/* --------------------------------------------------------------------------- Open Asset Import Library (assimp) --------------------------------------------------------------------------- Copyright (c) 2006-2022, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /// @file PretransformVertices.cpp /// @brief Implementation of the "PretransformVertices" post processing step #include "PretransformVertices.h" #include "ConvertToLHProcess.h" #include "ProcessHelper.h" #include #include using namespace Assimp; // some array offsets #define AI_PTVS_VERTEX 0x0 #define AI_PTVS_FACE 0x1 namespace { // Get a bitwise combination identifying the vertex format of a mesh static unsigned int GetMeshVFormat(aiMesh *pcMesh) { // the vertex format is stored in aiMesh::mBones for later retrieval. // there isn't a good reason to compute it a few hundred times // from scratch. The pointer is unused as animations are lost // during PretransformVertices. if (pcMesh->mBones) return (unsigned int)(uint64_t)pcMesh->mBones; const unsigned int iRet = GetMeshVFormatUnique(pcMesh); // store the value for later use pcMesh->mBones = (aiBone **)(uint64_t)iRet; return iRet; } // Get a list of all vertex formats that occur for a given material index // The output list contains duplicate elements static void GetVFormatList(const aiScene *pcScene, unsigned int iMat, std::list &aiOut) { for (unsigned int i = 0; i < pcScene->mNumMeshes; ++i) { aiMesh *pcMesh = pcScene->mMeshes[i]; if (iMat == pcMesh->mMaterialIndex) { aiOut.push_back(GetMeshVFormat(pcMesh)); } } } } // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer PretransformVertices::PretransformVertices() : mConfigKeepHierarchy(false), mConfigNormalize(false), mConfigTransform(false), mConfigTransformation(), mConfigPointCloud(false) {} // ------------------------------------------------------------------------------------------------ // Returns whether the processing step is present in the given flag field. bool PretransformVertices::IsActive(unsigned int pFlags) const { return (pFlags & aiProcess_PreTransformVertices) != 0; } // ------------------------------------------------------------------------------------------------ // Setup import configuration void PretransformVertices::SetupProperties(const Importer *pImp) { // Get the current value of AI_CONFIG_PP_PTV_KEEP_HIERARCHY, AI_CONFIG_PP_PTV_NORMALIZE, // AI_CONFIG_PP_PTV_ADD_ROOT_TRANSFORMATION and AI_CONFIG_PP_PTV_ROOT_TRANSFORMATION mConfigKeepHierarchy = (0 != pImp->GetPropertyInteger(AI_CONFIG_PP_PTV_KEEP_HIERARCHY, 0)); mConfigNormalize = (0 != pImp->GetPropertyInteger(AI_CONFIG_PP_PTV_NORMALIZE, 0)); mConfigTransform = (0 != pImp->GetPropertyInteger(AI_CONFIG_PP_PTV_ADD_ROOT_TRANSFORMATION, 0)); mConfigTransformation = pImp->GetPropertyMatrix(AI_CONFIG_PP_PTV_ROOT_TRANSFORMATION, aiMatrix4x4()); mConfigPointCloud = pImp->GetPropertyBool(AI_CONFIG_EXPORT_POINT_CLOUDS); } // ------------------------------------------------------------------------------------------------ // Count the number of nodes unsigned int PretransformVertices::CountNodes(const aiNode *pcNode) const { unsigned int iRet = 1; for (unsigned int i = 0; i < pcNode->mNumChildren; ++i) { iRet += CountNodes(pcNode->mChildren[i]); } return iRet; } // ------------------------------------------------------------------------------------------------ // Count the number of vertices in the whole scene and a given material index void PretransformVertices::CountVerticesAndFaces(const aiScene *pcScene, const aiNode *pcNode, unsigned int iMat, unsigned int iVFormat, unsigned int *piFaces, unsigned int *piVertices) const { for (unsigned int i = 0; i < pcNode->mNumMeshes; ++i) { aiMesh *pcMesh = pcScene->mMeshes[pcNode->mMeshes[i]]; if (iMat == pcMesh->mMaterialIndex && iVFormat == GetMeshVFormat(pcMesh)) { *piVertices += pcMesh->mNumVertices; *piFaces += pcMesh->mNumFaces; } } for (unsigned int i = 0; i < pcNode->mNumChildren; ++i) { CountVerticesAndFaces(pcScene, pcNode->mChildren[i], iMat, iVFormat, piFaces, piVertices); } } // ------------------------------------------------------------------------------------------------ // Collect vertex/face data void PretransformVertices::CollectData(const aiScene *pcScene, const aiNode *pcNode, unsigned int iMat, unsigned int iVFormat, aiMesh *pcMeshOut, unsigned int aiCurrent[2], unsigned int *num_refs) const { // No need to multiply if there's no transformation const bool identity = pcNode->mTransformation.IsIdentity(); for (unsigned int i = 0; i < pcNode->mNumMeshes; ++i) { aiMesh *pcMesh = pcScene->mMeshes[pcNode->mMeshes[i]]; if (iMat == pcMesh->mMaterialIndex && iVFormat == GetMeshVFormat(pcMesh)) { // Decrement mesh reference counter unsigned int &num_ref = num_refs[pcNode->mMeshes[i]]; ai_assert(0 != num_ref); --num_ref; // Save the name of the last mesh if (num_ref == 0) { pcMeshOut->mName = pcMesh->mName; } if (identity) { // copy positions without modifying them ::memcpy(pcMeshOut->mVertices + aiCurrent[AI_PTVS_VERTEX], pcMesh->mVertices, pcMesh->mNumVertices * sizeof(aiVector3D)); if (iVFormat & 0x2) { // copy normals without modifying them ::memcpy(pcMeshOut->mNormals + aiCurrent[AI_PTVS_VERTEX], pcMesh->mNormals, pcMesh->mNumVertices * sizeof(aiVector3D)); } if (iVFormat & 0x4) { // copy tangents without modifying them ::memcpy(pcMeshOut->mTangents + aiCurrent[AI_PTVS_VERTEX], pcMesh->mTangents, pcMesh->mNumVertices * sizeof(aiVector3D)); // copy bitangents without modifying them ::memcpy(pcMeshOut->mBitangents + aiCurrent[AI_PTVS_VERTEX], pcMesh->mBitangents, pcMesh->mNumVertices * sizeof(aiVector3D)); } } else { // copy positions, transform them to worldspace for (unsigned int n = 0; n < pcMesh->mNumVertices; ++n) { pcMeshOut->mVertices[aiCurrent[AI_PTVS_VERTEX] + n] = pcNode->mTransformation * pcMesh->mVertices[n]; } aiMatrix4x4 mWorldIT = pcNode->mTransformation; mWorldIT.Inverse().Transpose(); // TODO: implement Inverse() for aiMatrix3x3 aiMatrix3x3 m = aiMatrix3x3(mWorldIT); if (iVFormat & 0x2) { // copy normals, transform them to worldspace for (unsigned int n = 0; n < pcMesh->mNumVertices; ++n) { pcMeshOut->mNormals[aiCurrent[AI_PTVS_VERTEX] + n] = (m * pcMesh->mNormals[n]).Normalize(); } } if (iVFormat & 0x4) { // copy tangents and bitangents, transform them to worldspace for (unsigned int n = 0; n < pcMesh->mNumVertices; ++n) { pcMeshOut->mTangents[aiCurrent[AI_PTVS_VERTEX] + n] = (m * pcMesh->mTangents[n]).Normalize(); pcMeshOut->mBitangents[aiCurrent[AI_PTVS_VERTEX] + n] = (m * pcMesh->mBitangents[n]).Normalize(); } } } unsigned int p = 0; while (iVFormat & (0x100 << p)) { // copy texture coordinates memcpy(pcMeshOut->mTextureCoords[p] + aiCurrent[AI_PTVS_VERTEX], pcMesh->mTextureCoords[p], pcMesh->mNumVertices * sizeof(aiVector3D)); ++p; } p = 0; while (iVFormat & (0x1000000 << p)) { // copy vertex colors memcpy(pcMeshOut->mColors[p] + aiCurrent[AI_PTVS_VERTEX], pcMesh->mColors[p], pcMesh->mNumVertices * sizeof(aiColor4D)); ++p; } // now we need to copy all faces. since we will delete the source mesh afterwards, // we don't need to reallocate the array of indices except if this mesh is // referenced multiple times. for (unsigned int planck = 0; planck < pcMesh->mNumFaces; ++planck) { aiFace &f_src = pcMesh->mFaces[planck]; aiFace &f_dst = pcMeshOut->mFaces[aiCurrent[AI_PTVS_FACE] + planck]; const unsigned int num_idx = f_src.mNumIndices; f_dst.mNumIndices = num_idx; unsigned int *pi; if (!num_ref) { /* if last time the mesh is referenced -> no reallocation */ pi = f_dst.mIndices = f_src.mIndices; // offset all vertex indices for (unsigned int hahn = 0; hahn < num_idx; ++hahn) { pi[hahn] += aiCurrent[AI_PTVS_VERTEX]; } } else { pi = f_dst.mIndices = new unsigned int[num_idx]; // copy and offset all vertex indices for (unsigned int hahn = 0; hahn < num_idx; ++hahn) { pi[hahn] = f_src.mIndices[hahn] + aiCurrent[AI_PTVS_VERTEX]; } } // Update the mPrimitiveTypes member of the mesh switch (pcMesh->mFaces[planck].mNumIndices) { case 0x1: pcMeshOut->mPrimitiveTypes |= aiPrimitiveType_POINT; break; case 0x2: pcMeshOut->mPrimitiveTypes |= aiPrimitiveType_LINE; break; case 0x3: pcMeshOut->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE; break; default: pcMeshOut->mPrimitiveTypes |= aiPrimitiveType_POLYGON; break; }; } aiCurrent[AI_PTVS_VERTEX] += pcMesh->mNumVertices; aiCurrent[AI_PTVS_FACE] += pcMesh->mNumFaces; } } // append all children of us for (unsigned int i = 0; i < pcNode->mNumChildren; ++i) { CollectData(pcScene, pcNode->mChildren[i], iMat, iVFormat, pcMeshOut, aiCurrent, num_refs); } } // ------------------------------------------------------------------------------------------------ // Compute the absolute transformation matrices of each node void PretransformVertices::ComputeAbsoluteTransform(aiNode *pcNode) { if (pcNode->mParent) { pcNode->mTransformation = pcNode->mParent->mTransformation * pcNode->mTransformation; } for (unsigned int i = 0; i < pcNode->mNumChildren; ++i) { ComputeAbsoluteTransform(pcNode->mChildren[i]); } } static void normalizeVectorArray(aiVector3D *vectorArrayIn, aiVector3D *vectorArrayOut, size_t numVectors) { for (size_t i=0; iHasFaces() && mat.Determinant() < 0) { // Reverse the mesh face winding order FlipWindingOrderProcess::ProcessMesh(mesh); } // Update positions if (mesh->HasPositions()) { for (unsigned int i = 0; i < mesh->mNumVertices; ++i) { mesh->mVertices[i] = mat * mesh->mVertices[i]; } } // Update normals and tangents if (mesh->HasNormals() || mesh->HasTangentsAndBitangents()) { const aiMatrix3x3 m = aiMatrix3x3(mat).Inverse().Transpose(); if (mesh->HasNormals()) { normalizeVectorArray(mesh->mNormals, mesh->mNormals, mesh->mNumVertices); } if (mesh->HasTangentsAndBitangents()) { for (unsigned int i = 0; i < mesh->mNumVertices; ++i) { mesh->mTangents[i] = (m * mesh->mTangents[i]).Normalize(); mesh->mBitangents[i] = (m * mesh->mBitangents[i]).Normalize(); } } } } // ------------------------------------------------------------------------------------------------ // Simple routine to build meshes in worldspace, no further optimization void PretransformVertices::BuildWCSMeshes(std::vector &out, aiMesh **in, unsigned int numIn, aiNode *node) const { // NOTE: // aiMesh::mNumBones store original source mesh, or UINT_MAX if not a copy // aiMesh::mBones store reference to abs. transform we multiplied with // process meshes for (unsigned int i = 0; i < node->mNumMeshes; ++i) { aiMesh *mesh = in[node->mMeshes[i]]; // check whether we can operate on this mesh if (!mesh->mBones || *reinterpret_cast(mesh->mBones) == node->mTransformation) { // yes, we can. mesh->mBones = reinterpret_cast(&node->mTransformation); mesh->mNumBones = UINT_MAX; continue; } // try to find us in the list of newly created meshes for (unsigned int n = 0; n < out.size(); ++n) { aiMesh *ctz = out[n]; if (ctz->mNumBones == node->mMeshes[i] && *reinterpret_cast(ctz->mBones) == node->mTransformation) { // ok, use this one. Update