const ::aiQuatKey& b) { return ::aiQuatKey (max(a.mTime,b.mTime),max(a.mValue,b.mValue)); } // std::min for aiVertexWeight inline ::aiVertexWeight min (const ::aiVertexWeight& a, const ::aiVertexWeight& b) { return ::aiVertexWeight (min(a.mVertexId,b.mVertexId),min(a.mWeight,b.mWeight)); } // std::max for aiVertexWeight inline ::aiVertexWeight max (const ::aiVertexWeight& a, const ::aiVertexWeight& b) { return ::aiVertexWeight (max(a.mVertexId,b.mVertexId),max(a.mWeight,b.mWeight)); } } // end namespace std #endif // !! C++ namespace Assimp { // ------------------------------------------------------------------------------- // Start points for ArrayBounds for all supported Ts template struct MinMaxChooser; template <> struct MinMaxChooser { void operator ()(float& min,float& max) { max = -10e10f; min = 10e10f; }}; template <> struct MinMaxChooser { void operator ()(double& min,double& max) { max = -10e10; min = 10e10; }}; template <> struct MinMaxChooser { void operator ()(unsigned int& min,unsigned int& max) { max = 0; min = (1u<<(sizeof(unsigned int)*8-1)); }}; template <> struct MinMaxChooser { void operator ()(aiVector3D& min,aiVector3D& max) { max = aiVector3D(-10e10f,-10e10f,-10e10f); min = aiVector3D( 10e10f, 10e10f, 10e10f); }}; template <> struct MinMaxChooser { void operator ()(aiColor4D& min,aiColor4D& max) { max = aiColor4D(-10e10f,-10e10f,-10e10f,-10e10f); min = aiColor4D( 10e10f, 10e10f, 10e10f, 10e10f); }}; template <> struct MinMaxChooser { void operator ()(aiQuaternion& min,aiQuaternion& max) { max = aiQuaternion(-10e10f,-10e10f,-10e10f,-10e10f); min = aiQuaternion( 10e10f, 10e10f, 10e10f, 10e10f); }}; template <> struct MinMaxChooser { void operator ()(aiVectorKey& min,aiVectorKey& max) { MinMaxChooser()(min.mTime,max.mTime); MinMaxChooser()(min.mValue,max.mValue); }}; template <> struct MinMaxChooser { void operator ()(aiQuatKey& min,aiQuatKey& max) { MinMaxChooser()(min.mTime,max.mTime); MinMaxChooser()(min.mValue,max.mValue); }}; template <> struct MinMaxChooser { void operator ()(aiVertexWeight& min,aiVertexWeight& max) { MinMaxChooser()(min.mVertexId,max.mVertexId); MinMaxChooser()(min.mWeight,max.mWeight); }}; // ------------------------------------------------------------------------------- /** @brief Find the min/max values of an array of Ts * @param in Input array * @param size Numebr of elements to process * @param[out] min minimum value * @param[out] max maximum value */ template inline void ArrayBounds(const T* in, unsigned int size, T& min, T& max) { MinMaxChooser ()(min,max); for (unsigned int i = 0; i < size;++i) { min = std::min(in[i],min); max = std::max(in[i],max); } } // ------------------------------------------------------------------------------- /** @brief Extract single strings from a list of identifiers * @param in Input string list. * @param out Receives a list of clean output strings * @sdee #AI_CONFIG_PP_OG_EXCLUDE_LIST */ inline void ConvertListToStrings(const std::string& in, std::list& out) { const char* s = in.c_str(); while (*s) { SkipSpacesAndLineEnd(&s); if (*s == '\'') { const char* base = ++s; while (*s != '\'') { ++s; if (*s == '\0') { DefaultLogger::get()->error("ConvertListToString: String list is ill-formatted"); return; } } out.push_back(std::string(base,(size_t)(s-base))); ++s; } else { out.push_back(GetNextToken(s)); } } } // ------------------------------------------------------------------------------- /** @brief Compute the newell normal of a polygon regardless of its shape * * @param out Receives the output normal * @param num Number of input vertices * @param x X data source. x[ofs_x*n] is the n'th element. * @param y Y data source. y[ofs_y*n] is the y'th element * @param z Z data source. z[ofs_z*n] is the z'th element * * @note The data arrays must have storage for at least num+2 elements. Using * this method is much faster than the 'other' NewellNormal() */ template inline void NewellNormal (aiVector3D& out, int num, float* x, float* y, float* z) { // Duplicate the first two vertices at the end x[(num+0)*ofs_x] = x[0]; x[(num+1)*ofs_x] = x[ofs_x]; y[(num+0)*ofs_y] = y[0]; y[(num+1)*ofs_y] = y[ofs_y]; z[(num+0)*ofs_z] = z[0]; z[(num+1)*ofs_z] = z[ofs_z]; float sum_xy = 0.0, sum_yz = 0.0, sum_zx = 0.0; float *xptr = x +ofs_x, *xlow = x, *xhigh = x + ofs_x*2; float *yptr = y +ofs_y, *ylow = y, *yhigh = y + ofs_y*2; float *zptr = z +ofs_z, *zlow = z, *zhigh = z + ofs_z*2; for (int tmp=0; tmp < num; tmp++) { sum_xy += (*xptr) * ( (*yhigh) - (*ylow) ); sum_yz += (*yptr) * ( (*zhigh) - (*zlow) ); sum_zx += (*zptr) * ( (*xhigh) - (*xlow) ); xptr += ofs_x; xlow += ofs_x; xhigh += ofs_x; yptr += ofs_y; ylow += ofs_y; yhigh += ofs_y; zptr += ofs_z; zlow += ofs_z; zhigh += ofs_z; } out = aiVector3D(sum_yz,sum_zx,sum_xy); } #if 0 // ------------------------------------------------------------------------------- /** @brief Compute newell normal of a polgon regardless of its shape * * @param out Receives the output normal * @param data Input vertices * @param idx Index buffer * @param num Number of indices */ inline void NewellNormal (aiVector3D& out, const aiVector3D* data, unsigned int* idx, unsigned int num ) { // TODO: intended to be used in GenNormals. } #endif // ------------------------------------------------------------------------------- /** Little helper function to calculate the quadratic difference * of two colours. * @param pColor1 First color * @param pColor2 second color * @return Quadratic color difference */ inline float GetColorDifference( const aiColor4D& pColor1, const aiColor4D& pColor2) { const aiColor4D c (pColor1.r - pColor2.r, pColor1.g - pColor2.g, pColor1.b - pColor2.b, pColor1.a - pColor2.a); return c.r*c.r + c.g*c.g + c.b*c.b + c.a*c.a; } // ------------------------------------------------------------------------------- /** @brief Compute the AABB of a mesh after applying a given transform * @param mesh Input mesh * @param[out] min Receives minimum transformed vertex * @param[out] max Receives maximum transformed vertex * @param m Transformation matrix to be applied */ inline void FindAABBTransformed (const aiMesh* mesh, aiVector3D& min, aiVector3D& max, const aiMatrix4x4& m) { min = aiVector3D (10e10f, 10e10f, 10e10f); max = aiVector3D (-10e10f,-10e10f,-10e10f); for (unsigned int i = 0;i < mesh->mNumVertices;++i) { const aiVector3D v = m * mesh->mVertices[i]; min = std::min(v,min); max = std::max(v,max); } } // ------------------------------------------------------------------------------- /** @brief Helper function to determine the 'real' center of a mesh * * That is the center of its axis-aligned bounding box. * @param mesh Input mesh * @param[out] min Minimum vertex of the mesh * @param[out] max maximum vertex of the mesh * @param[out] out Center point */ inline void FindMeshCenter (aiMesh* mesh, aiVector3D& out, aiVector3D& min, aiVector3D& max) { ArrayBounds(mesh->mVertices,mesh->mNumVertices, min,max); out = min + (max-min)*0.5f; } // ------------------------------------------------------------------------------- // Helper function to determine the 'real' center of a mesh after applying a given transform inline void FindMeshCenterTransformed (aiMesh* mesh, aiVector3D& out, aiVector3D& min, aiVector3D& max, const aiMatrix4x4& m) { FindAABBTransformed(mesh,min,max,m); out = min + (max-min)*0.5f; } // ------------------------------------------------------------------------------- // Helper function to determine the 'real' center of a mesh inline void FindMeshCenter (aiMesh* mesh, aiVector3D& out) { aiVector3D min,max; FindMeshCenter(mesh,out,min,max); } // ------------------------------------------------------------------------------- // Helper function to determine the 'real' center of a mesh after applying a given transform inline void FindMeshCenterTransformed (aiMesh* mesh, aiVector3D& out, const aiMatrix4x4& m) { aiVector3D min,max; FindMeshCenterTransformed(mesh,out,min,max,m); } // ------------------------------------------------------------------------------- // Compute a good epsilon value for position comparisons on a mesh inline float ComputePositionEpsilon(const aiMesh* pMesh) { const float epsilon = 1e-5f; // calculate the position bounds so we have a reliable epsilon to check position differences against aiVector3D minVec, maxVec; ArrayBounds(pMesh->mVertices,pMesh->mNumVertices,minVec,maxVec); return (maxVec - minVec).Length() * epsilon; } // ------------------------------------------------------------------------------- // Compute an unique value for the vertex format of a mesh inline unsigned int GetMeshVFormatUnique(aiMesh* pcMesh) { ai_assert(NULL != pcMesh); // FIX: the hash may never be 0. Otherwise a comparison against // nullptr could be successful unsigned int iRet = 1; // normals if (pcMesh->HasNormals())iRet |= 0x2; // tangents and bitangents if (pcMesh->HasTangentsAndBitangents())iRet |= 0x4; #ifdef BOOST_STATIC_ASSERT BOOST_STATIC_ASSERT(8 >= AI_MAX_NUMBER_OF_COLOR_SETS); BOOST_STATIC_ASSERT(8 >= AI_MAX_NUMBER_OF_TEXTURECOORDS); #endif // texture coordinates unsigned int p = 0; while (pcMesh->HasTextureCoords(p)) { iRet |= (0x100 << p); if (3 == pcMesh->mNumUVComponents[p]) iRet |= (0x10000 << p); ++p; } // vertex colors p = 0; while (pcMesh->HasVertexColors(p))iRet |= (0x1000000 << p++); return iRet; } typedef std::pair PerVertexWeight; typedef std::vector VertexWeightTable; // ------------------------------------------------------------------------------- // Compute a per-vertex bone weight table // please .... delete result with operator delete[] ... inline VertexWeightTable* ComputeVertexBoneWeightTable(aiMesh* pMesh) { if (!pMesh || !pMesh->mNumVertices || !pMesh->mNumBones) return NULL; VertexWeightTable* avPerVertexWeights = new VertexWeightTable[pMesh->mNumVertices]; for (unsigned int i = 0; i < pMesh->mNumBones;++i) { aiBone* bone = pMesh->mBones[i]; for (unsigned int a = 0; a < bone->mNumWeights;++a) { const aiVertexWeight& weight = bone->mWeights[a]; avPerVertexWeights[weight.mVertexId].push_back( std::pair(i,weight.mWeight)); } } return avPerVertexWeights; } // ------------------------------------------------------------------------------- // Get a string for a given aiTextureType inline const char* TextureTypeToString(aiTextureType in) { switch (in) { case aiTextureType_NONE: return "n/a"; case aiTextureType_DIFFUSE: return "Diffuse"; case aiTextureType_SPECULAR: return "Specular"; case aiTextureType_AMBIENT: return "Ambient"; case aiTextureType_EMISSIVE: return "Emissive"; case aiTextureType_OPACITY: return "Opacity"; case aiTextureType_NORMALS: return "Normals"; case aiTextureType_HEIGHT: return "Height"; case aiTextureType_SHININESS: return "Shininess"; case aiTextureType_DISPLACEMENT: return "Displacement"; case aiTextureType_LIGHTMAP: return "Lightmap"; case aiTextureType_REFLECTION: return "Reflection"; case aiTextureType_UNKNOWN: return "Unknown"; default: return "HUGE ERROR. Expect BSOD (linux guys: kernel panic ...)."; } } // ------------------------------------------------------------------------------- // Get a string for a given aiTextureMapping inline const char* MappingTypeToString(aiTextureMapping in) { switch (in) { case aiTextureMapping_UV: return "UV"; case aiTextureMapping_BOX: return "Box"; case aiTextureMapping_SPHERE: return "Sphere"; case aiTextureMapping_CYLINDER: return "Cylinder"; case aiTextureMapping_PLANE: return "Plane"; case aiTextureMapping_OTHER: return "Other"; default: return "HUGE ERROR. Expect BSOD (linux guys: kernel panic ...)."; } } // ------------------------------------------------------------------------------- // Utility postprocess step to share the spatial sort tree between // all steps which use it to speedup its computations. class ComputeSpatialSortProcess : public BaseProcess { bool IsActive( unsigned int pFlags) const { return NULL != shared && 0 != (pFlags & (aiProcess_CalcTangentSpace | aiProcess_GenNormals | aiProcess_JoinIdenticalVertices)); } void Execute( aiScene* pScene) { typedef std::pair _Type; std::vector<_Type>* p = new std::vector<_Type>(pScene->mNumMeshes); std::vector<_Type>::iterator it = p->begin(); for (unsigned int i = 0; i < pScene->mNumMeshes; ++i, ++it) { aiMesh* mesh = pScene->mMeshes[i]; _Type& blubb = *it; blubb.first.Fill(mesh->mVertices,mesh->mNumVertices,sizeof(aiVector3D)); blubb.second = ComputePositionEpsilon(mesh); } shared->AddProperty(AI_SPP_SPATIAL_SORT,p); } }; // ------------------------------------------------------------------------------- // ... and the same again to cleanup the whole stuff class DestroySpatialSortProcess : public BaseProcess { bool IsActive( unsigned int pFlags) const { return NULL != shared && 0 != (pFlags & (aiProcess_CalcTangentSpace | aiProcess_GenNormals | aiProcess_JoinIdenticalVertices)); } void Execute( aiScene* pScene) { shared->RemoveProperty(AI_SPP_SPATIAL_SORT); } }; } // ! namespace Assimp #endif // !! AI_PROCESS_HELPER_H_INCLUDED