/* --------------------------------------------------------------------------- Open Asset Import Library (assimp) --------------------------------------------------------------------------- Copyright (c) 2006-2024, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file Implementation of the Collada loader */ #ifndef ASSIMP_BUILD_NO_COLLADA_IMPORTER #include "ColladaLoader.h" #include "ColladaParser.h" #include #include #include #include #include #include #include #include #include #include #include #include namespace Assimp { using namespace Assimp::Formatter; using namespace Assimp::Collada; static constexpr aiImporterDesc desc = { "Collada Importer", "", "", "http://collada.org", aiImporterFlags_SupportTextFlavour | aiImporterFlags_SupportCompressedFlavour, 1, 3, 1, 5, "dae xml zae" }; static const float kMillisecondsFromSeconds = 1000.f; // Add an item of metadata to a node // Assumes the key is not already in the list template inline void AddNodeMetaData(aiNode *node, const std::string &key, const T &value) { if (nullptr == node->mMetaData) { node->mMetaData = new aiMetadata(); } node->mMetaData->Add(key, value); } // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer ColladaLoader::ColladaLoader() : noSkeletonMesh(false), removeEmptyBones(false), ignoreUpDirection(false), ignoreUnitSize(false), useColladaName(false), mNodeNameCounter(0) { // empty } // ------------------------------------------------------------------------------------------------ // Returns whether the class can handle the format of the given file. bool ColladaLoader::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool /*checkSig*/) const { // Look for a DAE file inside, but don't extract it ZipArchiveIOSystem zip_archive(pIOHandler, pFile); if (zip_archive.isOpen()) { return !ColladaParser::ReadZaeManifest(zip_archive).empty(); } static const char *tokens[] = { "GetPropertyInteger(AI_CONFIG_IMPORT_NO_SKELETON_MESHES, 0) != 0; removeEmptyBones = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_REMOVE_EMPTY_BONES, true) != 0; ignoreUpDirection = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_COLLADA_IGNORE_UP_DIRECTION, 0) != 0; ignoreUnitSize = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_COLLADA_IGNORE_UNIT_SIZE, 0) != 0; useColladaName = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_COLLADA_USE_COLLADA_NAMES, 0) != 0; } // ------------------------------------------------------------------------------------------------ // Get file extension list const aiImporterDesc *ColladaLoader::GetInfo() const { return &desc; } // ------------------------------------------------------------------------------------------------ // Imports the given file into the given scene structure. void ColladaLoader::InternReadFile(const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler) { mFileName = pFile; // clean all member arrays - just for safety, it should work even if we did not mMeshIndexByID.clear(); mMaterialIndexByName.clear(); mMeshes.clear(); mTargetMeshes.clear(); newMats.clear(); mLights.clear(); mCameras.clear(); mTextures.clear(); mAnims.clear(); // parse the input file ColladaParser parser(pIOHandler, pFile); if (!parser.mRootNode) { throw DeadlyImportError("Collada: File came out empty. Something is wrong here."); } // reserve some storage to avoid unnecessary reallocs newMats.reserve(parser.mMaterialLibrary.size() * 2u); mMeshes.reserve(parser.mMeshLibrary.size() * 2u); mCameras.reserve(parser.mCameraLibrary.size()); mLights.reserve(parser.mLightLibrary.size()); // create the materials first, for the meshes to find BuildMaterials(parser, pScene); // build the node hierarchy from it pScene->mRootNode = BuildHierarchy(parser, parser.mRootNode); // ... then fill the materials with the now adjusted settings FillMaterials(parser, pScene); if (!ignoreUnitSize) { // Apply unit-size scale calculation pScene->mRootNode->mTransformation *= aiMatrix4x4( parser.mUnitSize, 0, 0, 0, 0, parser.mUnitSize, 0, 0, 0, 0, parser.mUnitSize, 0, 0, 0, 0, 1); } if (!ignoreUpDirection) { // Convert to Y_UP, if different orientation if (parser.mUpDirection == ColladaParser::UP_X) { pScene->mRootNode->mTransformation *= aiMatrix4x4( 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); } else if (parser.mUpDirection == ColladaParser::UP_Z) { pScene->mRootNode->mTransformation *= aiMatrix4x4( 1, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1); } } // Store scene metadata if (!parser.mAssetMetaData.empty()) { const size_t numMeta(parser.mAssetMetaData.size()); pScene->mMetaData = aiMetadata::Alloc(static_cast(numMeta)); size_t i = 0; for (auto it = parser.mAssetMetaData.cbegin(); it != parser.mAssetMetaData.cend(); ++it, ++i) { pScene->mMetaData->Set(static_cast(i), (*it).first, (*it).second); } } StoreSceneMeshes(pScene); StoreSceneMaterials(pScene); StoreSceneTextures(pScene); StoreSceneLights(pScene); StoreSceneCameras(pScene); StoreAnimations(pScene, parser); // If no meshes have been loaded, it's probably just an animated skeleton. if (0u == pScene->mNumMeshes) { if (!noSkeletonMesh) { SkeletonMeshBuilder hero(pScene); } pScene->mFlags |= AI_SCENE_FLAGS_INCOMPLETE; } } // ------------------------------------------------------------------------------------------------ // Recursively constructs a scene node for the given parser node and returns it. aiNode *ColladaLoader::BuildHierarchy(const ColladaParser &pParser, const Collada::Node *pNode) { // create a node for it aiNode *node = new aiNode(); // find a name for the new node. It's more complicated than you might think node->mName.Set(FindNameForNode(pNode)); // if we're not using the unique IDs, hold onto them for reference and export if (useColladaName) { if (!pNode->mID.empty()) { AddNodeMetaData(node, AI_METADATA_COLLADA_ID, aiString(pNode->mID)); } if (!pNode->mSID.empty()) { AddNodeMetaData(node, AI_METADATA_COLLADA_SID, aiString(pNode->mSID)); } } // calculate the transformation matrix for it node->mTransformation = pParser.CalculateResultTransform(pNode->mTransforms); // now resolve node instances std::vector instances; ResolveNodeInstances(pParser, pNode, instances); // add children. first the *real* ones node->mNumChildren = static_cast(pNode->mChildren.size() + instances.size()); if (node->mNumChildren != 0) { node->mChildren = new aiNode * [node->mNumChildren]; } for (size_t a = 0; a < pNode->mChildren.size(); ++a) { node->mChildren[a] = BuildHierarchy(pParser, pNode->mChildren[a]); node->mChildren[a]->mParent = node; } // ... and finally the resolved node instances for (size_t a = 0; a < instances.size(); ++a) { node->mChildren[pNode->mChildren.size() + a] = BuildHierarchy(pParser, instances[a]); node->mChildren[pNode->mChildren.size() + a]->mParent = node; } BuildMeshesForNode(pParser, pNode, node); BuildCamerasForNode(pParser, pNode, node); BuildLightsForNode(pParser, pNode, node); return node; } // ------------------------------------------------------------------------------------------------ // Resolve node instances void ColladaLoader::ResolveNodeInstances(const ColladaParser &pParser, const Node *pNode, std::vector &resolved) { // reserve enough storage resolved.reserve(pNode->mNodeInstances.size()); // ... and iterate through all nodes to be instanced as children of pNode for (const auto &nodeInst : pNode->mNodeInstances) { // find the corresponding node in the library const ColladaParser::NodeLibrary::const_iterator itt = pParser.mNodeLibrary.find(nodeInst.mNode); const Node *nd = itt == pParser.mNodeLibrary.end() ? nullptr : (*itt).second; // FIX for http://sourceforge.net/tracker/?func=detail&aid=3054873&group_id=226462&atid=1067632 // need to check for both name and ID to catch all. To avoid breaking valid files, // the workaround is only enabled when the first attempt to resolve the node has failed. if (nullptr == nd) { nd = FindNode(pParser.mRootNode, nodeInst.mNode); } if (nullptr == nd) { ASSIMP_LOG_ERROR("Collada: Unable to resolve reference to instanced node ", nodeInst.mNode); } else { // attach this node to the