/** Implementation of the Collada parser helper*/ /* --------------------------------------------------------------------------- Open Asset Import Library (ASSIMP) --------------------------------------------------------------------------- Copyright (c) 2006-2008, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ #include "AssimpPCH.h" #include "ColladaParser.h" #include "fast_atof.h" #include "ParsingUtils.h" using namespace Assimp; using namespace Assimp::Collada; // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer ColladaParser::ColladaParser( const std::string& pFile) : mFileName( pFile) { mRootNode = NULL; mUnitSize = 1.0f; mUpDirection = UP_Z; // generate a XML reader for it mReader = irr::io::createIrrXMLReader( pFile.c_str()); if( !mReader) ThrowException( "Unable to open file."); // start reading ReadContents(); } // ------------------------------------------------------------------------------------------------ // Destructor, private as well ColladaParser::~ColladaParser() { delete mReader; for( NodeLibrary::iterator it = mNodeLibrary.begin(); it != mNodeLibrary.end(); ++it) delete it->second; for( MeshLibrary::iterator it = mMeshLibrary.begin(); it != mMeshLibrary.end(); ++it) delete it->second; } // ------------------------------------------------------------------------------------------------ // Reads the contents of the file void ColladaParser::ReadContents() { while( mReader->read()) { // handle the root element "COLLADA" if( mReader->getNodeType() == irr::io::EXN_ELEMENT) { if( IsElement( "COLLADA")) { ReadStructure(); } else { DefaultLogger::get()->debug( boost::str( boost::format( "Ignoring global element \"%s\".") % mReader->getNodeName())); SkipElement(); } } else { // skip everything else silently } } } // ------------------------------------------------------------------------------------------------ // Reads the structure of the file void ColladaParser::ReadStructure() { while( mReader->read()) { // beginning of elements if( mReader->getNodeType() == irr::io::EXN_ELEMENT) { if( IsElement( "asset")) ReadAssetInfo(); else if( IsElement( "library_images")) ReadImageLibrary(); else if( IsElement( "library_materials")) ReadMaterialLibrary(); else if( IsElement( "library_effects")) ReadEffectLibrary(); else if( IsElement( "library_geometries")) ReadGeometryLibrary(); else if( IsElement( "library_visual_scenes")) ReadSceneLibrary(); else if( IsElement( "scene")) ReadScene(); else SkipElement(); } else if( mReader->getNodeType() == irr::io::EXN_ELEMENT_END) { break; } } } // ------------------------------------------------------------------------------------------------ // Reads asset informations such as coordinate system informations and legal blah void ColladaParser::ReadAssetInfo() { while( mReader->read()) { if( mReader->getNodeType() == irr::io::EXN_ELEMENT) { if( IsElement( "unit")) { // read unit data from the element's attributes int attrIndex = GetAttribute( "meter"); mUnitSize = mReader->getAttributeValueAsFloat( attrIndex); // consume the trailing stuff if( !mReader->isEmptyElement()) SkipElement(); } else if( IsElement( "up_axis")) { // read content, strip whitespace, compare const char* content = GetTextContent(); if( strncmp( content, "X_UP", 4) == 0) mUpDirection = UP_X; else if( strncmp( content, "Y_UP", 4) == 0) mUpDirection = UP_Y; else mUpDirection = UP_Z; // check element end TestClosing( "up_axis"); } else { SkipElement(); } } else if( mReader->getNodeType() == irr::io::EXN_ELEMENT_END) { if( strcmp( mReader->getNodeName(), "asset") != 0) ThrowException( "Expected end of \"asset\" element."); break; } } } // ------------------------------------------------------------------------------------------------ // Reads the image library contents void ColladaParser::ReadImageLibrary() { while( mReader->read()) { if( mReader->getNodeType() == irr::io::EXN_ELEMENT) { if( IsElement( "image")) { // read ID. Another entry which is "optional" by design but obligatory in reality int attrID = GetAttribute( "id"); std::string id = mReader->getAttributeValue( attrID); // create an entry and store it in the library under its ID mImageLibrary[id] = Image(); // read on from there ReadImage( mImageLibrary[id]); } else { // ignore the rest SkipElement(); } } else if( mReader->getNodeType() == irr::io::EXN_ELEMENT_END) { if( strcmp( mReader->getNodeName(), "library_images") != 0) ThrowException( "Expected end of \"library_images\" element."); break; } } } // ------------------------------------------------------------------------------------------------ // Reads an image entry into the given image void ColladaParser::ReadImage( Collada::Image& pImage) { while( mReader->read()) { if( mReader->getNodeType() == irr::io::EXN_ELEMENT) { if( IsElement( "init_from")) { // element content is filename - hopefully const char* content = GetTextContent(); pImage.mFileName = content; TestClosing( "init_from"); } else { // ignore the rest SkipElement(); } } else if( mReader->getNodeType() == irr::io::EXN_ELEMENT_END) { if( strcmp( mReader->getNodeName(), "image") != 0) ThrowException( "Expected end of \"image\" element."); break; } } } // ------------------------------------------------------------------------------------------------ // Reads the material library void