/* --------------------------------------------------------------------------- Open Asset Import Library (ASSIMP) --------------------------------------------------------------------------- Copyright (c) 2006-2008, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file Implementation of the "PretransformVertices" post processing step */ #include "AssimpPCH.h" #include "PretransformVertices.h" using namespace Assimp; // some array offsets #define AI_PTVS_VERTEX 0x0 #define AI_PTVS_FACE 0x1 // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer PretransformVertices::PretransformVertices() { } // ------------------------------------------------------------------------------------------------ // Destructor, private as well PretransformVertices::~PretransformVertices() { // nothing to do here } // ------------------------------------------------------------------------------------------------ // Returns whether the processing step is present in the given flag field. bool PretransformVertices::IsActive( unsigned int pFlags) const { return (pFlags & aiProcess_PreTransformVertices) != 0; } // ------------------------------------------------------------------------------------------------ // Count the number of nodes unsigned int CountNodes( aiNode* pcNode ) { unsigned int iRet = 1; for (unsigned int i = 0;i < pcNode->mNumChildren;++i) { iRet += CountNodes(pcNode->mChildren[i]); } return iRet; } // ------------------------------------------------------------------------------------------------ // Get a bitwise combination identifying the vertex format of a mesh unsigned int GetMeshVFormat(aiMesh* pcMesh) { // the vertex format is stored in aiMesh::mBones for later retrieval. // there isn't a good reason to compute it a few hundred times // from scratch. The pointer is unused as animations are lost // during PretransformVertices. if (pcMesh->mBones) return (unsigned int)pcMesh->mBones; ai_assert(NULL != pcMesh->mVertices); // FIX: the hash may never be 0. Otherwise a comparison against // nullptr could be successful unsigned int iRet = 1; // normals if (pcMesh->HasNormals())iRet |= 0x2; // tangents and bitangents if (pcMesh->HasTangentsAndBitangents())iRet |= 0x4; // texture coordinates unsigned int p = 0; ai_assert(8 >= AI_MAX_NUMBER_OF_TEXTURECOORDS); while (pcMesh->HasTextureCoords(p)) { iRet |= (0x100 << p); if (3 == pcMesh->mNumUVComponents[p]) iRet |= (0x10000 << p); ++p; } // vertex colors p = 0; ai_assert(8 >= AI_MAX_NUMBER_OF_COLOR_SETS); while (pcMesh->HasVertexColors(p))iRet |= (0x1000000 << p++); // store the value for later use pcMesh->mBones = (aiBone**)iRet; return iRet; } // ------------------------------------------------------------------------------------------------ // Count the number of vertices in the whole scene and a given // material index void CountVerticesAndFaces( aiScene* pcScene, aiNode* pcNode, unsigned int iMat, unsigned int iVFormat, unsigned int* piFaces, unsigned int* piVertices) { for (unsigned int i = 0; i < pcNode->mNumMeshes;++i) { aiMesh* pcMesh = pcScene->mMeshes[ pcNode->mMeshes[i] ]; if (iMat == pcMesh->mMaterialIndex && iVFormat == GetMeshVFormat(pcMesh)) { *piVertices += pcMesh->mNumVertices; *piFaces += pcMesh->mNumFaces; } } for (unsigned int i = 0;i < pcNode->mNumChildren;++i) { CountVerticesAndFaces(pcScene,pcNode->mChildren[i],iMat, iVFormat,piFaces,piVertices); } return; } // ------------------------------------------------------------------------------------------------ // Collect