list of children resolved.push_back(nd); } } } // ------------------------------------------------------------------------------------------------ // Resolve UV channels void ColladaLoader::ApplyVertexToEffectSemanticMapping(Sampler &sampler, const SemanticMappingTable &table) { SemanticMappingTable::InputSemanticMap::const_iterator it = table.mMap.find(sampler.mUVChannel); if (it == table.mMap.end()) { return; } if (it->second.mType != IT_Texcoord) { ASSIMP_LOG_ERROR("Collada: Unexpected effect input mapping"); } sampler.mUVId = it->second.mSet; } // ------------------------------------------------------------------------------------------------ // Builds lights for the given node and references them void ColladaLoader::BuildLightsForNode(const ColladaParser &pParser, const Node *pNode, aiNode *pTarget) { for (const LightInstance &lid : pNode->mLights) { // find the referred light ColladaParser::LightLibrary::const_iterator srcLightIt = pParser.mLightLibrary.find(lid.mLight); if (srcLightIt == pParser.mLightLibrary.end()) { ASSIMP_LOG_WARN("Collada: Unable to find light for ID \"", lid.mLight, "\". Skipping."); continue; } const Collada::Light *srcLight = &srcLightIt->second; // now fill our ai data structure aiLight *out = new aiLight(); out->mName = pTarget->mName; out->mType = (aiLightSourceType)srcLight->mType; // collada lights point in -Z by default, rest is specified in node transform out->mDirection = aiVector3D(0.f, 0.f, -1.f); out->mAttenuationConstant = srcLight->mAttConstant; out->mAttenuationLinear = srcLight->mAttLinear; out->mAttenuationQuadratic = srcLight->mAttQuadratic; out->mColorDiffuse = out->mColorSpecular = out->mColorAmbient = srcLight->mColor * srcLight->mIntensity; if (out->mType == aiLightSource_AMBIENT) { out->mColorDiffuse = out->mColorSpecular = aiColor3D(0, 0, 0); out->mColorAmbient = srcLight->mColor * srcLight->mIntensity; } else { // collada doesn't differentiate between these color types out->mColorDiffuse = out->mColorSpecular = srcLight->mColor * srcLight->mIntensity; out->mColorAmbient = aiColor3D(0, 0, 0); } // convert falloff angle and falloff exponent in our representation, if given if (out->mType == aiLightSource_SPOT) { out->mAngleInnerCone = AI_DEG_TO_RAD(srcLight->mFalloffAngle); // ... some extension magic. if (srcLight->mOuterAngle >= ASSIMP_COLLADA_LIGHT_ANGLE_NOT_SET * (1 - ai_epsilon)) { // ... some deprecation magic. if (srcLight->mPenumbraAngle >= ASSIMP_COLLADA_LIGHT_ANGLE_NOT_SET * (1 - ai_epsilon)) { // Need to rely on falloff_exponent. I don't know how to interpret it, so I need to guess .... // epsilon chosen to be 0.1 float f = 1.0f; if ( 0.0f != srcLight->mFalloffExponent ) { f = 1.f / srcLight->mFalloffExponent; } out->mAngleOuterCone = std::acos(std::pow(0.1f, f)) + out->mAngleInnerCone; } else { out->mAngleOuterCone = out->mAngleInnerCone + AI_DEG_TO_RAD(srcLight->mPenumbraAngle); if (out->mAngleOuterCone < out->mAngleInnerCone) std::swap(out->mAngleInnerCone, out->mAngleOuterCone); } } else { out->mAngleOuterCone = AI_DEG_TO_RAD(srcLight->mOuterAngle); } } // add to light list mLights.push_back(out); } } // ------------------------------------------------------------------------------------------------ // Builds cameras for the given node and references them void ColladaLoader::BuildCamerasForNode(const ColladaParser &pParser, const Node *pNode, aiNode *pTarget) { for (const CameraInstance &cid : pNode->mCameras) { // find the referred light ColladaParser::CameraLibrary::const_iterator srcCameraIt = pParser.mCameraLibrary.find(cid.mCamera); if (srcCameraIt == pParser.mCameraLibrary.end()) { ASSIMP_LOG_WARN("Collada: Unable to find camera for ID \"", cid.mCamera, "\". Skipping."); continue; } const Collada::Camera *srcCamera = &srcCameraIt->second; // orthographic cameras not yet supported in Assimp if (srcCamera->mOrtho) { ASSIMP_LOG_WARN("Collada: Orthographic cameras are not supported."); } // now fill our ai data structure aiCamera *out = new aiCamera(); out->mName = pTarget->mName; // collada cameras point in -Z by default, rest is specified in node transform out->mLookAt = aiVector3D(0.f, 0.f, -1.f); // near/far z is already ok out->mClipPlaneFar = srcCamera->mZFar; out->mClipPlaneNear = srcCamera->mZNear; // ... but for the rest some values are optional // and we need to compute the others in any combination. if (srcCamera->mAspect != 10e10f) { out->mAspect = srcCamera->mAspect; } if (srcCamera->mHorFov != 10e10f) { out->mHorizontalFOV = srcCamera->mHorFov; if (srcCamera->mVerFov != 10e10f && srcCamera->mAspect == 10e10f) { out->mAspect = std::tan(AI_DEG_TO_RAD(srcCamera->mHorFov)) / std::tan(AI_DEG_TO_RAD(srcCamera->mVerFov)); } } else if (srcCamera->mAspect != 10e10f && srcCamera->mVerFov != 10e10f) { out->mHorizontalFOV = 2.0f * AI_RAD_TO_DEG(std::atan(srcCamera->mAspect * std::tan(AI_DEG_TO_RAD(srcCamera->mVerFov) * 0.5f))); } // Collada uses degrees, we use radians out->mHorizontalFOV = AI_DEG_TO_RAD(out->mHorizontalFOV); // add to camera list mCameras.push_back(out); } } // ------------------------------------------------------------------------------------------------ // Builds meshes for the given node and references them void ColladaLoader::BuildMeshesForNode(const ColladaParser &pParser, const Node *pNode, aiNode *pTarget) { // accumulated mesh references by this node std::vector newMeshRefs; newMeshRefs.reserve(pNode->mMeshes.size()); // add a mesh for each subgroup in each collada mesh for (const MeshInstance &mid : pNode->mMeshes) { const Mesh *srcMesh = nullptr; const Controller *srcController = nullptr; // find the referred mesh ColladaParser::MeshLibrary::const_iterator srcMeshIt = pParser.mMeshLibrary.find(mid.mMeshOrController); if (srcMeshIt == pParser.mMeshLibrary.end()) { // if not found in the mesh-library, it might also be a controller referring to a mesh ColladaParser::ControllerLibrary::const_iterator srcContrIt = pParser.mControllerLibrary.find(mid.mMeshOrController); if (srcContrIt != pParser.mControllerLibrary.end()) { srcController = &srcContrIt->second; srcMeshIt = pParser.mMeshLibrary.find(srcController->mMeshId); if (srcMeshIt != pParser.mMeshLibrary.end()) { srcMesh = srcMeshIt->second; } } if (nullptr == srcMesh) { ASSIMP_LOG_WARN("Collada: Unable to find geometry for ID \"", mid.mMeshOrController, "\". Skipping."); continue; } } else { // ID found in the mesh library -> direct reference to an unskinned mesh srcMesh = srcMeshIt->second; } // build a mesh for each of its subgroups size_t vertexStart = 0, faceStart = 0; for (size_t sm = 0; sm < srcMesh->mSubMeshes.size(); ++sm) { const Collada::SubMesh &submesh = srcMesh->mSubMeshes[sm]; if (submesh.mNumFaces == 0) { continue; } // find material assigned to this submesh std::string meshMaterial; std::map::const_iterator meshMatIt = mid.mMaterials.find(submesh.mMaterial); const Collada::SemanticMappingTable *table = nullptr; if (meshMatIt != mid.mMaterials.end()) { table = &meshMatIt->second; meshMaterial = table->mMatName; } else { ASSIMP_LOG_WARN("Collada: No material specified for subgroup <", submesh.mMaterial, "> in geometry <", mid.mMeshOrController, ">."); if (!mid.mMaterials.empty()) { meshMaterial = mid.mMaterials.begin()->second.mMatName; } } // OK ... here the *real* fun starts ... we have the vertex-input-to-effect-semantic-table // given. The only mapping stuff which we do actually support is the UV channel. std::map::const_iterator matIt = mMaterialIndexByName.find(meshMaterial); unsigned int matIdx = 0; if (matIt != mMaterialIndexByName.end()) { matIdx = static_cast(matIt->second); } if (table && !table->mMap.empty()) { std::pair &mat = newMats[matIdx]; // Iterate through all texture channels assigned to the effect and // check whether we have mapping information for it. ApplyVertexToEffectSemanticMapping(mat.first->mTexDiffuse, *table); ApplyVertexToEffectSemanticMapping(mat.first->mTexAmbient, *table); ApplyVertexToEffectSemanticMapping(mat.first->mTexSpecular, *table); ApplyVertexToEffectSemanticMapping(mat.first->mTexEmissive, *table); ApplyVertexToEffectSemanticMapping(mat.first->mTexTransparent, *table); ApplyVertexToEffectSemanticMapping(mat.first->mTexBump, *table); } // built