ColladaParser::ReadMaterialLibrary() { while( mReader->read()) { if( mReader->getNodeType() == irr::io::EXN_ELEMENT) { if( IsElement( "material")) { // read ID. By now you propably know my opinion about this "specification" int attrID = GetAttribute( "id"); std::string id = mReader->getAttributeValue( attrID); // create an entry and store it in the library under its ID mMaterialLibrary[id] = Material(); // read on from there ReadMaterial( mMaterialLibrary[id]); } else { // ignore the rest SkipElement(); } } else if( mReader->getNodeType() == irr::io::EXN_ELEMENT_END) { if( strcmp( mReader->getNodeName(), "library_materials") != 0) ThrowException( "Expected end of \"library_materials\" element."); break; } } } // ------------------------------------------------------------------------------------------------ // Reads a material entry into the given material void ColladaParser::ReadMaterial( Collada::Material& pMaterial) { while( mReader->read()) { if( mReader->getNodeType() == irr::io::EXN_ELEMENT) { if( IsElement( "instance_effect")) { // referred effect by URL int attrUrl = GetAttribute( "url"); const char* url = mReader->getAttributeValue( attrUrl); if( url[0] != '#') ThrowException( "Unknown reference format"); pMaterial.mEffect = url+1; SkipElement(); } else { // ignore the rest SkipElement(); } } else if( mReader->getNodeType() == irr::io::EXN_ELEMENT_END) { if( strcmp( mReader->getNodeName(), "material") != 0) ThrowException( "Expected end of \"image\" element."); break; } } } // ------------------------------------------------------------------------------------------------ // Reads the effect library void ColladaParser::ReadEffectLibrary() { while( mReader->read()) { if( mReader->getNodeType() == irr::io::EXN_ELEMENT) { if( IsElement( "effect")) { // read ID. Do I have to repeat my ranting about "optional" attributes? int attrID = GetAttribute( "id"); std::string id = mReader->getAttributeValue( attrID); // create an entry and store it in the library under its ID mEffectLibrary[id] = Effect(); // read on from there ReadEffect( mEffectLibrary[id]); } else { // ignore the rest SkipElement(); } } else if( mReader->getNodeType() == irr::io::EXN_ELEMENT_END) { if( strcmp( mReader->getNodeName(), "library_effects") != 0) ThrowException( "Expected end of \"library_effects\" element."); break; } } } // ------------------------------------------------------------------------------------------------ // Reads an effect entry into the given effect void ColladaParser::ReadEffect( Collada::Effect& pEffect) { // for the moment we don't support any other type of effect. // TODO: (thom) Rewrite this so that it ignores the whole effect instead of bailing out TestOpening( "profile_COMMON"); while( mReader->read()) { if( mReader->getNodeType() == irr::io::EXN_ELEMENT) { if( IsElement( "newparam")) { // save ID int attrSID = GetAttribute( "sid"); std::string sid = mReader->getAttributeValue( attrSID); pEffect.mParams[sid] = EffectParam(); ReadEffectParam( pEffect.mParams[sid]); } else if( IsElement( "technique")) { // just syntactic sugar } else if( IsElement( "phong")) pEffect.mShadeType = Shade_Phong; else if( IsElement( "constant")) pEffect.mShadeType = Shade_Constant; else if( IsElement( "lambert")) pEffect.mShadeType = Shade_Lambert; else if( IsElement( "blinn")) pEffect.mShadeType = Shade_Blinn; else if( IsElement( "emission")) ReadEffectColor( pEffect.mEmissive, pEffect.mTexEmissive); else if( IsElement( "ambient")) ReadEffectColor( pEffect.mAmbient, pEffect.mTexAmbient); else if( IsElement( "diffuse")) ReadEffectColor( pEffect.mDiffuse, pEffect.mTexDiffuse); else if( IsElement( "specular")) ReadEffectColor( pEffect.mSpecular, pEffect.mTexSpecular); else if( IsElement( "reflective")){ std::string buf; ReadEffectColor( pEffect.mReflective, buf); } else if( IsElement( "transparent")){ std::string buf; ReadEffectColor( pEffect.mRefractive,buf); } else if( IsElement( "shininess")) ReadEffectFloat( pEffect.mShininess); else if( IsElement( "reflectivity")) ReadEffectFloat( pEffect.mReflectivity); else if( IsElement( "transparency")) ReadEffectFloat( pEffect.mRefractivity); else if( IsElement( "index_of_refraction")) ReadEffectFloat( pEffect.mRefractIndex); else { // ignore the rest SkipElement(); } } else if( mReader->getNodeType() == irr::io::EXN_ELEMENT_END) { if( strcmp( mReader->getNodeName(), "effect") == 0) break; } } } // ------------------------------------------------------------------------------------------------ // Reads an effect entry containing a color or a texture defining that color void ColladaParser::ReadEffectColor( aiColor4D& pColor, std::string& pSampler) { while( mReader->read()) { if( mReader->getNodeType() == irr::io::EXN_ELEMENT) { if( IsElement( "color")) { // text content contains 4 floats const char* content = GetTextContent(); float fBuf; content = fast_atof_move( content, fBuf); pColor.r = fBuf; SkipSpacesAndLineEnd( &content); content = fast_atof_move( content, fBuf); pColor.g = fBuf; SkipSpacesAndLineEnd( &content); content = fast_atof_move( content, fBuf); pColor.b = fBuf; SkipSpacesAndLineEnd( &content); content = fast_atof_move( content, fBuf); pColor.a = fBuf; SkipSpacesAndLineEnd( &content); TestClosing( "color"); } else if( IsElement( "texture")) { int attrTex = GetAttribute( "texture"); pSampler = mReader->getAttributeValue( attrTex); SkipElement(); } else { // ignore