vertex/face data void CollectData( aiScene* pcScene, aiNode* pcNode, unsigned int iMat, unsigned int iVFormat, aiMesh* pcMeshOut, unsigned int aiCurrent[2]) { for (unsigned int i = 0; i < pcNode->mNumMeshes;++i) { aiMesh* pcMesh = pcScene->mMeshes[ pcNode->mMeshes[i] ]; if (iMat == pcMesh->mMaterialIndex && iVFormat == GetMeshVFormat(pcMesh)) { // copy positions, transform them to worldspace for (unsigned int n = 0; n < pcMesh->mNumVertices;++n) { pcMeshOut->mVertices[aiCurrent[AI_PTVS_VERTEX]+n] = pcNode->mTransformation * pcMesh->mVertices[n]; } if (iVFormat & 0x1) { aiMatrix4x4 mWorldIT = pcNode->mTransformation; mWorldIT.Inverse().Transpose(); // TODO: implement Inverse() for aiMatrix3x3 aiMatrix3x3 m = aiMatrix3x3(mWorldIT); // copy normals, transform them to worldspace for (unsigned int n = 0; n < pcMesh->mNumVertices;++n) { pcMeshOut->mNormals[aiCurrent[AI_PTVS_VERTEX]+n] = m * pcMesh->mNormals[n]; } } if (iVFormat & 0x2) { // copy tangents memcpy(pcMeshOut->mTangents + aiCurrent[AI_PTVS_VERTEX], pcMesh->mTangents, pcMesh->mNumVertices * sizeof(aiVector3D)); // copy bitangents memcpy(pcMeshOut->mBitangents + aiCurrent[AI_PTVS_VERTEX], pcMesh->mBitangents, pcMesh->mNumVertices * sizeof(aiVector3D)); } unsigned int p = 0; while (iVFormat & (0x100 << p)) { // copy texture coordinates memcpy(pcMeshOut->mTextureCoords[p] + aiCurrent[AI_PTVS_VERTEX], pcMesh->mTextureCoords[p], pcMesh->mNumVertices * sizeof(aiVector3D)); ++p; } p = 0; while (iVFormat & (0x1000000 << p)) { // copy vertex colors memcpy(pcMeshOut->mColors[p] + aiCurrent[AI_PTVS_VERTEX], pcMesh->mColors[p], pcMesh->mNumVertices * sizeof(aiColor4D)); ++p; } // now we need to copy all faces // since we will delete the source mesh afterwards, // we don't need to reallocate the array of indices for (unsigned int planck = 0;planckmNumFaces;++planck) { pcMeshOut->mFaces[aiCurrent[AI_PTVS_FACE]+planck].mNumIndices = pcMesh->mFaces[planck].mNumIndices; unsigned int* pi = pcMeshOut->mFaces[aiCurrent[AI_PTVS_FACE]+planck]. mIndices = pcMesh->mFaces[planck].mIndices; // offset all vrtex indices for (unsigned int hahn = 0; hahn < pcMesh->mFaces[planck].mNumIndices;++hahn) { pi[hahn] += aiCurrent[AI_PTVS_VERTEX]; } // just make sure the array won't be deleted by the // aiFace destructor ... pcMesh->mFaces[planck].mIndices = NULL; // FIX: update the mPrimitiveTypes member of the mesh switch (pcMesh->mFaces[planck].mNumIndices) { case 0x1: pcMeshOut->mPrimitiveTypes |= aiPrimitiveType_POINT; break; case 0x2: pcMeshOut->mPrimitiveTypes |= aiPrimitiveType_LINE; break; case 0x3: pcMeshOut->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE; break; default: pcMeshOut->mPrimitiveTypes |= aiPrimitiveType_POLYGON; break; }; } aiCurrent[AI_PTVS_VERTEX] += pcMesh->mNumVertices; aiCurrent[AI_PTVS_FACE] += pcMesh->mNumFaces; } } for (unsigned int i = 0;i < pcNode->mNumChildren;++i) { CollectData(pcScene,pcNode->mChildren[i],iMat, iVFormat,pcMeshOut,aiCurrent); } return; } // ------------------------------------------------------------------------------------------------ // Get a list of all vertex formats that occur for a given material index // The output list contains duplicate elements void GetVFormatList( aiScene* pcScene, aiNode* pcNode, unsigned int iMat, std::list& aiOut) { for (unsigned int i = 0; i < pcNode->mNumMeshes;++i) { aiMesh* pcMesh = pcScene->mMeshes[ pcNode->mMeshes[i] ]; if (iMat == pcMesh->mMaterialIndex) { aiOut.push_back(GetMeshVFormat(pcMesh)); } } for (unsigned int i = 0;i < pcNode->mNumChildren;++i) { GetVFormatList(pcScene,pcNode->mChildren[i],iMat,aiOut); } return; } // ------------------------------------------------------------------------------------------------ // Compute the absolute transformation matrices of each node void ComputeAbsoluteTransform( aiNode* pcNode ) { if (pcNode->mParent) { pcNode->mTransformation = pcNode->mParent->mTransformation*pcNode->mTransformation; } for (unsigned int i = 0;i < pcNode->mNumChildren;++i) { ComputeAbsoluteTransform(pcNode->mChildren[i]); } return; } // ------------------------------------------------------------------------------------------------ // Executes the post processing step on the given imported data. void PretransformVertices::Execute( aiScene* pScene) { DefaultLogger::get()->debug("PretransformVerticesProcess begin"); const unsigned int iOldMeshes = pScene->mNumMeshes; const unsigned int iOldAnimationChannels = pScene->mNumAnimations; const unsigned int iOldNodes = CountNodes(pScene->mRootNode); // first compute absolute transformation matrices for all nodes ComputeAbsoluteTransform(pScene->mRootNode); // delete aiMesh::mBones for all meshes. The bones are // removed during this step and we need the pointer as // temporary storage for (unsigned int i = 0; i < pScene->mNumMeshes;++i) { aiMesh* mesh = pScene->mMeshes[i]; for (unsigned int a = 0; a < mesh->mNumBones;++a) delete mesh->mBones[a]; delete[] mesh->mBones; mesh->mBones = NULL; } // now build a list of output meshes std::vector apcOutMeshes; apcOutMeshes.reserve(pScene->mNumMaterials<<1u); std::list aiVFormats; for (unsigned int i = 0; i < pScene->mNumMaterials;++i) { // get the list of all vertex formats for this material aiVFormats.clear(); GetVFormatList(pScene,pScene->mRootNode,i,aiVFormats); aiVFormats.sort(std::less()); aiVFormats.unique(); for (std::list::const_iterator j = aiVFormats.begin(); j != aiVFormats.end();++j) { unsigned int iVertices = 0; unsigned int iFaces = 0; CountVerticesAndFaces(pScene,pScene->mRootNode,i,*j,&iFaces,&iVertices); if (iFaces && iVertices) { apcOutMeshes.push_back(new aiMesh()); aiMesh* pcMesh = apcOutMeshes.back(); pcMesh->mNumFaces = iFaces; pcMesh->mNumVertices = iVertices; pcMesh->mFaces = new aiFace[iFaces]; pcMesh->mVertices = new aiVector3D[iVertices]; pcMesh->mMaterialIndex = i; if ((*j) & 0x1)pcMesh->mNormals = new aiVector3D[iVertices]; if ((*j) & 0x2) { pcMesh->mTangents = new aiVector3D[iVertices]; pcMesh->mBitangents = new aiVector3D[iVertices]; } iFaces = 0; while ((*j) & (0x100 << iFaces)) { pcMesh->mTextureCoords[iFaces] = new aiVector3D[iVertices]; if ((*j) & (0x10000 << iFaces))pcMesh->mNumUVComponents[iFaces] = 3; else pcMesh->mNumUVComponents[iFaces] = 2; iFaces++; } iFaces = 0; while ((*j) & (0x1000000 << iFaces)) pcMesh->mColors[iFaces] = new aiColor4D[iVertices]; // fill the mesh ... unsigned int aiTemp[2] = {0,0}; CollectData(pScene,pScene->mRootNode,i,*j,pcMesh,aiTemp); } } } // remove all animations from the scene for (unsigned int i = 0; i < pScene->mNumAnimations;++i) delete pScene->mAnimations[i]; delete[] pScene->mAnimations; pScene->mAnimations = NULL; pScene->mNumAnimations = 0; // now delete all meshes in the scene and build a new mesh list for (unsigned int i = 0; i < pScene->mNumMeshes;++i) { pScene->mMeshes[i]->mBones = NULL; delete pScene->mMeshes[i]; // invalidate the contents of the old mesh array. We will most // likely have less output meshes now, so the last entries of // the mesh array are not overridden. We set them to NULL to // make sure the developer gets notified when his application // attempts to access these fields ... AI_DEBUG_INVALIDATE_PTR( pScene->mMeshes[i] ); } pScene->mNumMeshes = (unsigned int)apcOutMeshes.size(); if (apcOutMeshes.size() > pScene->mNumMeshes) { delete[] pScene->mMeshes; pScene->mMeshes = new aiMesh*[pScene->mNumMeshes]; } for (unsigned int i = 0; i < pScene->mNumMeshes;++i) pScene->mMeshes[i] = apcOutMeshes[i]; // --- we need to keep all cameras and lights for (unsigned int i = 0; i < pScene->mNumCameras;++i) { aiCamera* cam = pScene->mCameras[i]; const aiNode* nd = pScene->mRootNode->FindNode(cam->mName); ai_assert(NULL != nd); // multiply all properties of the camera with the absolute // transformation of the corresponding node cam->mPosition = nd->mTransformation * cam->mPosition; cam->mLookAt = aiMatrix3x3( nd->mTransformation ) * cam->mLookAt; cam->mUp = aiMatrix3x3( nd->mTransformation ) * cam->mUp; } for (unsigned int i = 0; i < pScene->mNumLights;++i) { aiLight* l = pScene->mLights[i]; const aiNode* nd = pScene->mRootNode->FindNode(l->mName); ai_assert(NULL != nd); // multiply all properties of the camera with the absolute // transformation of the corresponding node l->mPosition = nd->mTransformation * l->mPosition; l->mDirection = aiMatrix3x3( nd->mTransformation ) * l->mDirection; } // now delete all nodes in the scene and build a new // flat node graph with a root node and some level 1 children delete pScene->mRootNode; pScene->mRootNode = new aiNode(); pScene->mRootNode->mName.Set(""); if (1 == pScene->mNumMeshes && !pScene->mNumLights && !pScene->mNumCameras) { pScene->mRootNode->mNumMeshes = 1; pScene->mRootNode->mMeshes = new unsigned int[1]; pScene->mRootNode->mMeshes[0] = 0; } else { pScene->mRootNode->mNumChildren = pScene->mNumMeshes+pScene->mNumLights+pScene->mNumCameras; aiNode** nodes = pScene->mRootNode->mChildren = new aiNode*[pScene->mRootNode->mNumChildren]; // generate mesh nodes for (unsigned int i = 0; i < pScene->mNumMeshes;++i,++nodes) { aiNode* pcNode = *nodes = new aiNode(); pcNode->mParent = pScene->mRootNode; pcNode->mName.length = ::sprintf(pcNode->mName.data,"mesh_%i",i); // setup mesh indices pcNode->mNumMeshes = 1; pcNode->mMeshes = new unsigned int[1]; pcNode->mMeshes[0] = i; } // generate light nodes for (unsigned int i = 0; i < pScene->mNumLights;++i,++nodes) { aiNode* pcNode = *nodes = new aiNode(); pcNode->mParent = pScene->mRootNode; pcNode->mName.length = ::sprintf(pcNode->mName.data,"light_%i",i); pScene->mLights[i]->mName = pcNode->mName; } // generate camera nodes for (unsigned int i = 0; i < pScene->mNumCameras;++i,++nodes) { aiNode* pcNode = *nodes = new aiNode(); pcNode->mParent = pScene->mRootNode; pcNode->mName.length = ::sprintf(pcNode->mName.data,"cam_%i",i); pScene->mCameras[i]->mName = pcNode->mName; } } // print statistics if (!DefaultLogger::isNullLogger()) { char buffer[4096]; DefaultLogger::get()->debug("PretransformVerticesProcess finished"); ::sprintf(buffer,"Removed %i nodes and %i animation channels (%i output nodes)", iOldNodes,iOldAnimationChannels,CountNodes(pScene->mRootNode)); DefaultLogger::get()->info(buffer); ::sprintf(buffer,"Kept %i lights and %i cameras", pScene->mNumLights,pScene->mNumCameras); DefaultLogger::get()->info(buffer); ::sprintf(buffer,"Moved %i meshes to WCS (number of output meshes: %i)", iOldMeshes,pScene->mNumMeshes); DefaultLogger::get()->info(buffer); } return; }