lookup index of the Mesh-Submesh-Material combination ColladaMeshIndex index(mid.mMeshOrController, sm, meshMaterial); // if we already have the mesh at the library, just add its index to the node's array std::map::const_iterator dstMeshIt = mMeshIndexByID.find(index); if (dstMeshIt != mMeshIndexByID.end()) { newMeshRefs.push_back(dstMeshIt->second); } else { // else we have to add the mesh to the collection and store its newly assigned index at the node aiMesh *dstMesh = CreateMesh(pParser, srcMesh, submesh, srcController, vertexStart, faceStart); // store the mesh, and store its new index in the node newMeshRefs.push_back(mMeshes.size()); mMeshIndexByID[index] = mMeshes.size(); mMeshes.push_back(dstMesh); vertexStart += dstMesh->mNumVertices; faceStart += submesh.mNumFaces; // assign the material index std::map::const_iterator subMatIt = mMaterialIndexByName.find(submesh.mMaterial); if (subMatIt != mMaterialIndexByName.end()) { dstMesh->mMaterialIndex = static_cast(subMatIt->second); } else { dstMesh->mMaterialIndex = matIdx; } if (dstMesh->mName.length == 0) { dstMesh->mName = mid.mMeshOrController; } } } } // now place all mesh references we gathered in the target node pTarget->mNumMeshes = static_cast(newMeshRefs.size()); if (!newMeshRefs.empty()) { struct UIntTypeConverter { unsigned int operator()(const size_t &v) const { return static_cast(v); } }; pTarget->mMeshes = new unsigned int[pTarget->mNumMeshes]; std::transform(newMeshRefs.begin(), newMeshRefs.end(), pTarget->mMeshes, UIntTypeConverter()); } } // ------------------------------------------------------------------------------------------------ // Find mesh from either meshes or morph target meshes aiMesh *ColladaLoader::findMesh(const std::string &meshid) { if (meshid.empty()) { return nullptr; } for (auto & mMeshe : mMeshes) { if (std::string(mMeshe->mName.data) == meshid) { return mMeshe; } } for (auto & mTargetMeshe : mTargetMeshes) { if (std::string(mTargetMeshe->mName.data) == meshid) { return mTargetMeshe; } } return nullptr; } // ------------------------------------------------------------------------------------------------ // Creates a mesh for the given ColladaMesh face subset and returns the newly created mesh aiMesh *ColladaLoader::CreateMesh(const ColladaParser &pParser, const Mesh *pSrcMesh, const SubMesh &pSubMesh, const Controller *pSrcController, size_t pStartVertex, size_t pStartFace) { std::unique_ptr dstMesh(new aiMesh); if (useColladaName) { dstMesh->mName = pSrcMesh->mName; } else { dstMesh->mName = pSrcMesh->mId; } if (pSrcMesh->mPositions.empty()) { return dstMesh.release(); } // count the vertices addressed by its faces const size_t numVertices = std::accumulate(pSrcMesh->mFaceSize.begin() + pStartFace, pSrcMesh->mFaceSize.begin() + pStartFace + pSubMesh.mNumFaces, size_t(0)); // copy positions dstMesh->mNumVertices = static_cast(numVertices); dstMesh->mVertices = new aiVector3D[numVertices]; std::copy(pSrcMesh->mPositions.begin() + pStartVertex, pSrcMesh->mPositions.begin() + pStartVertex + numVertices, dstMesh->mVertices); // normals, if given. HACK: (thom) Due to the glorious Collada spec we never // know if we have the same number of normals as there are positions. So we // also ignore any vertex attribute if it has a different count if (pSrcMesh->mNormals.size() >= pStartVertex + numVertices) { dstMesh->mNormals = new aiVector3D[numVertices]; std::copy(pSrcMesh->mNormals.begin() + pStartVertex, pSrcMesh->mNormals.begin() + pStartVertex + numVertices, dstMesh->mNormals); } // tangents, if given. if (pSrcMesh->mTangents.size() >= pStartVertex + numVertices) { dstMesh->mTangents = new aiVector3D[numVertices]; std::copy(pSrcMesh->mTangents.begin() + pStartVertex, pSrcMesh->mTangents.begin() + pStartVertex + numVertices, dstMesh->mTangents); } // bitangents, if given. if (pSrcMesh->mBitangents.size() >= pStartVertex + numVertices) { dstMesh->mBitangents = new aiVector3D[numVertices]; std::copy(pSrcMesh->mBitangents.begin() + pStartVertex, pSrcMesh->mBitangents.begin() + pStartVertex + numVertices, dstMesh->mBitangents); } // same for texture coords, as many as we have // empty slots are not allowed, need to pack and adjust UV indexes accordingly for (size_t a = 0, real = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) { if (pSrcMesh->mTexCoords[a].size() >= pStartVertex + numVertices) { dstMesh->mTextureCoords[real] = new aiVector3D[numVertices]; for (size_t b = 0; b < numVertices; ++b) { dstMesh->mTextureCoords[real][b] = pSrcMesh->mTexCoords[a][pStartVertex + b]; } dstMesh->mNumUVComponents[real] = pSrcMesh->mNumUVComponents[a]; ++real; } } // same for vertex colors, as many as we have. again the same packing to avoid empty slots for (size_t a = 0, real = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a) { if (pSrcMesh->mColors[a].size() >= pStartVertex + numVertices) { dstMesh->mColors[real] = new aiColor4D[numVertices]; std::copy(pSrcMesh->mColors[a].begin() + pStartVertex, pSrcMesh->mColors[a].begin() + pStartVertex + numVertices, dstMesh->mColors[real]); ++real; } } // create faces. Due to the fact that each face uses unique vertices, we can simply count up on each vertex size_t vertex = 0; dstMesh->mNumFaces = static_cast(pSubMesh.mNumFaces); dstMesh->mFaces = new aiFace[dstMesh->mNumFaces]; for (size_t a = 0; a < dstMesh->mNumFaces; ++a) { size_t s = pSrcMesh->mFaceSize[pStartFace + a]; aiFace &face = dstMesh->mFaces[a]; face.mNumIndices = static_cast(s); face.mIndices = new unsigned int[s]; for (size_t b = 0; b < s; ++b) { face.mIndices[b] = static_cast(vertex++); } } // create morph target meshes if any std::vector targetMeshes; std::vector targetWeights; Collada::MorphMethod method = Normalized; for (std::map::const_iterator it = pParser.mControllerLibrary.begin(); it != pParser.mControllerLibrary.end(); ++it) { const Controller &c = it->second; const Collada::Mesh *baseMesh = pParser.ResolveLibraryReference(pParser.mMeshLibrary, c.mMeshId); if (c.mType == Collada::Morph && baseMesh->mName == pSrcMesh->mName) { const Collada::Accessor &targetAccessor = pParser.ResolveLibraryReference(pParser.mAccessorLibrary, c.mMorphTarget); const Collada::Accessor &weightAccessor = pParser.ResolveLibraryReference(pParser.mAccessorLibrary, c.mMorphWeight); const Collada::Data &targetData = pParser.ResolveLibraryReference(pParser.mDataLibrary, targetAccessor.mSource); const Collada::Data &weightData = pParser.ResolveLibraryReference(pParser.mDataLibrary, weightAccessor.mSource); // take method method = c.mMethod; if (!targetData.mIsStringArray) { throw DeadlyImportError("target data must contain id. "); } if (weightData.mIsStringArray) { throw DeadlyImportError("target weight data must not be textual "); } for (const auto & mString : targetData.mStrings) { const Mesh *targetMesh = pParser.ResolveLibraryReference(pParser.mMeshLibrary, mString); aiMesh *aimesh = findMesh(useColladaName ? targetMesh->mName : targetMesh->mId); if (!aimesh) { if (targetMesh->mSubMeshes.size() > 1) { throw DeadlyImportError("Morphing target mesh must be a single"); } aimesh = CreateMesh(pParser, targetMesh, targetMesh->mSubMeshes.at(0), nullptr, 0, 0); mTargetMeshes.push_back(aimesh); } targetMeshes.push_back(aimesh); } for (float mValue : weightData.mValues) { targetWeights.push_back(mValue); } } } if (!targetMeshes.empty() && targetWeights.size() == targetMeshes.size()) { std::vector animMeshes; for (unsigned int i = 0; i < targetMeshes.size(); ++i) { aiMesh *targetMesh = targetMeshes.at(i); aiAnimMesh *animMesh = aiCreateAnimMesh(targetMesh); float weight = targetWeights[i]; animMesh->mWeight = weight == 0 ? 