the rest SkipElement(); } } else if( mReader->getNodeType() == irr::io::EXN_ELEMENT_END) { break; } } } // ------------------------------------------------------------------------------------------------ // Reads an effect entry containing a float void ColladaParser::ReadEffectFloat( float& pFloat) { while( mReader->read()) { if( mReader->getNodeType() == irr::io::EXN_ELEMENT) { if( IsElement( "float")) { // text content contains a single floats const char* content = GetTextContent(); content = fast_atof_move( content, pFloat); SkipSpacesAndLineEnd( &content); TestClosing( "float"); } else { // ignore the rest SkipElement(); } } else if( mReader->getNodeType() == irr::io::EXN_ELEMENT_END) { break; } } } // ------------------------------------------------------------------------------------------------ // Reads an effect parameter specification of any kind void ColladaParser::ReadEffectParam( Collada::EffectParam& pParam) { while( mReader->read()) { if( mReader->getNodeType() == irr::io::EXN_ELEMENT) { if( IsElement( "surface")) { // image ID given inside tags TestOpening( "init_from"); const char* content = GetTextContent(); pParam.mType = Param_Surface; pParam.mReference = content; TestClosing( "init_from"); // don't care for remaining stuff SkipElement( "surface"); } else if( IsElement( "sampler2D")) { // surface ID is given inside tags TestOpening( "source"); const char* content = GetTextContent(); pParam.mType = Param_Sampler; pParam.mReference = content; TestClosing( "source"); // don't care for remaining stuff SkipElement( "sampler2D"); } else { // ignore unknown element SkipElement(); } } else if( mReader->getNodeType() == irr::io::EXN_ELEMENT_END) { break; } } } // ------------------------------------------------------------------------------------------------ // Reads the geometry library contents void ColladaParser::ReadGeometryLibrary() { while( mReader->read()) { if( mReader->getNodeType() == irr::io::EXN_ELEMENT) { if( IsElement( "geometry")) { // read ID. Another entry which is "optional" by design but obligatory in reality int indexID = GetAttribute( "id"); std::string id = mReader->getAttributeValue( indexID); // TODO: (thom) support SIDs assert( TestAttribute( "sid") == -1); // a always contains a single element inside, so we just skip that element in advance TestOpening( "mesh"); // create a mesh and store it in the library under its ID Mesh* mesh = new Mesh; mMeshLibrary[id] = mesh; // read on from there ReadMesh( mesh); // check for the closing tag of the outer element, the inner closing of has been consumed by ReadMesh() TestClosing( "geometry"); } else { // ignore the rest SkipElement(); } } else if( mReader->getNodeType() == irr::io::EXN_ELEMENT_END) { if( strcmp( mReader->getNodeName(), "library_geometries") != 0) ThrowException( "Expected end of \"library_geometries\" element."); break; } } } // ------------------------------------------------------------------------------------------------ // Reads a mesh from the geometry library void ColladaParser::ReadMesh( Mesh* pMesh) { // I'm doing a dirty state parsing here because I don't want to open another submethod for it. // There's a tag defining the name for the accessor inside, and possible a // with it's own ID. This string contains the current source's ID if parsing is inside a element. std::string presentSourceID; while( mReader->read()) { if( mReader->getNodeType() == irr::io::EXN_ELEMENT) { if( IsElement( "source")) { // beginning of a source element - store ID for the inner elements int attrID = GetAttribute( "id"); presentSourceID = mReader->getAttributeValue( attrID); } else if( IsElement( "float_array")) { ReadFloatArray(); } else if( IsElement( "technique_common")) { // I don't fucking care for your profiles bullshit } else if( IsElement( "accessor")) { ReadAccessor( presentSourceID); } else if( IsElement( "vertices")) { // read per-vertex mesh data ReadVertexData( pMesh); } else if( IsElement( "triangles") || IsElement( "lines") || IsElement( "linestrips") || IsElement( "polygons") || IsElement( "polylist") || IsElement( "trifans") || IsElement( "tristrips")) { // read per-index mesh data and faces setup ReadIndexData( pMesh); } else { // ignore the rest SkipElement(); } } else if( mReader->getNodeType() == irr::io::EXN_ELEMENT_END) { if( strcmp( mReader->getNodeName(), "source") == 0) { // end of - reset present source ID presentSourceID.clear(); } else if( strcmp( mReader->getNodeName(), "technique_common") == 0) { // end of another meaningless element - read over it } else if( strcmp( mReader->getNodeName(), "mesh") == 0) { // end of element - we're done here break; } else { // everything else should be punished ThrowException( "Expected end of \"mesh\" element."); } } } } // ------------------------------------------------------------------------------------------------ // Reads a data array holding a number of floats, and stores it in the global library void ColladaParser::ReadFloatArray() { // read attributes int indexID = GetAttribute( "id"); std::string id = mReader->getAttributeValue( indexID); int indexCount = GetAttribute( "count"); unsigned int count = (unsigned int) mReader->getAttributeValueAsInt( indexCount); const char* content = GetTextContent(); // read values and store inside an array in the data library mDataLibrary[id] = Data(); Data& data = mDataLibrary[id]; data.mValues.reserve( count); for( unsigned int a = 0; a < count; a++) { if( *content == 0) ThrowException( "Expected more values while reading float_array contents."); float value; // read a number content = fast_atof_move( content, value); data.mValues.push_back( value); // skip whitespace after it SkipSpacesAndLineEnd( &content); } // test for closing tag TestClosing( "float_array"); } // ------------------------------------------------------------------------------------------------ // Reads an accessor and stores it in the global library void ColladaParser::ReadAccessor( const std::string& pID) { // read accessor attributes int attrSource = GetAttribute( "source"); const char* source = mReader->getAttributeValue( attrSource); if( source[0] != '#') ThrowException( boost::str( boost::format( "Unknown reference format in url \"%s\".") % source)); int attrCount = GetAttribute( "count"); unsigned int count = (unsigned int) mReader->getAttributeValueAsInt( attrCount); int attrOffset = TestAttribute( "offset"); unsigned int offset = 0; if( attrOffset > -1) offset = (unsigned int) mReader->getAttributeValueAsInt( attrOffset); int attrStride = TestAttribute( "stride"); unsigned int stride = 1; if( attrStride > -1) stride = (unsigned int) mReader->getAttributeValueAsInt( attrStride); // store in the library under the given ID mAccessorLibrary[pID] = Accessor(); Accessor& acc = mAccessorLibrary[pID]; acc.mCount = count; acc.mOffset = offset; acc.mStride = stride; acc.mSource = source+1; // ignore the leading '#' // and read the components while( mReader->read()) { if( mReader->getNodeType() == irr::io::EXN_ELEMENT) { if( IsElement( "param")) { // read data param int attrName = TestAttribute( "name"); std::string name; if( attrName > -1) { name = mReader->getAttributeValue( attrName); // analyse for common type components and store it's sub-offset in the corresponding field if( name == "X") acc.mSubOffset[0] = acc.mParams.size(); else if( name == "Y") acc.mSubOffset[1] = acc.mParams.size(); else if( name == "Z") acc.mSubOffset[2] = acc.mParams.size(); else if( name == "R") acc.mSubOffset[0] = acc.mParams.size(); else if( name == "G") acc.mSubOffset[1] = acc.mParams.size(); else if( name == "B") acc.mSubOffset[2] = acc.mParams.size(); else if( name == "A") acc.mSubOffset[3] = acc.mParams.size(); else if( name == "S") acc.mSubOffset[0] = acc.mParams.size(); else if( name == "T") acc.mSubOffset[1] = acc.mParams.size(); else DefaultLogger::get()->warn( boost::str( boost::format( "Unknown accessor parameter \"%s\". Ignoring data channel.") % name)); } acc.mParams.push_back( name); // skip remaining stuff of this element, if any SkipElement(); } else { ThrowException( "Unexpected sub element in tag \"accessor\"."); } } else if( mReader->getNodeType() == irr::io::EXN_ELEMENT_END) { if( strcmp( mReader->getNodeName(), "accessor") != 0) ThrowException( "Expected end of \"accessor\" element."); break; } } } // ------------------------------------------------------------------------------------------------ // Reads input declarations of per-vertex mesh data into the given mesh void ColladaParser::ReadVertexData( Mesh* pMesh) { // extract the ID of the element. Not that we care, but to catch strange referencing schemes we should warn about int attrID= GetAttribute( "id"); pMesh->mVertexID = mReader->getAttributeValue( attrID); // a number of elements while( mReader->read()) { if( mReader->getNodeType() == irr::io::EXN_ELEMENT) { if( IsElement( "input")) { ReadInputChannel( pMesh->mPerVertexData); } else { ThrowException( "Unexpected sub element in tag \"vertices\"."); } } else if( mReader->getNodeType() == irr::io::EXN_ELEMENT_END) { if( strcmp( mReader->getNodeName(), "vertices") != 0) ThrowException( "Expected end of \"vertices\" element."); break; } } } // ------------------------------------------------------------------------------------------------ // Reads input declarations of per-index mesh data into the given mesh void ColladaParser::ReadIndexData( Mesh* pMesh) { std::vector vcount; std::vector perIndexData; // read primitive count from the attribute int attrCount = GetAttribute( "count"); size_t numPrimitives = (size_t) mReader->getAttributeValueAsInt( attrCount); // material subgroup int attrMaterial = TestAttribute( "material"); SubMesh subgroup; if( attrMaterial > -1) subgroup.mMaterial = mReader->getAttributeValue( attrMaterial); subgroup.mNumFaces = numPrimitives; pMesh->mSubMeshes.push_back( subgroup); // distinguish between polys and triangles std::string elementName = mReader->getNodeName(); PrimitiveType primType = Prim_Invalid; if( IsElement( "lines")) primType = Prim_Lines; else if( IsElement( "linestrips")) primType = Prim_LineStrip; else if( IsElement( "polygons")) primType = Prim_Polygon; else if( IsElement( "polylist")) primType = Prim_Polylist; else if( IsElement( "triangles")) primType = Prim_Triangles; else if( IsElement( "trifans")) primType = Prim_TriFans; else if( IsElement( "tristrips")) primType = Prim_TriStrips; assert( primType != Prim_Invalid); // also a number of elements, but in addition a

