/* --------------------------------------------------------------------------- Open Asset Import Library (ASSIMP) --------------------------------------------------------------------------- Copyright (c) 2006-2008, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file Implementation of the LWO importer class */ // public assimp headers #include "../include/IOStream.h" #include "../include/IOSystem.h" #include "../include/aiScene.h" #include "../include/aiAssert.h" #include "../include/assimp.hpp" // internal headers #include "LWOLoader.h" #include "MaterialSystem.h" #include "StringComparison.h" #include "SGSpatialSort.h" #include "ByteSwap.h" #include "ProcessHelper.h" // boost headers #include #include #include using namespace Assimp; // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer LWOImporter::LWOImporter() { } // ------------------------------------------------------------------------------------------------ // Destructor, private as well LWOImporter::~LWOImporter() { } // ------------------------------------------------------------------------------------------------ // Returns whether the class can handle the format of the given file. bool LWOImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler) const { // simple check of file extension is enough for the moment std::string::size_type pos = pFile.find_last_of('.'); // no file extension - can't read if( pos == std::string::npos)return false; std::string extension = pFile.substr( pos); if (extension.length() < 4)return false; if (extension[0] != '.')return false; if (extension[1] != 'l' && extension[1] != 'L')return false; if (extension[2] != 'w' && extension[2] != 'W')return false; if (extension[3] != 'o' && extension[3] != 'O')return false; return true; } // ------------------------------------------------------------------------------------------------ // Setup configuration properties void LWOImporter::SetupProperties(const Importer* pImp) { // -- no configuration options at the moment } // ------------------------------------------------------------------------------------------------ // Imports the given file into the given scene structure. void LWOImporter::InternReadFile( const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler) { boost::scoped_ptr file( pIOHandler->Open( pFile, "rb")); // Check whether we can read from the file if( file.get() == NULL) throw new ImportErrorException( "Failed to open LWO file " + pFile + "."); if((this->fileSize = (unsigned int)file->FileSize()) < 12) throw new ImportErrorException("LWO: The file is too small to contain the IFF header"); // allocate storage and copy the contents of the file to a memory buffer std::vector< uint8_t > mBuffer(fileSize); file->Read( &mBuffer[0], 1, fileSize); this->pScene = pScene; // determine the type of the file uint32_t fileType; const char* sz = IFF::ReadHeader(&mBuffer[0],fileType); if (sz)throw new ImportErrorException(sz); mFileBuffer = &mBuffer[0] + 12; fileSize -= 12; // create temporary storage on the stack but store pointers to it in the class // instance. Therefore everything will be destructed properly if an exception // is thrown and we needn't take care of that. LayerList _mLayers; mLayers = &_mLayers; TagList _mTags; mTags = &_mTags; TagMappingTable _mMapping; mMapping = &_mMapping; SurfaceList _mSurfaces; mSurfaces = &_mSurfaces; // allocate a default layer mLayers->push_back(Layer()); mCurLayer = &mLayers->back(); mCurLayer->mName = ""; // old lightwave file format (prior to v6) if (AI_LWO_FOURCC_LWOB == fileType) { mIsLWO2 = false; this->LoadLWOBFile(); } // new lightwave format else if (AI_LWO_FOURCC_LWO2 == fileType) { mIsLWO2 = true; this->LoadLWO2File(); } // we don't know this format else { char szBuff[5]; szBuff[0] = (char)(fileType >> 24u); szBuff[1] = (char)(fileType >> 16u); szBuff[2] = (char)(fileType >> 8u); szBuff[3] = (char)(fileType); throw new ImportErrorException(std::string("Unknown LWO sub format: ") + szBuff); } // now, as we have loaded all data, we can resolve cross-referenced tags and clips ResolveTags(); ResolveClips(); // now process all layers and build meshes and nodes std::vector apcMeshes; std::vector apcNodes; apcNodes.reserve(mLayers->size()); apcMeshes.reserve(mLayers->size()*std::min(((unsigned int)mSurfaces->size()/2u), 1u)); unsigned int iDefaultSurface = 0xffffffff; // index of the default surface for (LayerList::iterator lit = mLayers->begin(), lend = mLayers->end(); lit != lend;++lit) { LWO::Layer& layer = *lit; // I don't know whether there could be dummy layers, but it would be possible const unsigned int meshStart = (unsigned int)apcMeshes.size(); if (!layer.mFaces.empty() && !layer.mTempPoints.empty()) { // now sort all faces by the surfaces assigned to them typedef std::vector SortedRep; std::vector pSorted(mSurfaces->size()+1); unsigned int i = 0; for (FaceList::iterator it = layer.mFaces.begin(), end = layer.mFaces.end(); it != end;++it,++i) { unsigned int idx = (*it).surfaceIndex; if (idx >= mTags->size()) { DefaultLogger::get()->warn("LWO: Invalid face surface index"); idx = 0xffffffff; } if(0xffffffff == idx || 0xffffffff == (idx = _mMapping[idx])) { if (0xffffffff == iDefaultSurface) { iDefaultSurface = (unsigned int)mSurfaces->size(); mSurfaces->push_back(LWO::Surface()); LWO::Surface& surf = mSurfaces->back(); surf.mColor.r = surf.mColor.g = surf.mColor.b = 0.6f; } idx = iDefaultSurface; } pSorted[idx].push_back(i); } if (0xffffffff == iDefaultSurface)pSorted.erase(pSorted.end()-1); // now generate output meshes for (unsigned int p = 0; p < mSurfaces->size();++p) if (!pSorted[p].empty())pScene->mNumMeshes++; if (!pScene->mNumMeshes) throw new ImportErrorException("LWO: There are no meshes"); pScene->mMeshes = new aiMesh*[pScene->mNumMeshes]; for (unsigned int p = 0,i = 0;i < mSurfaces->size();++i) { SortedRep& sorted = pSorted[i]; if (sorted.empty())continue; // generate the mesh aiMesh* mesh = new aiMesh(); apcMeshes.push_back(mesh); mesh->mNumFaces = (unsigned int)sorted.size(); // count the number of vertices SortedRep::const_iterator it = sorted.begin(), end = sorted.end(); for (;it != end;++it) { mesh->mNumVertices += layer.mFaces[*it].mNumIndices; } aiVector3D* pv = mesh->mVertices = new aiVector3D[mesh->mNumVertices]; aiFace* pf = mesh->mFaces = new aiFace[mesh->mNumFaces]; mesh->mMaterialIndex = i; // find out which vertex color channels and which texture coordinate // channels are really required by the material attached to this mesh unsigned int vUVChannelIndices[AI_MAX_NUMBER_OF_TEXTURECOORDS]; unsigned int vVColorIndices[AI_MAX_NUMBER_OF_COLOR_SETS]; #if _DEBUG for (unsigned int mui = 0; mui < AI_MAX_NUMBER_OF_TEXTURECOORDS;++mui ) vUVChannelIndices[mui] = 0xffffffff; for (unsigned int mui = 0; mui < AI_MAX_NUMBER_OF_COLOR_SETS;++mui ) vVColorIndices[mui] = 0xffffffff; #endif FindUVChannels(_mSurfaces[i],layer,vUVChannelIndices); FindVCChannels(_mSurfaces[i],layer,vVColorIndices); // allocate storage for UV and CV channels aiVector3D* pvUV[AI_MAX_NUMBER_OF_TEXTURECOORDS]; for (unsigned int mui = 0; mui < AI_MAX_NUMBER_OF_TEXTURECOORDS;++mui ) { if (0xffffffff == vUVChannelIndices[mui])break; pvUV[mui] = mesh->mTextureCoords[mui] = new aiVector3D[mesh->mNumVertices]; // LightWave doesn't support more than 2 UV components mesh->mNumUVComponents[0] = 2; } aiColor4D* pvVC[AI_MAX_NUMBER_OF_COLOR_SETS]; for (unsigned int mui = 0; mui < AI_MAX_NUMBER_OF_COLOR_SETS;++mui) { if (0xffffffff == vVColorIndices[mui])break; pvVC[mui] = mesh->mColors[mui] = new