1.0f : weight; animMesh->mName = targetMesh->mName; animMeshes.push_back(animMesh); } dstMesh->mMethod = (method == Relative) ? aiMorphingMethod_MORPH_RELATIVE : aiMorphingMethod_MORPH_NORMALIZED; dstMesh->mAnimMeshes = new aiAnimMesh *[animMeshes.size()]; dstMesh->mNumAnimMeshes = static_cast(animMeshes.size()); for (unsigned int i = 0; i < animMeshes.size(); ++i) { dstMesh->mAnimMeshes[i] = animMeshes.at(i); } } // create bones if given if (pSrcController && pSrcController->mType == Collada::Skin) { // resolve references - joint names const Collada::Accessor &jointNamesAcc = pParser.ResolveLibraryReference(pParser.mAccessorLibrary, pSrcController->mJointNameSource); const Collada::Data &jointNames = pParser.ResolveLibraryReference(pParser.mDataLibrary, jointNamesAcc.mSource); // joint offset matrices const Collada::Accessor &jointMatrixAcc = pParser.ResolveLibraryReference(pParser.mAccessorLibrary, pSrcController->mJointOffsetMatrixSource); const Collada::Data &jointMatrices = pParser.ResolveLibraryReference(pParser.mDataLibrary, jointMatrixAcc.mSource); // joint vertex_weight name list - should refer to the same list as the joint names above. If not, report and reconsider const Collada::Accessor &weightNamesAcc = pParser.ResolveLibraryReference(pParser.mAccessorLibrary, pSrcController->mWeightInputJoints.mAccessor); if (&weightNamesAcc != &jointNamesAcc) throw DeadlyImportError("Temporary implementational laziness. If you read this, please report to the author."); // vertex weights const Collada::Accessor &weightsAcc = pParser.ResolveLibraryReference(pParser.mAccessorLibrary, pSrcController->mWeightInputWeights.mAccessor); const Collada::Data &weights = pParser.ResolveLibraryReference(pParser.mDataLibrary, weightsAcc.mSource); if (!jointNames.mIsStringArray || jointMatrices.mIsStringArray || weights.mIsStringArray) { throw DeadlyImportError("Data type mismatch while resolving mesh joints"); } // sanity check: we rely on the vertex weights always coming as pairs of BoneIndex-WeightIndex if (pSrcController->mWeightInputJoints.mOffset != 0 || pSrcController->mWeightInputWeights.mOffset != 1) { throw DeadlyImportError("Unsupported vertex_weight addressing scheme. "); } // create containers to collect the weights for each bone size_t numBones = jointNames.mStrings.size(); std::vector> dstBones(numBones); // build a temporary array of pointers to the start of each vertex's weights using IndexPairVector = std::vector>; std::vector weightStartPerVertex; weightStartPerVertex.resize(pSrcController->mWeightCounts.size(), pSrcController->mWeights.end()); IndexPairVector::const_iterator pit = pSrcController->mWeights.begin(); for (size_t a = 0; a < pSrcController->mWeightCounts.size(); ++a) { weightStartPerVertex[a] = pit; pit += pSrcController->mWeightCounts[a]; } // now for each vertex put the corresponding vertex weights into each bone's weight collection for (size_t a = pStartVertex; a < pStartVertex + numVertices; ++a) { // which position index was responsible for this vertex? that's also the index by which // the controller assigns the vertex weights size_t orgIndex = pSrcMesh->mFacePosIndices[a]; // find the vertex weights for this vertex IndexPairVector::const_iterator iit = weightStartPerVertex[orgIndex]; size_t pairCount = pSrcController->mWeightCounts[orgIndex]; for (size_t b = 0; b < pairCount; ++b, ++iit) { const size_t jointIndex = iit->first; const size_t vertexIndex = iit->second; ai_real weight = 1.0f; if (!weights.mValues.empty()) { weight = ReadFloat(weightsAcc, weights, vertexIndex, 0); } // one day I gonna kill that XSI Collada exporter if (weight > 0.0f) { aiVertexWeight w; w.mVertexId = static_cast(a - pStartVertex); w.mWeight = weight; dstBones[jointIndex].push_back(w); } } } // count the number of bones which influence vertices of the current submesh size_t numRemainingBones = 0; for (const auto & dstBone : dstBones) { if (dstBone.empty() && removeEmptyBones) { continue; } ++numRemainingBones; } // create bone array and copy bone weights one by one dstMesh->mNumBones = static_cast(numRemainingBones); dstMesh->mBones = new aiBone *[numRemainingBones]; size_t boneCount = 0; for (size_t a = 0; a < numBones; ++a) { // omit bones without weights if (dstBones[a].empty() && removeEmptyBones) { continue; } // create bone with its weights aiBone *bone = new aiBone; bone->mName = ReadString(jointNamesAcc, jointNames, a); bone->mOffsetMatrix.a1 = ReadFloat(jointMatrixAcc, jointMatrices, a, 0); bone->mOffsetMatrix.a2 = ReadFloat(jointMatrixAcc, jointMatrices, a, 1); bone->mOffsetMatrix.a3 = ReadFloat(jointMatrixAcc, jointMatrices, a, 2); bone->mOffsetMatrix.a4 = ReadFloat(jointMatrixAcc, jointMatrices, a, 3); bone->mOffsetMatrix.b1 = ReadFloat(jointMatrixAcc, jointMatrices, a, 4); bone->mOffsetMatrix.b2 = ReadFloat(jointMatrixAcc, jointMatrices, a, 5); bone->mOffsetMatrix.b3 = ReadFloat(jointMatrixAcc, jointMatrices, a, 6); bone->mOffsetMatrix.b4 = ReadFloat(jointMatrixAcc, jointMatrices, a, 7); bone->mOffsetMatrix.c1 = ReadFloat(jointMatrixAcc, jointMatrices, a, 8); bone->mOffsetMatrix.c2 = ReadFloat(jointMatrixAcc, jointMatrices, a, 9); bone->mOffsetMatrix.c3 = ReadFloat(jointMatrixAcc, jointMatrices, a, 10); bone->mOffsetMatrix.c4 = ReadFloat(jointMatrixAcc, jointMatrices, a, 11); bone->mNumWeights = static_cast(dstBones[a].size()); bone->mWeights = new aiVertexWeight[bone->mNumWeights]; std::copy(dstBones[a].begin(), dstBones[a].end(), bone->mWeights); // apply bind shape matrix to offset matrix aiMatrix4x4 bindShapeMatrix; bindShapeMatrix.a1 = pSrcController->mBindShapeMatrix[0]; bindShapeMatrix.a2 = pSrcController->mBindShapeMatrix[1]; bindShapeMatrix.a3 = pSrcController->mBindShapeMatrix[2]; bindShapeMatrix.a4 = pSrcController->mBindShapeMatrix[3]; bindShapeMatrix.b1 = pSrcController->mBindShapeMatrix[4]; bindShapeMatrix.b2 = pSrcController->mBindShapeMatrix[5]; bindShapeMatrix.b3 = pSrcController->mBindShapeMatrix[6]; bindShapeMatrix.b4 = pSrcController->mBindShapeMatrix[7]; bindShapeMatrix.c1 = pSrcController->mBindShapeMatrix[8]; bindShapeMatrix.c2 = pSrcController->mBindShapeMatrix[9]; bindShapeMatrix.c3 = pSrcController->mBindShapeMatrix[10]; bindShapeMatrix.c4 = pSrcController->mBindShapeMatrix[11]; bindShapeMatrix.d1 = pSrcController->mBindShapeMatrix[12]; bindShapeMatrix.d2 = pSrcController->mBindShapeMatrix[13]; bindShapeMatrix.d3 = pSrcController->mBindShapeMatrix[14]; bindShapeMatrix.d4 = pSrcController->mBindShapeMatrix[15]; bone->mOffsetMatrix *= bindShapeMatrix; // HACK: (thom) Some exporters address the bone nodes by SID, others address them by ID or even name. // Therefore I added a little name replacement here: I search for the bone's node by either name, ID or SID, // and replace the bone's name by the node's name so that the user can use the standard // find-by-name method to associate nodes with bones. const Collada::Node *bnode = FindNode(pParser.mRootNode, bone->mName.data); if (nullptr == bnode) { bnode = FindNodeBySID(pParser.mRootNode, bone->mName.data); } // assign the name that we would have assigned for the source node if (nullptr != bnode) { bone->mName.Set(FindNameForNode(bnode)); } else { ASSIMP_LOG_WARN("ColladaLoader::CreateMesh(): could not find corresponding node for joint \"", bone->mName.data, "\"."); } // and insert bone dstMesh->mBones[boneCount++] = bone; } } return dstMesh.release(); } // ------------------------------------------------------------------------------------------------ // Stores all meshes in the given scene void ColladaLoader::StoreSceneMeshes(aiScene *pScene) { pScene->mNumMeshes = static_cast(mMeshes.size()); if (mMeshes.empty()) { return; } pScene->mMeshes = new aiMesh *[mMeshes.size()]; std::copy(mMeshes.begin(), mMeshes.end(), pScene->mMeshes); mMeshes.clear(); } // ------------------------------------------------------------------------------------------------ // Stores all cameras in the given scene void ColladaLoader::StoreSceneCameras(aiScene *pScene) { pScene->mNumCameras = static_cast(mCameras.size()); if (mCameras.empty()) { return; } pScene->mCameras = new aiCamera *[mCameras.size()]; std::copy(mCameras.begin(), mCameras.end(), pScene->mCameras); mCameras.clear(); } // ------------------------------------------------------------------------------------------------ // Stores