primitive collection and propably index counts for all primitives while( mReader->read()) { if( mReader->getNodeType() == irr::io::EXN_ELEMENT) { if( IsElement( "input")) { ReadInputChannel( perIndexData); } else if( IsElement( "vcount")) { // case - specifies the number of indices for each polygon const char* content = GetTextContent(); vcount.reserve( numPrimitives); for( unsigned int a = 0; a < numPrimitives; a++) { if( *content == 0) ThrowException( "Expected more values while reading vcount contents."); // read a number vcount.push_back( (size_t) strtol10( content, &content)); // skip whitespace after it SkipSpacesAndLineEnd( &content); } TestClosing( "vcount"); } else if( IsElement( "p")) { // now here the actual fun starts - these are the indices to construct the mesh data from ReadPrimitives( pMesh, perIndexData, numPrimitives, vcount, primType); } else { ThrowException( "Unexpected sub element in tag \"vertices\"."); } } else if( mReader->getNodeType() == irr::io::EXN_ELEMENT_END) { if( mReader->getNodeName() != elementName) ThrowException( boost::str( boost::format( "Expected end of \"%s\" element.") % elementName)); break; } } } // ------------------------------------------------------------------------------------------------ // Reads a single input channel element and stores it in the given array, if valid void ColladaParser::ReadInputChannel( std::vector& poChannels) { InputChannel channel; // read semantic int attrSemantic = GetAttribute( "semantic"); std::string semantic = mReader->getAttributeValue( attrSemantic); channel.mType = GetTypeForSemantic( semantic); // read source int attrSource = GetAttribute( "source"); const char* source = mReader->getAttributeValue( attrSource); if( source[0] != '#') ThrowException( boost::str( boost::format( "Unknown reference format in url \"%s\".") % source)); channel.mAccessor = source+1; // skipping the leading #, hopefully the remaining text is the accessor ID only // read index offset, if per-index int attrOffset = TestAttribute( "offset"); if( attrOffset > -1) channel.mOffset = mReader->getAttributeValueAsInt( attrOffset); // store, if valid type if( channel.mType != IT_Invalid) poChannels.push_back( channel); // skip remaining stuff of this element, if any SkipElement(); } // ------------------------------------------------------------------------------------------------ // Reads a

primitive index list and assembles the mesh data into the given mesh void ColladaParser::ReadPrimitives( Mesh* pMesh, std::vector& pPerIndexChannels, size_t pNumPrimitives, const std::vector& pVCount, PrimitiveType pPrimType) { // determine number of indices coming per vertex // find the offset index for all per-vertex channels size_t numOffsets = 1; size_t perVertexOffset = -1; // invalid value BOOST_FOREACH( const InputChannel& channel, pPerIndexChannels) { numOffsets = std::max( numOffsets, channel.mOffset+1); if( channel.mType == IT_Vertex) perVertexOffset = channel.mOffset; } // determine the expected number of indices size_t expectedPointCount = 0; switch( pPrimType) { case Prim_Polylist: { BOOST_FOREACH( size_t i, pVCount) expectedPointCount += i; break; } case Prim_Lines: expectedPointCount = 2 * pNumPrimitives; break; case Prim_Triangles: expectedPointCount = 3 * pNumPrimitives; break; default: // other primitive types don't state the index count upfront... we need to guess break; } // and read all indices into a temporary array std::vector indices; if( expectedPointCount > 0) indices.reserve( expectedPointCount * numOffsets); const char* content = GetTextContent(); while( *content != 0) { // read a value unsigned int value = strtol10( content, &content); indices.push_back( size_t( value)); // skip whitespace after it SkipSpacesAndLineEnd( &content); } // complain if the index count doesn't fit if( expectedPointCount > 0 && indices.size() != expectedPointCount * numOffsets) ThrowException( "Expected different index count in

element."); else if( expectedPointCount == 0 && (indices.size() % numOffsets) != 0) ThrowException( "Expected different index count in

element."); // find the data for all sources BOOST_FOREACH( InputChannel& input, pMesh->mPerVertexData) { if( input.mResolved) continue; // find accessor input.mResolved = &ResolveLibraryReference( mAccessorLibrary, input.mAccessor); // resolve accessor's data pointer as well, if neccessary const Accessor* acc = input.mResolved; if( !acc->mData) acc->mData = &ResolveLibraryReference( mDataLibrary, acc->mSource); } // and the same for the per-index channels BOOST_FOREACH( InputChannel& input, pPerIndexChannels) { if( input.mResolved) continue; // ignore vertex pointer, it doesn't refer to an accessor if( input.mType == IT_Vertex) { // warn if the vertex channel does not refer to the element in the same mesh if( input.mAccessor != pMesh->mVertexID) ThrowException( "Unsupported vertex referencing scheme. I fucking hate Collada."); continue; } // find accessor input.mResolved = &ResolveLibraryReference( mAccessorLibrary, input.mAccessor); // resolve accessor's data pointer as well, if neccessary const Accessor* acc = input.mResolved; if( !acc->mData) acc->mData = &ResolveLibraryReference( mDataLibrary, acc->mSource); } // now assemble vertex data according to those indices std::vector::const_iterator idx = indices.begin(); // For continued primitives, the given count does not come all in one

, but only one primitive per