node mesh index node->mMeshes[i] = numIn + n; } } if (node->mMeshes[i] < numIn) { // Worst case. Need to operate on a full copy of the mesh ASSIMP_LOG_INFO("PretransformVertices: Copying mesh due to mismatching transforms"); aiMesh *ntz; const unsigned int cacheNumBones = mesh->mNumBones; // mesh->mNumBones = 0; SceneCombiner::Copy(&ntz, mesh); mesh->mNumBones = cacheNumBones; ntz->mNumBones = node->mMeshes[i]; ntz->mBones = reinterpret_cast(&node->mTransformation); out.push_back(ntz); node->mMeshes[i] = static_cast(numIn + out.size() - 1); } } // call children for (unsigned int i = 0; i < node->mNumChildren; ++i) { BuildWCSMeshes(out, in, numIn, node->mChildren[i]); } } // ------------------------------------------------------------------------------------------------ // Reset transformation matrices to identity void PretransformVertices::MakeIdentityTransform(aiNode *nd) const { nd->mTransformation = aiMatrix4x4(); // call children for (unsigned int i = 0; i < nd->mNumChildren; ++i) { MakeIdentityTransform(nd->mChildren[i]); } } // ------------------------------------------------------------------------------------------------ // Build reference counters for all meshes void PretransformVertices::BuildMeshRefCountArray(const aiNode *nd, unsigned int *refs) const { for (unsigned int i = 0; i < nd->mNumMeshes; ++i) refs[nd->mMeshes[i]]++; // call children for (unsigned int i = 0; i < nd->mNumChildren; ++i) { BuildMeshRefCountArray(nd->mChildren[i], refs); } } // ------------------------------------------------------------------------------------------------ static void appendNewMeshesToScene(aiScene *pScene, std::vector &apcOutMeshes) { ai_assert(pScene != nullptr); if (apcOutMeshes.empty()) { return; } aiMesh **npp = new aiMesh *[pScene->mNumMeshes + apcOutMeshes.size()]; ::memcpy(npp, pScene->mMeshes, sizeof(aiMesh *) * pScene->mNumMeshes); ::memcpy(npp + pScene->mNumMeshes, &apcOutMeshes[0], sizeof(aiMesh *) * apcOutMeshes.size()); pScene->mNumMeshes += static_cast(apcOutMeshes.size()); delete[] pScene->mMeshes; pScene->mMeshes = npp; } // ------------------------------------------------------------------------------------------------ // Executes the post processing step on the given imported data. void PretransformVertices::Execute(aiScene *pScene) { ASSIMP_LOG_DEBUG("PretransformVerticesProcess begin"); // Return immediately if we have no meshes if (!pScene->mNumMeshes) return; const unsigned int oldMeshes = pScene->mNumMeshes; const unsigned int oldAnimationChannels = pScene->mNumAnimations; const unsigned int oldNodes = CountNodes(pScene->mRootNode); if (mConfigTransform) { pScene->mRootNode->mTransformation = mConfigTransformation * pScene->mRootNode->mTransformation; } // first compute absolute transformation matrices for all nodes ComputeAbsoluteTransform(pScene->mRootNode); // Delete aiMesh::mBones for all meshes. The bones are // removed during this step and we need the pointer as // temporary storage for (unsigned int i = 0; i < pScene->mNumMeshes; ++i) { aiMesh *mesh = pScene->mMeshes[i]; for (unsigned int a = 0; a < mesh->mNumBones; ++a) delete mesh->mBones[a]; delete[] mesh->mBones; mesh->mBones = nullptr; } // now build a list of output meshes std::vector apcOutMeshes; // Keep scene hierarchy? It's an easy job in this case ... // we go on and transform all meshes, if one is referenced by nodes // with different absolute transformations a depth copy of the mesh // is required. if (mConfigKeepHierarchy) { // Hack: store the matrix we're transforming a mesh with in aiMesh::mBones BuildWCSMeshes(apcOutMeshes, pScene->mMeshes, pScene->mNumMeshes, pScene->mRootNode); // ... if