all lights in the given scene void ColladaLoader::StoreSceneLights(aiScene *pScene) { pScene->mNumLights = static_cast(mLights.size()); if (mLights.empty()) { return; } pScene->mLights = new aiLight *[mLights.size()]; std::copy(mLights.begin(), mLights.end(), pScene->mLights); mLights.clear(); } // ------------------------------------------------------------------------------------------------ // Stores all textures in the given scene void ColladaLoader::StoreSceneTextures(aiScene *pScene) { pScene->mNumTextures = static_cast(mTextures.size()); if (mTextures.empty()) { return; } pScene->mTextures = new aiTexture *[mTextures.size()]; std::copy(mTextures.begin(), mTextures.end(), pScene->mTextures); mTextures.clear(); } // ------------------------------------------------------------------------------------------------ // Stores all materials in the given scene void ColladaLoader::StoreSceneMaterials(aiScene *pScene) { pScene->mNumMaterials = static_cast(newMats.size()); if (newMats.empty()) { return; } pScene->mMaterials = new aiMaterial *[newMats.size()]; for (unsigned int i = 0; i < newMats.size(); ++i) { pScene->mMaterials[i] = newMats[i].second; } newMats.clear(); } // ------------------------------------------------------------------------------------------------ // Stores all animations void ColladaLoader::StoreAnimations(aiScene *pScene, const ColladaParser &pParser) { // recursively collect all animations from the collada scene StoreAnimations(pScene, pParser, &pParser.mAnims, ""); // catch special case: many animations with the same length, each affecting only a single node. // we need to unite all those single-node-anims to a proper combined animation for (size_t a = 0; a < mAnims.size(); ++a) { aiAnimation *templateAnim = mAnims[a]; if (templateAnim->mNumChannels == 1) { // search for other single-channel-anims with the same duration std::vector collectedAnimIndices; for (size_t b = a + 1; b < mAnims.size(); ++b) { aiAnimation *other = mAnims[b]; if (other->mNumChannels == 1 && other->mDuration == templateAnim->mDuration && other->mTicksPerSecond == templateAnim->mTicksPerSecond) collectedAnimIndices.push_back(b); } // We only want to combine the animations if they have different channels std::set animTargets; animTargets.insert(templateAnim->mChannels[0]->mNodeName.C_Str()); bool collectedAnimationsHaveDifferentChannels = true; for (unsigned long long collectedAnimIndice : collectedAnimIndices) { aiAnimation *srcAnimation = mAnims[(int)collectedAnimIndice]; std::string channelName = std::string(srcAnimation->mChannels[0]->mNodeName.C_Str()); if (animTargets.find(channelName) == animTargets.end()) { animTargets.insert(channelName); } else { collectedAnimationsHaveDifferentChannels = false; break; } } if (!collectedAnimationsHaveDifferentChannels) { continue; } // if there are other animations which fit the template anim, combine all channels into a single anim if (!collectedAnimIndices.empty()) { aiAnimation *combinedAnim = new aiAnimation(); combinedAnim->mName = aiString(std::string("combinedAnim_") + char('0' + a)); combinedAnim->mDuration = templateAnim->mDuration; combinedAnim->mTicksPerSecond = templateAnim->mTicksPerSecond; combinedAnim->mNumChannels = static_cast(collectedAnimIndices.size() + 1); combinedAnim->mChannels = new aiNodeAnim *[combinedAnim->mNumChannels]; // add the template anim as first channel by moving its aiNodeAnim to the combined animation combinedAnim->mChannels[0] = templateAnim->mChannels[0]; templateAnim->mChannels[0] = nullptr; delete templateAnim; // combined animation replaces template animation in the anim array mAnims[a] = combinedAnim; // move the memory of all other anims to the combined anim and erase them from the source anims for (size_t b = 0; b < collectedAnimIndices.size(); ++b) { aiAnimation *srcAnimation = mAnims[collectedAnimIndices[b]]; combinedAnim->mChannels[1 + b] = srcAnimation->mChannels[0]; srcAnimation->mChannels[0] = nullptr; delete srcAnimation; } // in a second go, delete all the single-channel-anims that we've stripped from their channels // back to front to preserve indices - you know, removing an element from a vector moves all elements behind the removed one while (!collectedAnimIndices.empty()) { mAnims.erase(mAnims.begin() + collectedAnimIndices.back()); collectedAnimIndices.pop_back(); } } } } // now store all anims in the scene if (!mAnims.empty()) { pScene->mNumAnimations = static_cast(mAnims.size()); pScene->mAnimations = new aiAnimation *[mAnims.size()]; std::copy(mAnims.begin(), mAnims.end(), pScene->mAnimations); } mAnims.clear(); } // ------------------------------------------------------------------------------------------------ // Constructs the animations for the given source anim void ColladaLoader::StoreAnimations(aiScene *pScene, const ColladaParser &pParser, const Animation *pSrcAnim, const std::string &pPrefix) { std::string animName = pPrefix.empty() ? pSrcAnim->mName : pPrefix + "_" + pSrcAnim->mName; // create nested animations, if given for (auto mSubAnim : pSrcAnim->mSubAnims) { StoreAnimations(pScene, pParser, mSubAnim, animName); } // create animation channels, if any if (!pSrcAnim->mChannels.empty()) { CreateAnimation(pScene, pParser, pSrcAnim, animName); } } struct MorphTimeValues { float mTime; struct key { float mWeight; unsigned int mValue; }; std::vector mKeys; }; void insertMorphTimeValue(std::vector &values, float time, float weight, unsigned int value) { MorphTimeValues::key k; k.mValue = value; k.mWeight = weight; if (values.empty() || time < values[0].mTime) { MorphTimeValues val; val.mTime = time; val.mKeys.push_back(k); values.insert(values.begin(), val); return; } if (time > values.back().mTime) { MorphTimeValues val; val.mTime = time; val.mKeys.push_back(k); values.insert(values.end(), val); return; } for (unsigned int i = 0; i < values.size(); i++) { if (std::abs(time - values[i].mTime) < ai_epsilon) { values[i].mKeys.push_back(k); return; } else if (time > values[i].mTime && time < values[i + 1].mTime) { MorphTimeValues val; val.mTime = time; val.mKeys.push_back(k); values.insert(values.begin() + i, val); return; } } } static float getWeightAtKey(const std::vector &values, int key, unsigned int value) { for (auto mKey : values[key].mKeys) { if (mKey.mValue == value) { return mKey.mWeight; } } // no value at key found, try to interpolate if present at other keys. if not, return zero // TODO: interpolation return 0.0f; } // ------------------------------------------------------------------------------------------------ // Constructs the animation for the given source anim void ColladaLoader::CreateAnimation(aiScene *pScene, const ColladaParser &pParser, const Animation *pSrcAnim, const std::string &pName) { // collect a list of animatable nodes std::vector nodes; CollectNodes(pScene->mRootNode, nodes); std::vector anims; std::vector morphAnims; for (auto node : nodes) { // find all the collada anim channels which refer to the current node std::vector entries; std::string nodeName = node->mName.data; // find the collada node corresponding to the aiNode const Node *srcNode = FindNode(pParser.mRootNode, nodeName); if (!srcNode) { continue; } // now check all channels if they affect the current node std::string targetID, subElement; for (std::vector::const_iterator cit = pSrcAnim->mChannels.begin(); cit != pSrcAnim->mChannels.end(); ++cit) { const AnimationChannel &srcChannel = *cit; ChannelEntry entry; // we expect the animation target to be of type "nodeName/transformID.subElement". Ignore all others // find the slash that separates the node name - there should be only one std::string::size_type slashPos = srcChannel.mTarget.find('/'); if (slashPos == std::string::npos) { std::string::size_type targetPos = srcChannel.mTarget.find(srcNode->mID); if (targetPos == std::string::npos) { continue; } // not node transform, but something else. store as unknown animation channel for now entry.mChannel = &(*cit); entry.mTargetId = srcChannel.mTarget.substr(targetPos + pSrcAnim->mName.length(), srcChannel.mTarget.length() - targetPos - pSrcAnim->mName.length()); if (entry.mTargetId.front() == '-') { entry.mTargetId = entry.mTargetId.substr(1); } entries.push_back(entry); continue; } if (srcChannel.mTarget.find('/', slashPos + 1) != std::string::npos) { continue; } targetID.clear(); targetID = srcChannel.mTarget.substr(0, slashPos); if (targetID != srcNode->mID) { continue; } // find the dot that separates the transformID - there should be only one or zero std::string::size_type dotPos = srcChannel.mTarget.find('.'); if (dotPos != std::string::npos) { if (srcChannel.mTarget.find('.', dotPos + 1) != std::string::npos) { continue; } entry.mTransformId = srcChannel.mTarget.substr(slashPos + 1, dotPos - slashPos - 1); subElement.clear(); subElement = srcChannel.mTarget.substr(dotPos + 1); if (subElement == "ANGLE") entry.mSubElement = 3; // last number in an Axis-Angle-Transform is the angle else if (subElement == "X") entry.mSubElement = 0; else if (subElement == "Y") entry.mSubElement = 1; else if (subElement == "Z") entry.mSubElement = 2; else ASSIMP_LOG_WARN("Unknown anim subelement <", subElement, ">. Ignoring"); } else { // no sub-element following, transformId is remaining string entry.mTransformId = srcChannel.mTarget.substr(slashPos + 1); } std::string::size_type bracketPos = srcChannel.mTarget.find('('); if (bracketPos != std::string::npos) { entry.mTransformId = srcChannel.mTarget.substr(slashPos + 1, bracketPos - slashPos - 1); subElement.clear(); subElement = srcChannel.mTarget.substr(bracketPos); if (subElement == "(0)(0)") entry.mSubElement = 0; else if (subElement == "(1)(0)") entry.mSubElement = 1; else if (subElement == "(2)(0)") entry.mSubElement = 2; else if (subElement == "(3)(0)") entry.mSubElement = 3; else if (subElement == "(0)(1)") entry.mSubElement = 4; else if (subElement == "(1)(1)") entry.mSubElement = 5; else if (subElement == "(2)(1)") entry.mSubElement = 6; else if (subElement == "(3)(1)") entry.mSubElement = 7; else if (subElement == "(0)(2)") entry.mSubElement = 8; else if (subElement == "(1)(2)") entry.mSubElement = 9; else if (subElement == "(2)(2)") entry.mSubElement = 10; else if (subElement == "(3)(2)") entry.mSubElement = 11; else if (subElement == "(0)(3)") entry.mSubElement = 12; else if (subElement == "(1)(3)") entry.mSubElement = 13; else if (subElement == "(2)(3)") entry.mSubElement = 14; else if (subElement == "(3)(3)") entry.mSubElement = 15; } // determine which transform step is affected by this channel entry.mTransformIndex = SIZE_MAX; for (size_t a = 0; a < srcNode->mTransforms.size(); ++a) if (srcNode->mTransforms[a].mID == entry.mTransformId) entry.mTransformIndex = a; if (entry.mTransformIndex == SIZE_MAX) { if (entry.mTransformId.find("morph-weights") == std::string::npos) { continue; } entry.mTargetId = entry.mTransformId; entry.mTransformId = std::string(); } entry.mChannel = &(*cit); entries.push_back(entry); } // if there's no channel affecting the current node, we skip it if (entries.empty()) { continue; } // resolve the data pointers for all anim channels. Find the minimum time while we're at it ai_real startTime = ai_real(1e20), endTime = ai_real(-1e20); for (ChannelEntry & e : entries) { e.mTimeAccessor = &pParser.ResolveLibraryReference(pParser.mAccessorLibrary, e.mChannel->mSourceTimes); e.mTimeData = &pParser.ResolveLibraryReference(pParser.mDataLibrary, e.mTimeAccessor->mSource); e.mValueAccessor = &pParser.ResolveLibraryReference(pParser.mAccessorLibrary, e.mChannel->mSourceValues); e.mValueData = &pParser.ResolveLibraryReference(pParser.mDataLibrary, e.mValueAccessor->mSource); // time count and value count must match if (e.mTimeAccessor->mCount != e.mValueAccessor->mCount) { throw DeadlyImportError("Time count / value count mismatch in animation channel \"", e.mChannel->mTarget, "\"."); } if (e.mTimeAccessor->mCount > 0) { // find bounding times startTime = std::min(startTime, ReadFloat(*e.mTimeAccessor, *e.mTimeData, 0, 0)); endTime = std::max(endTime, ReadFloat(*e.mTimeAccessor, *e.mTimeData, e.mTimeAccessor->mCount - 1, 0)); } } std::vector resultTrafos; if (!entries.empty() && entries.front().mTimeAccessor->mCount > 0) { // create a local transformation chain of the node's transforms std::vector transforms = srcNode->mTransforms; // now for every unique point in time, find or interpolate the key values for that time // and apply them to the transform chain. Then the node's present transformation can be calculated. ai_real time = startTime; while (true) { for (ChannelEntry & e : entries) { // find the keyframe behind the current point in time size_t pos = 0; ai_real postTime = 0.0; while (true) { if (pos >= e.mTimeAccessor->mCount) { break; } postTime = ReadFloat(*e.mTimeAccessor, *e.mTimeData, pos, 0); if (postTime >= time) { break; } ++pos; } pos = std::min(pos, e.mTimeAccessor->mCount - 1); // read values from there ai_real temp[16]; for (size_t c = 0; c < e.mValueAccessor->mSize; ++c) { temp[c] = ReadFloat(*e.mValueAccessor, *e.mValueData, pos, c); } // if not exactly at the key time, interpolate with previous value set if (postTime > time && pos > 0) { ai_real preTime = ReadFloat(*e.mTimeAccessor, *e.mTimeData, pos - 1, 0); ai_real factor = (time - postTime) / (preTime - postTime); for (size_t c = 0; c < e.mValueAccessor->mSize; ++c) { ai_real v = ReadFloat(*e.mValueAccessor, *e.mValueData, pos - 1, c); temp[c] += (v - temp[c]) * factor; } } // Apply values to current transformation std::copy(temp, temp + e.mValueAccessor->mSize, transforms[e.mTransformIndex].f + e.mSubElement); } // Calculate resulting transformation aiMatrix4x4 mat = pParser.CalculateResultTransform(transforms); // out of laziness: we store the time in matrix.d4 mat.d4 = time; resultTrafos.push_back(mat); // find next point in time to evaluate. That's the closest frame larger than the current in any channel ai_real nextTime = ai_real(1e20); for (ChannelEntry & channelElement : entries) { // find the next time value larger than the current size_t pos = 0; while (pos < channelElement.mTimeAccessor->mCount) { const ai_real t = ReadFloat(*channelElement.mTimeAccessor, *channelElement.mTimeData, pos, 0); if (t > time) { nextTime = std::min(nextTime, t); break; } ++pos; } // https://github.com/assimp/assimp/issues/458 // Sub-sample axis-angle channels if the delta between two consecutive // key-frame angles is >= 180 degrees. if (transforms[channelElement.mTransformIndex].mType == TF_ROTATE && channelElement.mSubElement == 3 && pos > 0 && pos < channelElement.mTimeAccessor->mCount) { const ai_real cur_key_angle = ReadFloat(*channelElement.mValueAccessor, *channelElement.mValueData, pos, 0); const ai_real last_key_angle = ReadFloat(*channelElement.mValueAccessor, *channelElement.mValueData, pos - 1, 0); const ai_real cur_key_time = ReadFloat(*channelElement.mTimeAccessor, *channelElement.mTimeData, pos, 0); const ai_real last_key_time = ReadFloat(*channelElement.mTimeAccessor, *channelElement.mTimeData, pos - 1, 0); const ai_real last_eval_angle = last_key_angle + (cur_key_angle - last_key_angle) * (time - last_key_time) / (cur_key_time - last_key_time); const ai_real delta = std::abs(cur_key_angle - last_eval_angle); if (delta >= 180.0) { const int subSampleCount = static_cast(std::floor(delta / 90.0)); if (cur_key_time != time) { const ai_real nextSampleTime = time + (cur_key_time - time) / subSampleCount; nextTime = std::min(nextTime, nextSampleTime); } } } } // no more keys on any channel after the current time -> we're done if (nextTime > 1e19) { break; } // else construct next key-frame at this following time point time = nextTime; } } // build an animation channel for the given node out of these trafo keys if (!resultTrafos.empty()) { aiNodeAnim *dstAnim = new aiNodeAnim; dstAnim->mNodeName = nodeName; dstAnim->mNumPositionKeys = static_cast(resultTrafos.size()); dstAnim->mNumRotationKeys = static_cast(resultTrafos.size()); dstAnim->mNumScalingKeys = static_cast(resultTrafos.size()); dstAnim->mPositionKeys = new