size_t numPrimitives = pNumPrimitives; if( pPrimType == Prim_TriFans || pPrimType == Prim_Polygon) numPrimitives = 1; for( size_t a = 0; a < numPrimitives; a++) { // determine number of points for this primitive size_t numPoints = 0; switch( pPrimType) { case Prim_Lines: numPoints = 2; break; case Prim_Triangles: numPoints = 3; break; case Prim_Polylist: numPoints = pVCount[a]; break; case Prim_TriFans: case Prim_Polygon: numPoints = indices.size() / numOffsets; break; default: // LineStrip and TriStrip not supported due to expected index unmangling ThrowException( "Unsupported primitive type."); break; } // store the face size to later reconstruct the face from pMesh->mFaceSize.push_back( numPoints); // gather that number of vertices for( size_t b = 0; b < numPoints; b++) { // read all indices for this vertex. Yes, in a hacky static array assert( numOffsets < 20); static size_t vindex[20]; for( size_t offsets = 0; offsets < numOffsets; ++offsets) vindex[offsets] = *idx++; // extract per-vertex channels using the global per-vertex offset BOOST_FOREACH( const InputChannel& input, pMesh->mPerVertexData) ExtractDataObjectFromChannel( input, vindex[perVertexOffset], pMesh); // and extract per-index channels using there specified offset BOOST_FOREACH( const InputChannel& input, pPerIndexChannels) ExtractDataObjectFromChannel( input, vindex[input.mOffset], pMesh); } } // if I ever get my hands on that guy who invented this steaming pile of indirection... TestClosing( "p"); } // ------------------------------------------------------------------------------------------------ // Extracts a single object from an input channel and stores it in the appropriate mesh data array void ColladaParser::ExtractDataObjectFromChannel( const InputChannel& pInput, size_t pLocalIndex, Mesh* pMesh) { // ignore vertex referrer - we handle them that separate if( pInput.mType == IT_Vertex) return; const Accessor& acc = *pInput.mResolved; if( pLocalIndex >= acc.mCount) ThrowException( boost::str( boost::format( "Invalid data index (%d/%d) in primitive specification") % pLocalIndex % acc.mCount)); // get a pointer to the start of the data object referred to by the accessor and the local index const float* dataObject = &(acc.mData->mValues[0]) + acc.mOffset + pLocalIndex* acc.mStride; // assemble according to the accessors component sub-offset list. We don't care, yet, what kind of object exactly we're extracting here float obj[4]; for( size_t c = 0; c < 4; ++c) obj[c] = dataObject[acc.mSubOffset[c]]; // now we reinterpret it according to the type we're reading here switch( pInput.mType) { case IT_Position: // ignore all position streams except 0 - there can be only one position if( pInput.mIndex == 0) pMesh->mPositions.push_back( aiVector3D( obj[0], obj[1], obj[2])); break; case IT_Normal: // ignore all normal streams except 0 - there can be only one normal if( pInput.mIndex == 0) pMesh->mNormals.push_back( aiVector3D( obj[0], obj[1], obj[2])); break; case IT_Texcoord: // up to 4 texture coord sets are fine, ignore the others if( pInput.mIndex < AI_MAX_NUMBER_OF_TEXTURECOORDS) pMesh->mTexCoords[pInput.mIndex].push_back( aiVector2D( obj[0], obj[1])); break; case IT_Color: // up to 4 color sets are fine, ignore the others if( pInput.mIndex < AI_MAX_NUMBER_OF_COLOR_SETS) pMesh->mColors[pInput.mIndex].push_back( aiColor4D( obj[0], obj[1], obj[2], obj[3])); break; } } // ------------------------------------------------------------------------------------------------ // Reads the library of node hierarchies and scene parts void ColladaParser::ReadSceneLibrary() { while( mReader->read()) { if( mReader->getNodeType() == irr::io::EXN_ELEMENT) { // a visual scene - generate root node under its ID and let ReadNode() do the recursive work if( IsElement( "visual_scene")) { // read ID. Is optional according to the spec, but how on earth should a scene_instance refer to it then? int indexID = GetAttribute( "id"); const char* attrID = mReader->getAttributeValue( indexID); // read name if given. int indexName = TestAttribute( "name"); const char* attrName = "unnamed"; if( indexName > -1) attrName = mReader->getAttributeValue( indexName); // TODO: (thom) support SIDs assert( TestAttribute( "sid") == -1); // create a node and store it in the library under its ID Node* node = new Node; node->mID = attrID; node->mName = attrName; mNodeLibrary[node->mID] = node; ReadSceneNode( node); } else { // ignore the rest SkipElement(); } } else if( mReader->getNodeType() == irr::io::EXN_ELEMENT_END) { if( strcmp( mReader->getNodeName(), "library_visual_scenes") != 0) ThrowException( "Expected end of \"library_visual_scenes\" element."); break; } } } // ------------------------------------------------------------------------------------------------ // Reads a scene node's contents including children and stores it in the given node void ColladaParser::ReadSceneNode( Node* pNode) { // quit immediately on elements if( mReader->isEmptyElement()) return; while( mReader->read()) { if( mReader->getNodeType() == irr::io::EXN_ELEMENT) { if( IsElement( "lookat")) ReadNodeTransformation( pNode, TF_LOOKAT); else if( IsElement( "matrix")) ReadNodeTransformation( pNode, TF_MATRIX); else if( IsElement( "rotate")) ReadNodeTransformation( pNode, TF_ROTATE); else if( IsElement( "scale")) ReadNodeTransformation( pNode, TF_SCALE); else if( IsElement( "skew")) ReadNodeTransformation( pNode, TF_SKEW); else