aiColor4D[mesh->mNumVertices]; } // we would not need this extra array, but the code is much cleaner if we use it // FIX: we can use the referrer ID array here. invalidate its contents // before we resize it to avoid a unnecessary memcpy std::vector& smoothingGroups = layer.mPointReferrers; smoothingGroups.erase (smoothingGroups.begin(),smoothingGroups.end()); smoothingGroups.resize(mesh->mNumFaces,0); // now convert all faces unsigned int vert = 0; std::vector::iterator outIt = smoothingGroups.begin(); for (it = sorted.begin(); it != end;++it,++outIt) { const LWO::Face& face = layer.mFaces[*it]; *outIt = face.smoothGroup; // copy all vertices for (unsigned int q = 0; q < face.mNumIndices;++q) { register unsigned int idx = face.mIndices[q]; *pv = layer.mTempPoints[idx] + layer.mPivot; pv->z *= -1.0f; // DX to OGL pv++; // process UV coordinates for (unsigned int w = 0; w < AI_MAX_NUMBER_OF_TEXTURECOORDS;++w) { if (0xffffffff == vUVChannelIndices[w])break; aiVector3D*& pp = pvUV[w]; const aiVector2D& src = ((aiVector2D*)&layer.mUVChannels[vUVChannelIndices[w]].rawData[0])[idx]; pp->x = src.x; pp->y = 1.f-src.y; // DX to OGL pp++; } // process vertex colors for (unsigned int w = 0; w < AI_MAX_NUMBER_OF_COLOR_SETS;++w) { if (0xffffffff == vVColorIndices[w])break; *(pvVC[w])++ = ((aiColor4D*)&layer.mVColorChannels[vVColorIndices[w]].rawData[0])[idx]; } #if 0 // process vertex weights - not yet supported for (unsigned int w = 0; w < layer.mWeightChannels.size();++w) { } #endif face.mIndices[q] = vert + (face.mNumIndices-q-1); } vert += face.mNumIndices; pf->mIndices = face.mIndices; pf->mNumIndices = face.mNumIndices; unsigned int** p = (unsigned int**)&face.mIndices;*p = NULL; // make sure it won't be deleted pf++; } // compute normal vectors for the mesh - we can't use our GenSmoothNormal-Step here // since it wouldn't handle smoothing groups correctly ComputeNormals(mesh,smoothingGroups,_mSurfaces[i]); ++p; } } // generate nodes to render the mesh. Store the parent index // in the mParent member of the nodes aiNode* pcNode = new aiNode(); apcNodes.push_back(pcNode); pcNode->mName.Set(layer.mName); pcNode->mParent = (aiNode*)(uintptr_t)(layer.mParent); pcNode->mNumMeshes = (unsigned int)apcMeshes.size() - meshStart; pcNode->mMeshes = new unsigned int[pcNode->mNumMeshes]; for (unsigned int p = 0; p < pcNode->mNumMeshes;++p) pcNode->mMeshes[p] = p + meshStart; } // the RemoveRedundantMaterials step will clean this up later pScene->mMaterials = new aiMaterial*[pScene->mNumMaterials = (unsigned int)mSurfaces->size()]; for (unsigned int mat = 0; mat < pScene->mNumMaterials;++mat) { MaterialHelper* pcMat = new MaterialHelper(); pScene->mMaterials[mat] = pcMat; ConvertMaterial((*mSurfaces)[mat],pcMat); } // copy the meshes to the output structure if (apcMeshes.size()) // shouldn't occur, just to be sure we don't crash { pScene->mMeshes = new aiMesh*[ pScene->mNumMeshes = (unsigned int)apcMeshes.size() ]; ::memcpy(pScene->mMeshes,&apcMeshes[0],pScene->mNumMeshes*sizeof(void*)); } // generate the final node graph GenerateNodeGraph(apcNodes); } // ------------------------------------------------------------------------------------------------ void LWOImporter::ComputeNormals(aiMesh* mesh, const std::vector& smoothingGroups, const LWO::Surface& surface) { // allocate output storage mesh->mNormals = new aiVector3D[mesh->mNumVertices]; // First generate per-face normals aiVector3D* out; std::vector faceNormals; if (!surface.mMaximumSmoothAngle) out = mesh->mNormals; else { faceNormals.resize(mesh->mNumVertices); out = &faceNormals[0]; } aiFace* begin = mesh->mFaces, *const end = mesh->mFaces+mesh->mNumFaces; for (; begin != end; ++begin) { aiFace& face = *begin; // LWO doc: "the normal is defined as