new meshes have been generated, append them to the end of the scene appendNewMeshesToScene(pScene, apcOutMeshes); // now iterate through all meshes and transform them to world-space for (unsigned int i = 0; i < pScene->mNumMeshes; ++i) { ApplyTransform(pScene->mMeshes[i], *reinterpret_cast(pScene->mMeshes[i]->mBones)); // prevent improper destruction pScene->mMeshes[i]->mBones = nullptr; pScene->mMeshes[i]->mNumBones = 0; } } else { apcOutMeshes.reserve(static_cast(pScene->mNumMaterials) << 1u); std::list aiVFormats; std::vector s(pScene->mNumMeshes, 0); BuildMeshRefCountArray(pScene->mRootNode, &s[0]); for (unsigned int i = 0; i < pScene->mNumMaterials; ++i) { // get the list of all vertex formats for this material aiVFormats.clear(); GetVFormatList(pScene, i, aiVFormats); aiVFormats.sort(); aiVFormats.unique(); for (std::list::const_iterator j = aiVFormats.begin(); j != aiVFormats.end(); ++j) { unsigned int numVertices = 0u; unsigned int numFaces = 0u; CountVerticesAndFaces(pScene, pScene->mRootNode, i, *j, &numFaces, &numVertices); if (0 != numFaces && 0 != numVertices) { apcOutMeshes.push_back(new aiMesh()); aiMesh *pcMesh = apcOutMeshes.back(); pcMesh->mNumFaces = numFaces; pcMesh->mNumVertices = numVertices; pcMesh->mFaces = new aiFace[numFaces]; pcMesh->mVertices = new aiVector3D[numVertices]; pcMesh->mMaterialIndex = i; if ((*j) & 0x2) pcMesh->mNormals = new aiVector3D[numVertices]; if ((*j) & 0x4) { pcMesh->mTangents = new aiVector3D[numVertices]; pcMesh->mBitangents = new aiVector3D[numVertices]; } numFaces = 0; while ((*j) & (0x100 << numFaces)) { pcMesh->mTextureCoords[numFaces] = new aiVector3D[numVertices]; if ((*j) & (0x10000 << numFaces)) { pcMesh->mNumUVComponents[numFaces] = 3; } else { pcMesh->mNumUVComponents[numFaces] = 2; } ++numFaces; } numFaces = 0; while ((*j) & (0x1000000 << numFaces)) pcMesh->mColors[numFaces++] = new aiColor4D[numVertices]; // fill the mesh ... unsigned int aiTemp[2] = { 0, 0 }; CollectData(pScene, pScene->mRootNode, i, *j, pcMesh, aiTemp, &s[0]); } } } // If no meshes are referenced in the node graph it is possible that we get no output meshes. if (apcOutMeshes.empty()) { throw DeadlyImportError("No output meshes: all meshes are orphaned and are not referenced by any nodes"); } else { // now delete all meshes in the scene and build a new mesh list for (unsigned int i = 0; i < pScene->mNumMeshes; ++i) { aiMesh *mesh = pScene->mMeshes[i]; mesh->mNumBones = 0; mesh->mBones = nullptr; // we're reusing the face index arrays. avoid destruction for (unsigned int a = 0; a < mesh->mNumFaces; ++a) { mesh->mFaces[a].mNumIndices = 0; mesh->mFaces[a].mIndices = nullptr; } delete mesh; // Invalidate the contents of the old mesh array. We will most // likely have less output meshes now, so the last entries of // the mesh array are not overridden. We set them to nullptr to // make sure the developer gets notified when his application // attempts to access these fields ... mesh = nullptr; } // It is impossible that we have more output meshes than // input meshes, so we can easily reuse the old mesh array pScene->mNumMeshes = (unsigned int)apcOutMeshes.size(); for (unsigned int i = 0; i < pScene->mNumMeshes; ++i) { pScene->mMeshes[i] = apcOutMeshes[i]; } } } // remove all animations from the scene for (unsigned int i = 0; i < pScene->mNumAnimations; ++i) delete pScene->mAnimations[i]; delete[] pScene->mAnimations; pScene->mAnimations = nullptr; pScene->mNumAnimations = 0; // --- we need to keep all cameras and lights for (unsigned int i = 0; i < pScene->mNumCameras; ++i) { aiCamera *cam = pScene->mCameras[i]; const aiNode *nd = pScene->mRootNode->FindNode(cam->mName); ai_assert(nullptr != nd); // multiply all properties of the camera with the absolute // transformation of the corresponding node cam->mPosition = nd->mTransformation * cam->mPosition; cam->mLookAt = aiMatrix3x3(nd->mTransformation) * cam->mLookAt; cam->mUp = aiMatrix3x3(nd->mTransformation) * cam->mUp; } for (unsigned int i = 0; i < pScene->mNumLights; ++i) { aiLight *l = pScene->mLights[i]; const aiNode *nd = pScene->mRootNode->FindNode(l->mName); ai_assert(nullptr != nd); // multiply all properties of the camera with the absolute // transformation of the corresponding node l->mPosition = nd->mTransformation * l->mPosition; l->mDirection = aiMatrix3x3(nd->mTransformation) * l->mDirection; l->mUp = aiMatrix3x3(nd->mTransformation) * l->mUp; } if (!mConfigKeepHierarchy) { // now delete all nodes in the scene and build a new // flat node graph with a root node and some level 1 children aiNode *newRoot = new aiNode(); newRoot->mName = pScene->mRootNode->mName; delete pScene->mRootNode; pScene->mRootNode = newRoot; if (1 == pScene->mNumMeshes && !pScene->mNumLights && !pScene->mNumCameras) { pScene->mRootNode->mNumMeshes = 1; pScene->mRootNode->mMeshes = new unsigned int[1]; pScene->mRootNode->mMeshes[0] = 0; } else { pScene->mRootNode->mNumChildren = pScene->mNumMeshes + pScene->mNumLights + pScene->mNumCameras; aiNode **nodes = pScene->mRootNode->mChildren = new aiNode *[pScene->mRootNode->mNumChildren]; // generate mesh nodes for (unsigned int i = 0; i < pScene->mNumMeshes; ++i, ++nodes) { aiNode *pcNode = new aiNode(); *nodes = pcNode; pcNode->mParent = pScene->mRootNode; pcNode->mName = pScene->mMeshes[i]->mName; // setup mesh indices pcNode->mNumMeshes = 1; pcNode->mMeshes = new unsigned int[1]; pcNode->mMeshes[0] = i; } // generate light nodes for (unsigned int i = 0; i < pScene->mNumLights; ++i, ++nodes) { aiNode *pcNode = new aiNode(); *nodes = pcNode; pcNode->mParent = pScene->mRootNode; pcNode->mName.length = ai_snprintf(pcNode->mName.data, MAXLEN, "light_%u", i); pScene->mLights[i]->mName = pcNode->mName; } // generate camera nodes for (unsigned int i = 0; i < pScene->mNumCameras; ++i, ++nodes) { aiNode *pcNode = new aiNode(); *nodes = pcNode; pcNode->mParent = pScene->mRootNode; pcNode->mName.length = ::ai_snprintf(pcNode->mName.data, MAXLEN, "cam_%u", i); pScene->mCameras[i]->mName = pcNode->mName; } } } else { // ... and finally set the transformation matrix of all nodes to identity MakeIdentityTransform(pScene->mRootNode); } if (mConfigNormalize) { // compute the boundary of all meshes aiVector3D min, max; MinMaxChooser()(min, max); for (unsigned int a = 0; a < pScene->mNumMeshes; ++a) { aiMesh *m = pScene->mMeshes[a]; for (unsigned int i = 0; i < m->mNumVertices; ++i) { min = std::min(m->mVertices[i], min); max = std::max(m->mVertices[i], max); } } // find the dominant axis aiVector3D d = max - min; const ai_real div = std::max(d.x, std::max(d.y, d.z)) * ai_real(0.5); d = min + d * (ai_real)0.5; for (unsigned int a = 0; a < pScene->mNumMeshes; ++a) { aiMesh *m = pScene->mMeshes[a]; for (unsigned int i = 0; i < m->mNumVertices; ++i) { m->mVertices[i] = (m->mVertices[i] - d) / div; } } } // print statistics if (!DefaultLogger::isNullLogger()) { ASSIMP_LOG_DEBUG("PretransformVerticesProcess finished"); ASSIMP_LOG_INFO("Removed ", oldNodes, " nodes and ", oldAnimationChannels, " animation channels (", CountNodes(pScene->mRootNode), " output nodes)"); ASSIMP_LOG_INFO("Kept ", pScene->mNumLights, " lights and ", pScene->mNumCameras, " cameras."); ASSIMP_LOG_INFO("Moved ", oldMeshes, " meshes to WCS (number of output meshes: ", pScene->mNumMeshes, ")"); } }