if( IsElement( "translate")) ReadNodeTransformation( pNode, TF_TRANSLATE); else if( IsElement( "node")) { Node* child = new Node; int attrID = TestAttribute( "id"); if( attrID > -1) child->mID = mReader->getAttributeValue( attrID); int attrName = TestAttribute( "name"); if( attrName > -1) child->mName = mReader->getAttributeValue( attrName); // TODO: (thom) support SIDs // assert( TestAttribute( "sid") == -1); pNode->mChildren.push_back( child); child->mParent = pNode; // read on recursively from there ReadSceneNode( child); } else if( IsElement( "instance_node")) { // test for it, in case we need to implement it assert( false); SkipElement(); } else if( IsElement( "instance_geometry")) { // Reference to a mesh, we possible material associations ReadNodeGeometry( pNode); } else { // skip everything else for the moment SkipElement(); } } else if( mReader->getNodeType() == irr::io::EXN_ELEMENT_END) { break; } } } // ------------------------------------------------------------------------------------------------ // Reads a node transformation entry of the given type and adds it to the given node's transformation list. void ColladaParser::ReadNodeTransformation( Node* pNode, TransformType pType) { std::string tagName = mReader->getNodeName(); // how many parameters to read per transformation type static const unsigned int sNumParameters[] = { 9, 4, 3, 3, 7, 16 }; const char* content = GetTextContent(); // read as many parameters and store in the transformation Transform tf; tf.mType = pType; for( unsigned int a = 0; a < sNumParameters[pType]; a++) { // read a number content = fast_atof_move( content, tf.f[a]); // skip whitespace after it SkipSpacesAndLineEnd( &content); } // place the transformation at the queue of the node pNode->mTransforms.push_back( tf); // and consum the closing tag TestClosing( tagName.c_str()); } // ------------------------------------------------------------------------------------------------ // Reads a mesh reference in a node and adds it to the node's mesh list void ColladaParser::ReadNodeGeometry( Node* pNode) { // referred mesh is given as an attribute of the element int attrUrl = GetAttribute( "url"); const char* url = mReader->getAttributeValue( attrUrl); if( url[0] != '#') ThrowException( "Unknown reference format"); Collada::MeshInstance instance; instance.mMesh = url+1; // skipping the leading # if( !mReader->isEmptyElement()) { // read material associations. Ignore additional elements inbetween while( mReader->read()) { if( mReader->getNodeType() == irr::io::EXN_ELEMENT) { if( IsElement( "instance_material")) { // read ID of the geometry subgroup and the target material int attrGroup = GetAttribute( "symbol"); std::string group = mReader->getAttributeValue( attrGroup); int attrMaterial = GetAttribute( "target"); const char* urlMat = mReader->getAttributeValue( attrMaterial); if( urlMat[0] != '#') ThrowException( "Unknown reference format"); std::string mat = urlMat+1; // store the association instance.mMaterials[group] = mat; } } else if( mReader->getNodeType() == irr::io::EXN_ELEMENT_END) { if( strcmp( mReader->getNodeName(), "instance_geometry") == 0) break; } } } // store it pNode->mMeshes.push_back( instance); } // ------------------------------------------------------------------------------------------------ // Reads the collada scene void ColladaParser::ReadScene() { while( mReader->read()) { if( mReader->getNodeType() == irr::io::EXN_ELEMENT) { if( IsElement( "instance_visual_scene")) { // should be the first and only occurence if( mRootNode) ThrowException( "Invalid scene containing multiple root nodes"); // read the url of the scene to instance. Should be of format "#some_name" int urlIndex = GetAttribute( "url"); const char* url = mReader->getAttributeValue( urlIndex); if( url[0] != '#') ThrowException( "Unknown reference format"); // find the referred scene, skip the leading # NodeLibrary::const_iterator sit = mNodeLibrary.find( url+1); if( sit == mNodeLibrary.end()) ThrowException( boost::str( boost::format( "Unable to resolve visual_scene reference \"%s\".") % url)); mRootNode = sit->second; } else { SkipElement(); } } else if( mReader->getNodeType() == irr::io::EXN_ELEMENT_END) { break; } } } // ------------------------------------------------------------------------------------------------ // Aborts the file reading with an exception void ColladaParser::ThrowException( const std::string& pError) const { throw new ImportErrorException( boost::str( boost::format( "%s - %s") % mFileName % pError)); } // ------------------------------------------------------------------------------------------------ // Skips all data until the end node of the current element void ColladaParser::SkipElement() { // nothing to skip if it's an if( mReader->isEmptyElement()) return; // reroute SkipElement( mReader->getNodeName()); } // ------------------------------------------------------------------------------------------------ // Skips all data until the end node of the given element void ColladaParser::SkipElement( const char* pElement) { // copy the current node's name because it'a pointer to the reader's internal buffer, // which is going to change with the upcoming parsing std::string element = pElement; while( mReader->read()) { if( mReader->getNodeType() == irr::io::EXN_ELEMENT_END) if( mReader->getNodeName() == element) break; } } // ------------------------------------------------------------------------------------------------ // Tests