the cross product of the first and last edges" aiVector3D* pV1 = mesh->mVertices + face.mIndices[0]; aiVector3D* pV2 = mesh->mVertices + face.mIndices[1]; aiVector3D* pV3 = mesh->mVertices + face.mIndices[face.mNumIndices-1]; aiVector3D vNor = ((*pV2 - *pV1) ^ (*pV3 - *pV1)).Normalize(); for (unsigned int i = 0; i < face.mNumIndices;++i) out[face.mIndices[i]] = vNor; } if (!surface.mMaximumSmoothAngle)return; const float posEpsilon = ComputePositionEpsilon(mesh); // now generate the spatial sort tree SGSpatialSort sSort; std::vector::const_iterator it = smoothingGroups.begin(); for( begin = mesh->mFaces; begin != end; ++begin, ++it) { aiFace& face = *begin; for (unsigned int i = 0; i < face.mNumIndices;++i) { register unsigned int tt = face.mIndices[i]; sSort.Add(mesh->mVertices[tt],tt,*it); } } // sort everything - this takes O(logn) time sSort.Prepare(); std::vector poResult; poResult.reserve(20); const float fLimit = cos(surface.mMaximumSmoothAngle); std::vector vertexDone(mesh->mNumVertices,false); // generate vertex normals. We have O(logn) for the binary lookup, which we need // for n elements, thus the EXPECTED complexity is O(nlogn) for( begin = mesh->mFaces, it = smoothingGroups.begin(); begin != end; ++begin, ++it) { register unsigned int sg = *it; aiFace& face = *begin; unsigned int* beginIdx = face.mIndices, *const endIdx = face.mIndices+face.mNumIndices; for (; beginIdx != endIdx; ++beginIdx) { register unsigned int idx = *beginIdx; if (vertexDone[idx])continue; sSort.FindPositions(mesh->mVertices[idx],sg,posEpsilon,poResult,true); std::vector::const_iterator a, end = poResult.end(); aiVector3D vNormals; for (a = poResult.begin();a != end;++a) { const aiVector3D& v = faceNormals[*a]; if (v * faceNormals[idx] < fLimit)continue; vNormals += v; } vNormals.Normalize(); for (a = poResult.begin();a != end;++a) { mesh->mNormals[*a] = vNormals; vertexDone[*a] = true; } } } } // ------------------------------------------------------------------------------------------------ void LWOImporter::AddChildren(aiNode* node, uintptr_t parent, std::vector& apcNodes) { for (uintptr_t i = 0; i < (uintptr_t)apcNodes.size();++i) { if (i == parent)continue; if (apcNodes[i] && (uintptr_t)apcNodes[i]->mParent == parent)++node->mNumChildren; } if (node->mNumChildren) { node->mChildren = new aiNode* [ node->mNumChildren ]; for (uintptr_t i = 0, p = 0; i < (uintptr_t)apcNodes.size();++i) { if (i == parent)continue; if (apcNodes[i] && parent == (uintptr_t)(apcNodes[i]->mParent)) { node->mChildren[p++] = apcNodes[i]; apcNodes[i]->mParent = node; // recursively add more children AddChildren(apcNodes[i],i,apcNodes); apcNodes[i] = NULL; } } } } // ------------------------------------------------------------------------------------------------ void LWOImporter::GenerateNodeGraph(std::vector& apcNodes) { // now generate the final nodegraph - generate a root node pScene->mRootNode = new aiNode(); pScene->mRootNode->mName.Set(""); AddChildren(pScene->mRootNode,0,apcNodes); unsigned int extra = 0; for (unsigned int i = 0; i < apcNodes.size();++i) if (apcNodes[i] && apcNodes[i]->mNumMeshes)++extra; if (extra) { // we need to add extra nodes to the root const unsigned int newSize = extra + pScene->mRootNode->mNumChildren; aiNode** const apcNewNodes = new aiNode*[newSize]; if((extra = pScene->mRootNode->mNumChildren)) ::memcpy(apcNewNodes,pScene->mRootNode->mChildren,extra*sizeof(void*)); aiNode** cc = apcNewNodes+extra; for (unsigned int i = 0; i < apcNodes.size();++i) { if (apcNodes[i] && apcNodes[i]->mNumMeshes) { *cc++ = apcNodes[i]; apcNodes[i]->mParent = pScene->mRootNode; // recursively add more children AddChildren(apcNodes[i],i,apcNodes); apcNodes[i] = NULL; } } delete[] pScene->mRootNode->mChildren; pScene->mRootNode->mChildren = apcNewNodes; pScene->mRootNode->mNumChildren = newSize; } if (!pScene->mRootNode->mNumChildren)throw new ImportErrorException("LWO: Unable to build a valid node graph"); // remove a single root node // TODO: implement directly in the above loop, no need to deallocate here if (1 == pScene->mRootNode->mNumChildren) { aiNode* pc = pScene->mRootNode->mChildren[0]; pc->mParent = pScene->mRootNode->mChildren[0] = NULL; delete pScene->mRootNode; pScene->mRootNode = pc; } } // ------------------------------------------------------------------------------------------------ void LWOImporter::ResolveTags() { // --- this function is used for both LWO2 and LWOB mMapping->resize(mTags->size(),0xffffffff); for (unsigned int a = 0; a < mTags->size();++a) { for (unsigned int i = 0; i < mSurfaces->size();++i) { const std::string& c = (*mTags)[a]; const std::string& d = (*mSurfaces)[i].mName; if (!ASSIMP_stricmp(c,d)) { (*mMapping)[a] = i; break; } } } } // ------------------------------------------------------------------------------------------------ void LWOImporter::ResolveClips() { for( unsigned int i = 0; i < mClips.size();++i) { Clip& clip = mClips[i]; if (Clip::REF == clip.type) { if (clip.clipRef >= mClips.size()) { DefaultLogger::get()->error("LWO2: Clip referrer index is out of range"); clip.clipRef = 0; } Clip& dest = mClips[clip.clipRef]; if (Clip::REF == dest.type) { DefaultLogger::get()->error("LWO2: Clip references another clip reference"); clip.type = Clip::UNSUPPORTED; } else { clip.path = dest.path; clip.type = dest.type; } } } } // ------------------------------------------------------------------------------------------------ void LWOImporter::AdjustTexturePath(std::string& out) { // --- this function is used for both LWO2 and LWOB if (!mIsLWO2 && ::strstr(out.c_str(), "(sequence)")) { // remove the (sequence) and append 000 DefaultLogger::get()->info("LWOB: Sequence of animated texture found. It will be ignored"); out = out.substr(0,out.length()-10) + "000"; } // format: drive:path/file - we need to insert a slash after the drive std::string::size_type n = out.find_first_of(':'); if (std::string::npos != n) { out.insert(n+1,"/"); } } // ------------------------------------------------------------------------------------------------ void LWOImporter::LoadLWOTags(unsigned int size) { // --- this function is used for both LWO2 and LWOB const char* szCur = (const char*)mFileBuffer, *szLast = szCur; const char* const szEnd = szLast+size; while (szCur < szEnd) { if (!(*szCur)) { const unsigned int len = (unsigned int)(szCur-szLast); mTags->push_back(std::string(szLast,len)); szCur += len & 1; szLast = szCur; } szCur++; } } // ------------------------------------------------------------------------------------------------ void LWOImporter::LoadLWOPoints(unsigned int length) { // --- this function is used for both LWO2 and LWOB but for // LWO2 we need to allocate 25% more storage - it could be we'll // need to duplicate some points later. register unsigned int regularSize = (unsigned int)mCurLayer->mTempPoints.size() + length / 12; if (mIsLWO2) { mCurLayer->mTempPoints.reserve ( regularSize + (regularSize>>2u) ); mCurLayer->mTempPoints.resize ( regularSize ); // initialize all point referrers with the default values mCurLayer->mPointReferrers.reserve ( regularSize + (regularSize>>2u) ); mCurLayer->mPointReferrers.resize ( regularSize, 0xffffffff ); } else mCurLayer->mTempPoints.resize( regularSize ); // perform endianess conversions #ifndef AI_BUILD_BIG_ENDIAN for (unsigned int i = 0; i < length>>2;++i) ByteSwap::Swap4( mFileBuffer + (i << 2)); #endif ::memcpy(&mCurLayer->mTempPoints[0],mFileBuffer,length); } // ------------------------------------------------------------------------------------------------ void