aiVectorKey[resultTrafos.size()]; dstAnim->mRotationKeys = new aiQuatKey[resultTrafos.size()]; dstAnim->mScalingKeys = new aiVectorKey[resultTrafos.size()]; for (size_t a = 0; a < resultTrafos.size(); ++a) { aiMatrix4x4 mat = resultTrafos[a]; double time = double(mat.d4); // remember? time is stored in mat.d4 mat.d4 = 1.0f; dstAnim->mPositionKeys[a].mTime = time * kMillisecondsFromSeconds; dstAnim->mRotationKeys[a].mTime = time * kMillisecondsFromSeconds; dstAnim->mScalingKeys[a].mTime = time * kMillisecondsFromSeconds; mat.Decompose(dstAnim->mScalingKeys[a].mValue, dstAnim->mRotationKeys[a].mValue, dstAnim->mPositionKeys[a].mValue); } anims.push_back(dstAnim); } else { ASSIMP_LOG_WARN("Collada loader: found empty animation channel, ignored. Please check your exporter."); } if (!entries.empty() && entries.front().mTimeAccessor->mCount > 0) { std::vector morphChannels; for (ChannelEntry & e : entries) { // skip non-transform types if (e.mTargetId.empty()) { continue; } if (e.mTargetId.find("morph-weights") != std::string::npos) { morphChannels.push_back(e); } } if (!morphChannels.empty()) { // either 1) morph weight animation count should contain morph target count channels // or 2) one channel with morph target count arrays // assume first aiMeshMorphAnim *morphAnim = new aiMeshMorphAnim; morphAnim->mName.Set(nodeName); std::vector morphTimeValues; int morphAnimChannelIndex = 0; for (ChannelEntry & e : morphChannels) { std::string::size_type apos = e.mTargetId.find('('); std::string::size_type bpos = e.mTargetId.find(')'); // If unknown way to specify weight -> ignore this animation if (apos == std::string::npos || bpos == std::string::npos) { continue; } // weight target can be in format Weight_M_N, Weight_N, WeightN, or some other way // we ignore the name and just assume the channels are in the right order for (unsigned int i = 0; i < e.mTimeData->mValues.size(); i++) { insertMorphTimeValue(morphTimeValues, e.mTimeData->mValues[i], e.mValueData->mValues[i], morphAnimChannelIndex); } ++morphAnimChannelIndex; } morphAnim->mNumKeys = static_cast(morphTimeValues.size()); morphAnim->mKeys = new aiMeshMorphKey[morphAnim->mNumKeys]; for (unsigned int key = 0; key < morphAnim->mNumKeys; key++) { morphAnim->mKeys[key].mNumValuesAndWeights = static_cast(morphChannels.size()); morphAnim->mKeys[key].mValues = new unsigned int[morphChannels.size()]; morphAnim->mKeys[key].mWeights = new double[morphChannels.size()]; morphAnim->mKeys[key].mTime = morphTimeValues[key].mTime * kMillisecondsFromSeconds; for (unsigned int valueIndex = 0; valueIndex < morphChannels.size(); ++valueIndex) { morphAnim->mKeys[key].mValues[valueIndex] = valueIndex; morphAnim->mKeys[key].mWeights[valueIndex] = getWeightAtKey(morphTimeValues, key, valueIndex); } } morphAnims.push_back(morphAnim); } } } if (!anims.empty() || !morphAnims.empty()) { aiAnimation *anim = new aiAnimation; anim->mName.Set(pName); anim->mNumChannels = static_cast(anims.size()); if (anim->mNumChannels > 0) { anim->mChannels = new aiNodeAnim *[anims.size()]; std::copy(anims.begin(), anims.end(), anim->mChannels); } anim->mNumMorphMeshChannels = static_cast(morphAnims.size()); if (anim->mNumMorphMeshChannels > 0) { anim->mMorphMeshChannels = new aiMeshMorphAnim *[anim->mNumMorphMeshChannels]; std::copy(morphAnims.begin(), morphAnims.end(), anim->mMorphMeshChannels); } anim->mDuration = 0.0f; for (auto & a : anims) { anim->mDuration = std::max(anim->mDuration, a->mPositionKeys[a->mNumPositionKeys - 1].mTime); anim->mDuration = std::max(anim->mDuration, a->mRotationKeys[a->mNumRotationKeys - 1].mTime); anim->mDuration = std::max(anim->mDuration, a->mScalingKeys[a->mNumScalingKeys - 1].mTime); } for (auto & morphAnim : morphAnims) { anim->mDuration = std::max(anim->mDuration, morphAnim->mKeys[morphAnim->mNumKeys - 1].mTime); } anim->mTicksPerSecond = 1000.0; mAnims.push_back(anim); } } // ------------------------------------------------------------------------------------------------ // Add a texture to a material structure void ColladaLoader::AddTexture(aiMaterial &mat, const ColladaParser &pParser, const Effect &effect, const Sampler &sampler, aiTextureType type, unsigned int idx) { // first of all, basic file name const aiString name = FindFilenameForEffectTexture(pParser, effect, sampler.mName); mat.AddProperty(&name, _AI_MATKEY_TEXTURE_BASE, type, idx); // mapping mode int map = aiTextureMapMode_Clamp; if (sampler.mWrapU) { map = aiTextureMapMode_Wrap; } if (sampler.mWrapU && sampler.mMirrorU) { map = aiTextureMapMode_Mirror; } mat.AddProperty(&map, 1, _AI_MATKEY_MAPPINGMODE_U_BASE, type, idx); map = aiTextureMapMode_Clamp; if (sampler.mWrapV) { map = aiTextureMapMode_Wrap; } if (sampler.mWrapV && sampler.mMirrorV) { map = aiTextureMapMode_Mirror; } mat.AddProperty(&map, 1, _AI_MATKEY_MAPPINGMODE_V_BASE, type, idx); // UV transformation mat.AddProperty(&sampler.mTransform, 1, _AI_MATKEY_UVTRANSFORM_BASE, type, idx); // Blend mode mat.AddProperty((int *)&sampler.mOp, 1, _AI_MATKEY_TEXBLEND_BASE, type, idx); // Blend factor mat.AddProperty((ai_real *)&sampler.mWeighting, 1, _AI_MATKEY_TEXBLEND_BASE, type, idx); // UV source index ... if we didn't resolve the mapping, it is actually just // a guess but it works in most cases. We search for the frst occurrence of a // number in the channel name. We assume it is the zero-based index into the // UV channel array of all corresponding meshes. It could also be one-based // for some exporters, but we won't care of it unless someone complains about. if (sampler.mUVId != UINT_MAX) { map = sampler.mUVId; } else { map = -1; for (std::string::const_iterator it = sampler.mUVChannel.begin(); it != sampler.mUVChannel.end(); ++it) { if (IsNumeric(*it)) { map = strtoul10(&(*it)); break; } } if (-1 == map) { ASSIMP_LOG_WARN("Collada: unable to determine UV channel for texture"); map = 0; } } mat.AddProperty(&map, 1, _AI_MATKEY_UVWSRC_BASE, type, idx); } // ------------------------------------------------------------------------------------------------ // Fills materials from the collada material definitions void ColladaLoader::FillMaterials(const ColladaParser &pParser, aiScene * /*pScene*/) { for (auto &elem : newMats) { aiMaterial &mat = (aiMaterial &)*elem.second; Collada::Effect &effect = *elem.first; // resolve shading mode int shadeMode; if (effect.mFaceted) { shadeMode = aiShadingMode_Flat; } else { switch (effect.mShadeType) { case Collada::Shade_Constant: shadeMode = aiShadingMode_NoShading; break; case Collada::Shade_Lambert: shadeMode = aiShadingMode_Gouraud; break; case Collada::Shade_Blinn: shadeMode = aiShadingMode_Blinn; break; case Collada::Shade_Phong: shadeMode = aiShadingMode_Phong; break; default: ASSIMP_LOG_WARN("Collada: Unrecognized shading mode, using gouraud shading"); shadeMode = aiShadingMode_Gouraud; break; } } mat.AddProperty(&shadeMode, 1, AI_MATKEY_SHADING_MODEL); // double-sided? shadeMode = effect.mDoubleSided; mat.AddProperty(&shadeMode, 1, AI_MATKEY_TWOSIDED); // wire-frame? shadeMode = effect.mWireframe; mat.AddProperty(&shadeMode, 1, AI_MATKEY_ENABLE_WIREFRAME); // add material colors mat.AddProperty(&effect.mAmbient, 1, AI_MATKEY_COLOR_AMBIENT); mat.AddProperty(&effect.mDiffuse, 1, AI_MATKEY_COLOR_DIFFUSE); mat.AddProperty(&effect.mSpecular, 1, AI_MATKEY_COLOR_SPECULAR); mat.AddProperty(&effect.mEmissive, 1, AI_MATKEY_COLOR_EMISSIVE); mat.AddProperty(&effect.mReflective, 1, AI_MATKEY_COLOR_REFLECTIVE); // scalar properties mat.AddProperty(&effect.mShininess, 1, AI_MATKEY_SHININESS); mat.AddProperty(&effect.mReflectivity, 1, AI_MATKEY_REFLECTIVITY); mat.AddProperty(&effect.mRefractIndex, 1, AI_MATKEY_REFRACTI); // transparency, a very hard one. seemingly not all files are following the // specification here (1.0 transparency => completely opaque)... // therefore, we let the opportunity for the user to manually invert // the transparency if necessary and we add preliminary support for RGB_ZERO mode if (effect.mTransparency >= 0.f && effect.mTransparency <= 1.f) { // handle RGB transparency