for an opening element of the given name, throws an exception if not found void ColladaParser::TestOpening( const char* pName) { // read element start if( !mReader->read()) ThrowException( boost::str( boost::format( "Unexpected end of file while beginning of \"%s\" element.") % pName)); // whitespace in front is ok, just read again if found if( mReader->getNodeType() == irr::io::EXN_TEXT) if( !mReader->read()) ThrowException( boost::str( boost::format( "Unexpected end of file while reading beginning of \"%s\" element.") % pName)); if( mReader->getNodeType() != irr::io::EXN_ELEMENT || strcmp( mReader->getNodeName(), pName) != 0) ThrowException( boost::str( boost::format( "Expected start of \"%s\" element.") % pName)); } // ------------------------------------------------------------------------------------------------ // Tests for the closing tag of the given element, throws an exception if not found void ColladaParser::TestClosing( const char* pName) { // read closing tag if( !mReader->read()) ThrowException( boost::str( boost::format( "Unexpected end of file while reading end of \"%s\" element.") % pName)); // whitespace in front is ok, just read again if found if( mReader->getNodeType() == irr::io::EXN_TEXT) if( !mReader->read()) ThrowException( boost::str( boost::format( "Unexpected end of file while reading end of \"%s\" element.") % pName)); if( mReader->getNodeType() != irr::io::EXN_ELEMENT_END || strcmp( mReader->getNodeName(), pName) != 0) ThrowException( boost::str( boost::format( "Expected end of \"%s\" element.") % pName)); } // ------------------------------------------------------------------------------------------------ // Returns the index of the named attribute or -1 if not found. Does not throw, therefore useful for optional attributes int ColladaParser::GetAttribute( const char* pAttr) const { int index = TestAttribute( pAttr); if( index != -1) return index; // attribute not found -> throw an exception ThrowException( boost::str( boost::format( "Expected attribute \"%s\" at element \"%s\".") % pAttr % mReader->getNodeName())); return -1; } // ------------------------------------------------------------------------------------------------ // Tests the present element for the presence of one attribute, returns its index or throws an exception if not found int ColladaParser::TestAttribute( const char* pAttr) const { for( int a = 0; a < mReader->getAttributeCount(); a++) if( strcmp( mReader->getAttributeName( a), pAttr) == 0) return a; return -1; } // ------------------------------------------------------------------------------------------------ // Reads the text contents of an element, throws an exception if not given. Skips leading whitespace. const char* ColladaParser::GetTextContent() { // present node should be the beginning of an element if( mReader->getNodeType() != irr::io::EXN_ELEMENT || mReader->isEmptyElement()) ThrowException( "Expected opening element"); // read contents of the element if( !mReader->read()) ThrowException( "Unexpected end of file while reading asset up_axis element."); if( mReader->getNodeType() != irr::io::EXN_TEXT) ThrowException( "Invalid contents in element \"up_axis\"."); // skip leading whitespace const char* text = mReader->getNodeData(); SkipSpacesAndLineEnd( &text); return text; } // ------------------------------------------------------------------------------------------------ // Calculates the resulting transformation fromm all the given transform steps aiMatrix4x4 ColladaParser::CalculateResultTransform( const std::vector& pTransforms) const { aiMatrix4x4 res; for( std::vector::const_iterator it = pTransforms.begin(); it != pTransforms.end(); ++it) { const Transform& tf = *it; switch( tf.mType) { case TF_LOOKAT: // TODO: (thom) assert( false); break; case TF_ROTATE: { aiMatrix4x4 rot; float angle = tf.f[3] * float( AI_MATH_PI) / 180.0f; aiVector3D axis( tf.f[0], tf.f[1], tf.f[2]); aiMatrix4x4::Rotation( angle, axis, rot); res *= rot; break; } case TF_TRANSLATE: { aiMatrix4x4 trans; aiMatrix4x4::Translation( aiVector3D( tf.f[0], tf.f[1], tf.f[2]), trans); res *= trans; break; } case TF_SCALE: { aiMatrix4x4 scale( tf.f[0], 0.0f, 0.0f, 0.0f, 0.0f, tf.f[1], 0.0f, 0.0f, 0.0f, 0.0f, tf.f[2], 0.0f, 0.0f, 0.0f, 0.0f, 1.0f); res *= scale; break; } case TF_SKEW: // TODO: (thom) assert( false); break; case TF_MATRIX: { aiMatrix4x4 mat( tf.f[0], tf.f[1], tf.f[2], tf.f[3], tf.f[4], tf.f[5], tf.f[6], tf.f[7], tf.f[8], tf.f[9], tf.f[10], tf.f[11], tf.f[12], tf.f[13], tf.f[14], tf.f[15]); res *= mat; break; } default: assert( false); break; } } return res; } // ------------------------------------------------------------------------------------------------ // Determines the input data type for the given semantic string Collada::InputType ColladaParser::GetTypeForSemantic( const std::string& pSemantic) { if( pSemantic == "POSITION") return IT_Position; else if( pSemantic == "TEXCOORD") return IT_Texcoord; else if( pSemantic == "NORMAL") return IT_Normal; else if( pSemantic == "COLOR") return IT_Color; else if( pSemantic == "VERTEX") return IT_Vertex; DefaultLogger::get()->warn( boost::str( boost::format( "Unknown vertex input type \"%s\". Ignoring.") % pSemantic)); return IT_Invalid; }