LWOImporter::LoadLWO2Polygons(unsigned int length) { LE_NCONST uint16_t* const end = (LE_NCONST uint16_t*)(mFileBuffer+length); uint32_t type = GetU4(); if (type != AI_LWO_FACE) { DefaultLogger::get()->warn("LWO2: Only POLS.FACE chunks are supported."); return; } // first find out how many faces and vertices we'll finally need LE_NCONST uint16_t* cursor = (LE_NCONST uint16_t*)mFileBuffer; unsigned int iNumFaces = 0,iNumVertices = 0; CountVertsAndFacesLWO2(iNumVertices,iNumFaces,cursor,end); // allocate the output array and copy face indices if (iNumFaces) { cursor = (LE_NCONST uint16_t*)mFileBuffer; mCurLayer->mFaces.resize(iNumFaces); FaceList::iterator it = mCurLayer->mFaces.begin(); CopyFaceIndicesLWO2(it,cursor,end); } } // ------------------------------------------------------------------------------------------------ void LWOImporter::CountVertsAndFacesLWO2(unsigned int& verts, unsigned int& faces, LE_NCONST uint16_t*& cursor, const uint16_t* const end, unsigned int max) { while (cursor < end && max--) { AI_LSWAP2P(cursor); uint16_t numIndices = *cursor++; numIndices &= 0x03FF; verts += numIndices;++faces; for(uint16_t i = 0; i < numIndices; i++) ReadVSizedIntLWO2((uint8_t*&)cursor); } } // ------------------------------------------------------------------------------------------------ void LWOImporter::CopyFaceIndicesLWO2(FaceList::iterator& it, LE_NCONST uint16_t*& cursor, const uint16_t* const end) { while (cursor < end) { LWO::Face& face = *it;++it; if((face.mNumIndices = (*cursor++) & 0x03FF)) // swapping has already been done { face.mIndices = new unsigned int[face.mNumIndices]; for(unsigned int i = 0; i < face.mNumIndices; i++) { face.mIndices[i] = ReadVSizedIntLWO2((uint8_t*&)cursor) + mCurLayer->mPointIDXOfs; if(face.mIndices[i] > mCurLayer->mTempPoints.size()) { DefaultLogger::get()->warn("LWO2: face index is out of range"); face.mIndices[i] = (unsigned int)mCurLayer->mTempPoints.size()-1; } } } else DefaultLogger::get()->warn("LWO2: face has 0 indices"); } } // ------------------------------------------------------------------------------------------------ void LWOImporter::LoadLWO2PolygonTags(unsigned int length) { LE_NCONST uint8_t* const end = mFileBuffer+length; AI_LWO_VALIDATE_CHUNK_LENGTH(length,PTAG,4); uint32_t type = GetU4(); if (type != AI_LWO_SURF && type != AI_LWO_SMGP) return; while (mFileBuffer < end) { unsigned int i = ReadVSizedIntLWO2(mFileBuffer) + mCurLayer->mFaceIDXOfs; unsigned int j = GetU2(); if (i >= mCurLayer->mFaces.size()) { DefaultLogger::get()->warn("LWO2: face index in PTAG is out of range"); continue; } switch (type) { case AI_LWO_SURF: mCurLayer->mFaces[i].surfaceIndex = j; break; case AI_LWO_SMGP: mCurLayer->mFaces[i].smoothGroup = j; break; }; } } // ------------------------------------------------------------------------------------------------ template VMapEntry* FindEntry(std::vector< T >& list,const std::string& name, bool perPoly) { for (typename std::vector< T >::iterator it = list.begin(), end = list.end(); it != end; ++it) { if ((*it).name == name) { if (!perPoly) { DefaultLogger::get()->warn("LWO2: Found two VMAP sections with equal names"); } return &(*it); } } list.push_back( T() ); VMapEntry* p = &list.back(); p->name = name; return p; } // ------------------------------------------------------------------------------------------------ template void CreateNewEntry(std::vector< T >& list, unsigned int srcIdx) { for (typename std::vector< T >::iterator it = list.begin(), end = list.end(); it != end;++it) { T& chan = *it; chan.abAssigned[srcIdx] = true; chan.abAssigned.resize(chan.abAssigned.size()+1,false); for (unsigned int a = 0; a < chan.dims;++a) chan.rawData.push_back(chan.rawData[srcIdx*chan.dims+a]); } } // ------------------------------------------------------------------------------------------------ void LWOImporter::DoRecursiveVMAPAssignment(VMapEntry* base, unsigned int numRead, unsigned int idx, float* data) { ai_assert(NULL != data); LWO::ReferrerList& refList = mCurLayer->mPointReferrers; unsigned int i; base->abAssigned[idx] = true; for (i = 0; i < numRead;++i) base->rawData[idx*base->dims+i]= data[i]; if (0xffffffff != (i = refList[idx])) DoRecursiveVMAPAssignment(base,numRead,i,data); } // ------------------------------------------------------------------------------------------------ void AddToSingleLinkedList(ReferrerList& refList, unsigned int srcIdx, unsigned int destIdx) { if(0xffffffff == refList[srcIdx]) { refList[srcIdx] = destIdx; return; } AddToSingleLinkedList(refList,refList[srcIdx],destIdx); } // ------------------------------------------------------------------------------------------------ void LWOImporter::LoadLWO2VertexMap(unsigned int length, bool perPoly) { LE_NCONST uint8_t* const end = mFileBuffer+length; AI_LWO_VALIDATE_CHUNK_LENGTH(length,VMAP,6); unsigned int type = GetU4(); unsigned int dims = GetU2(); VMapEntry* base; // read the name of the vertex map std::string name; GetS0(name,length); switch (type) { case AI_LWO_TXUV: if (dims != 2) { DefaultLogger::get()->warn("LWO2: Found UV channel with != 2 components"); } base = FindEntry(mCurLayer->mUVChannels,name,perPoly); break; case AI_LWO_WGHT: if (dims != 1) { DefaultLogger::get()->warn("LWO2: found vertex weight map with != 1 components"); } base = FindEntry(mCurLayer->mWeightChannels,name,perPoly); break; case AI_LWO_RGB: case AI_LWO_RGBA: if (dims != 3 && dims != 4) { DefaultLogger::get()->warn("LWO2: found vertex color map with != 3&4 components"); } base = FindEntry(mCurLayer->mVColorChannels,name,perPoly); break; default: return; }; base->Allocate((unsigned int)mCurLayer->mTempPoints.size()); // now read all entries in the map type = std::min(dims,base->dims); const unsigned int diff = (dims - type)<<2; LWO::FaceList& list = mCurLayer->mFaces; LWO::PointList& pointList = mCurLayer->mTempPoints; LWO::ReferrerList& refList = mCurLayer->mPointReferrers; float temp[4]; const unsigned int numPoints = (unsigned int)pointList.size(); const unsigned int numFaces = (unsigned int)list.size(); while (mFileBuffer < end) { unsigned int idx = ReadVSizedIntLWO2(mFileBuffer) + mCurLayer->mPointIDXOfs; if (idx >= numPoints) { DefaultLogger::get()->warn("LWO2: vertex index in vmap/vmad is out of range"); mFileBuffer += base->dims*4;continue; } if (perPoly) { unsigned int polyIdx = ReadVSizedIntLWO2(mFileBuffer) + mCurLayer->mFaceIDXOfs; if (base->abAssigned[idx]) { // we have already a VMAP entry for this vertex - thus // we need to duplicate the corresponding polygon. if (polyIdx >= numFaces) { DefaultLogger::get()->warn("LWO2: VMAD polygon index is out of range"); mFileBuffer += base->dims*4;continue; } LWO::Face& src = list[polyIdx]; refList.resize(refList.size()+src.mNumIndices, 0xffffffff); // generate new vertex positions for (unsigned int i = 0; i < src.mNumIndices;++i) { register unsigned int srcIdx = src.mIndices[i]; if (idx == srcIdx) { idx = (unsigned int)pointList.size(); } src.mIndices[i] = (unsigned int)pointList.size(); // store the index of the new vertex in the old vertex // so we get a single linked list we can traverse in // only one direction AddToSingleLinkedList(refList,srcIdx,src.mIndices[i]); pointList.push_back(pointList[srcIdx]); CreateNewEntry(mCurLayer->mVColorChannels, srcIdx ); CreateNewEntry(mCurLayer->mUVChannels, srcIdx ); CreateNewEntry(mCurLayer->mWeightChannels, srcIdx ); } } } for (unsigned int l = 0; l < type;++l) temp[l] = GetF4(); DoRecursiveVMAPAssignment(base,type,idx, temp); mFileBuffer += diff; } } // ------------------------------------------------------------------------------------------------ void LWOImporter::LoadLWO2Clip(unsigned int length) { AI_LWO_VALIDATE_CHUNK_LENGTH(length,CLIP,10); mClips.push_back(LWO::Clip()); LWO::Clip& clip = mClips.back(); // first - get the index of the clip clip.idx = GetU4(); LE_NCONST IFF::SubChunkHeader* const head = IFF::LoadSubChunk(mFileBuffer); switch (head->type) { case AI_LWO_STIL: GetS0(clip.path,head->length); clip.type = Clip::STILL; break; case AI_LWO_ISEQ: { uint8_t digits = GetU1(); mFileBuffer++; int16_t offset = GetU2(); mFileBuffer+=4; int16_t start = GetU2(); mFileBuffer+=4; std::string s;std::stringstream ss; GetS0(s,head->length);head->length -= (unsigned int)s.length()+1; ss << s; ss << std::setw(digits) << offset + start; GetS0(s,head->length); ss << s; clip.path = ss.str(); clip.type = Clip::SEQ; } break; case AI_LWO_STCC: DefaultLogger::get()->warn("LWO2: Color shifted images are not supported"); break; case AI_LWO_ANIM: DefaultLogger::get()->warn("LWO2: Animated textures are not supported"); break; case AI_LWO_XREF: clip.type = Clip::REF; clip.clipRef = GetU4(); break; default: DefaultLogger::get()->warn("LWO2: Encountered unknown CLIP subchunk"); } } // ------------------------------------------------------------------------------------------------ void LWOImporter::LoadLWO2File() { LE_NCONST uint8_t* const end = mFileBuffer + fileSize; while (true) { if (mFileBuffer + sizeof(IFF::ChunkHeader) > end)break; LE_NCONST IFF::ChunkHeader* const head = IFF::LoadChunk(mFileBuffer); if (mFileBuffer + head->length > end) { throw new ImportErrorException("LWO2: Chunk length points behind the file"); break; } LE_NCONST uint8_t* const next = mFileBuffer+head->length; unsigned int iUnnamed = 0; switch (head->type) { // new layer case AI_LWO_LAYR: { // add a new layer to the list .... mLayers->push_back ( LWO::Layer() ); LWO::Layer& layer = mLayers->back(); mCurLayer = &layer; AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,LAYR,16); // and parse its properties, e.g. the pivot point mFileBuffer += 2; mCurLayer->mPivot.x = GetF4(); mCurLayer->mPivot.y = GetF4(); mCurLayer->mPivot.z = GetF4(); mFileBuffer += 2; GetS0(layer.mName,head->length-16); // if the name is empty, generate a default name if (layer.mName.empty()) { char buffer[128]; // should be sufficiently large ::sprintf(buffer,"Layer_%i", iUnnamed++); layer.mName = buffer; } if (mFileBuffer + 2 <= next) layer.mParent = GetU2(); break; } // vertex list case AI_LWO_PNTS: { unsigned int old = (unsigned int)mCurLayer->mTempPoints.size(); LoadLWOPoints(head->length); mCurLayer->mPointIDXOfs = old; break; } // vertex tags case AI_LWO_VMAD: if (mCurLayer->mFaces.empty()) { DefaultLogger::get()->warn("LWO2: Unexpected VMAD chunk"); break; } // --- intentionally no break here case AI_LWO_VMAP: { if (mCurLayer->mTempPoints.empty()) DefaultLogger::get()->warn("LWO2: Unexpected VMAP chunk"); else LoadLWO2VertexMap(head->length,head->type == AI_LWO_VMAD); break; } // face list case AI_LWO_POLS: { unsigned int old = (unsigned int)mCurLayer->mFaces.size(); LoadLWO2Polygons(head->length); mCurLayer->mFaceIDXOfs = old; break; } // polygon tags case AI_LWO_PTAG: { if (mCurLayer->mFaces.empty()) DefaultLogger::get()->warn("LWO2: Unexpected PTAG"); else LoadLWO2PolygonTags(head->length); break; } // list of tags case AI_LWO_TAGS: { if (!mTags->empty()) DefaultLogger::get()->warn("LWO2: SRFS chunk encountered twice"); else LoadLWOTags(head->length); break; } // surface chunk case AI_LWO_SURF: { LoadLWO2Surface(head->length); break; } // clip chunk case AI_LWO_CLIP: { LoadLWO2Clip(head->length); break; } } mFileBuffer = next; } }