completely, cf Collada specs 1.5.0 pages 249 and 304 if (effect.mRGBTransparency) { // use luminance as defined by ISO/CIE color standards (see ITU-R Recommendation BT.709-4) effect.mTransparency *= (0.212671f * effect.mTransparent.r + 0.715160f * effect.mTransparent.g + 0.072169f * effect.mTransparent.b); effect.mTransparent.a = 1.f; mat.AddProperty(&effect.mTransparent, 1, AI_MATKEY_COLOR_TRANSPARENT); } else { effect.mTransparency *= effect.mTransparent.a; } if (effect.mInvertTransparency) { effect.mTransparency = 1.f - effect.mTransparency; } // Is the material finally transparent ? if (effect.mHasTransparency || effect.mTransparency < 1.f) { mat.AddProperty(&effect.mTransparency, 1, AI_MATKEY_OPACITY); } } // add textures, if given if (!effect.mTexAmbient.mName.empty()) { // It is merely a light-map AddTexture(mat, pParser, effect, effect.mTexAmbient, aiTextureType_LIGHTMAP); } if (!effect.mTexEmissive.mName.empty()) AddTexture(mat, pParser, effect, effect.mTexEmissive, aiTextureType_EMISSIVE); if (!effect.mTexSpecular.mName.empty()) AddTexture(mat, pParser, effect, effect.mTexSpecular, aiTextureType_SPECULAR); if (!effect.mTexDiffuse.mName.empty()) AddTexture(mat, pParser, effect, effect.mTexDiffuse, aiTextureType_DIFFUSE); if (!effect.mTexBump.mName.empty()) AddTexture(mat, pParser, effect, effect.mTexBump, aiTextureType_NORMALS); if (!effect.mTexTransparent.mName.empty()) AddTexture(mat, pParser, effect, effect.mTexTransparent, aiTextureType_OPACITY); if (!effect.mTexReflective.mName.empty()) AddTexture(mat, pParser, effect, effect.mTexReflective, aiTextureType_REFLECTION); } } // ------------------------------------------------------------------------------------------------ // Constructs materials from the collada material definitions void ColladaLoader::BuildMaterials(ColladaParser &pParser, aiScene * /*pScene*/) { newMats.reserve(pParser.mMaterialLibrary.size()); for (ColladaParser::MaterialLibrary::const_iterator matIt = pParser.mMaterialLibrary.begin(); matIt != pParser.mMaterialLibrary.end(); ++matIt) { const Material &material = matIt->second; // a material is only a reference to an effect ColladaParser::EffectLibrary::iterator effIt = pParser.mEffectLibrary.find(material.mEffect); if (effIt == pParser.mEffectLibrary.end()) continue; Effect &effect = effIt->second; // create material aiMaterial *mat = new aiMaterial; aiString name(material.mName.empty() ? matIt->first : material.mName); mat->AddProperty(&name, AI_MATKEY_NAME); // store the material mMaterialIndexByName[matIt->first] = newMats.size(); newMats.emplace_back(&effect, mat); } // ScenePreprocessor generates a default material automatically if none is there. // All further code here in this loader works well without a valid material so // we can safely let it to ScenePreprocessor. } // ------------------------------------------------------------------------------------------------ // Resolves the texture name for the given effect texture entry and loads the texture data aiString ColladaLoader::FindFilenameForEffectTexture(const ColladaParser &pParser, const Effect &pEffect, const std::string &pName) { aiString result; // recurse through the param references until we end up at an image std::string name = pName; while (true) { // the given string is a param entry. Find it Effect::ParamLibrary::const_iterator it = pEffect.mParams.find(name); // if not found, we're at the end of the recursion. The resulting string should be the image ID if (it == pEffect.mParams.end()) break; // else recurse on name = it->second.mReference; } // find the image referred by this name in the image library of the scene ColladaParser::ImageLibrary::const_iterator imIt = pParser.mImageLibrary.find(name); if (imIt == pParser.mImageLibrary.end()) { ASSIMP_LOG_WARN("Collada: Unable to resolve effect texture entry \"", pName, "\", ended up at ID \"", name, "\"."); //set default texture file name result.Set(name + ".jpg"); ColladaParser::UriDecodePath(result); return result; } // if this is an embedded texture image setup an aiTexture for it if (!imIt->second.mImageData.empty()) { aiTexture *tex = new aiTexture(); // Store embedded texture name reference tex->mFilename.Set(imIt->second.mFileName.c_str()); result.Set(imIt->second.mFileName); // setup format hint if (imIt->second.mEmbeddedFormat.length() >= HINTMAXTEXTURELEN) { ASSIMP_LOG_WARN("Collada: texture format hint is too long, truncating to 3 characters"); } strncpy(tex->achFormatHint, imIt->second.mEmbeddedFormat.c_str(), 3); // and copy texture data tex->mHeight = 0; tex->mWidth = static_cast(imIt->second.mImageData.size()); tex->pcData = (aiTexel *)new char[tex->mWidth]; memcpy(tex->pcData, &imIt->second.mImageData[0], tex->mWidth); // and add this texture to the list mTextures.push_back(tex); return result; } if (imIt->second.mFileName.empty()) { throw DeadlyImportError("Collada: Invalid texture, no data or file reference given"); } result.Set(imIt->second.mFileName); return result; } // ------------------------------------------------------------------------------------------------ // Reads a float value from an accessor and its data array. ai_real ColladaLoader::ReadFloat(const Accessor &pAccessor, const Data &pData, size_t pIndex, size_t pOffset) const { size_t pos = pAccessor.mStride * pIndex + pAccessor.mOffset + pOffset; ai_assert(pos < pData.mValues.size()); return pData.mValues[pos]; } // ------------------------------------------------------------------------------------------------ // Reads a string value from an accessor and its data array. const std::string &ColladaLoader::ReadString(const Accessor &pAccessor, const Data &pData, size_t pIndex) const { size_t pos = pAccessor.mStride * pIndex + pAccessor.mOffset; ai_assert(pos < pData.mStrings.size()); return pData.mStrings[pos]; } // ------------------------------------------------------------------------------------------------ // Collects all nodes into the given array void ColladaLoader::CollectNodes(const aiNode *pNode, std::vector &poNodes) const { poNodes.push_back(pNode); for (size_t a = 0; a < pNode->mNumChildren; ++a) { CollectNodes(pNode->mChildren[a], poNodes); } } // ------------------------------------------------------------------------------------------------ // Finds a node in the collada scene by the given name const Node *ColladaLoader::FindNode(const Node *pNode, const std::string &pName) const { if (pNode->mName == pName || pNode->mID == pName) return pNode; for (auto a : pNode->mChildren) { const Collada::Node *node = FindNode(a, pName); if (node) { return node; } } return nullptr; } // ------------------------------------------------------------------------------------------------ // Finds a node in the collada scene by the given SID const Node *ColladaLoader::FindNodeBySID(const Node *pNode, const std::string &pSID) const { if (nullptr == pNode) { return nullptr; } if (pNode->mSID == pSID) { return pNode; } for (auto a : pNode->mChildren) { const Collada::Node *node = FindNodeBySID(a, pSID); if (node) { return node; } } return nullptr; } // ------------------------------------------------------------------------------------------------ // Finds a proper unique name for a node derived from the collada-node's properties. // The name must be unique for proper node-bone association. std::string ColladaLoader::FindNameForNode(const Node *pNode) { // If explicitly requested, just use the collada name. if (useColladaName) { if (!pNode->mName.empty()) { return pNode->mName; } else { return format() << "$ColladaAutoName$_" << mNodeNameCounter++; } } else { // Now setup the name of the assimp node. The collada name might not be // unique, so we use the collada ID. if (!pNode->mID.empty()) return pNode->mID; else if (!pNode->mSID.empty()) return pNode->mSID; else { // No need to worry. Unnamed nodes are no problem at all, except // if cameras or lights need to be assigned to them. return format() << "$ColladaAutoName$_" << mNodeNameCounter++; } } } } // Namespace Assimp #endif // !! ASSIMP_BUILD_NO_DAE_IMPORTER