/* --------------------------------------------------------------------------- Open Asset Import Library (ASSIMP) --------------------------------------------------------------------------- Copyright (c) 2006-2008, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file Implementation of the ASE importer class */ #include "ASELoader.h" #include "3DSSpatialSort.h" #include "MaterialSystem.h" #include "StringComparison.h" #include "TextureTransform.h" #include "fast_atof.h" #include "../include/IOStream.h" #include "../include/IOSystem.h" #include "../include/aiMesh.h" #include "../include/aiScene.h" #include "../include/aiAssert.h" #include "../include/DefaultLogger.h" #include using namespace Assimp; using namespace Assimp::ASE; // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer ASEImporter::ASEImporter() { } // ------------------------------------------------------------------------------------------------ // Destructor, private as well ASEImporter::~ASEImporter() { } // ------------------------------------------------------------------------------------------------ // Returns whether the class can handle the format of the given file. bool ASEImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler) const { // simple check of file extension is enough for the moment std::string::size_type pos = pFile.find_last_of('.'); // no file extension - can't read if( pos == std::string::npos) return false; std::string extension = pFile.substr( pos); if (extension.length() < 4)return false; if (extension[0] != '.')return false; if (extension[1] != 'a' && extension[1] != 'A')return false; if (extension[2] != 's' && extension[2] != 'S')return false; // NOTE: Sometimes the extension .ASK is also used // however, often it only contains static animation skeletons // without the real animations. if (extension[3] != 'e' && extension[3] != 'E' && extension[3] != 'k' && extension[3] != 'K')return false; return true; } // ------------------------------------------------------------------------------------------------ // Imports the given file into the given scene structure. void ASEImporter::InternReadFile( const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler) { boost::scoped_ptr file( pIOHandler->Open( pFile)); // Check whether we can read from the file if( file.get() == NULL) { throw new ImportErrorException( "Failed to open ASE file " + pFile + "."); } size_t fileSize = file->FileSize(); std::string::size_type pos = pFile.find_last_of('.'); std::string extension = pFile.substr( pos); if(extension[3] == 'k' || extension[3] == 'K') { this->mIsAsk = true; } else this->mIsAsk = false; // allocate storage and copy the contents of the file to a memory buffer // (terminate it with zero) this->mBuffer = new unsigned char[fileSize+1]; file->Read( (void*)mBuffer, 1, fileSize); this->mBuffer[fileSize] = '\0'; // construct an ASE parser and parse the file this->mParser = new ASE::Parser((const char*)this->mBuffer); this->mParser->Parse(); // if absolutely no material has been loaded from the file // we need to generate a default material if (this->mParser->m_vMaterials.empty()) { this->GenerateDefaultMaterial(); } // process all meshes std::vector avOutMeshes; avOutMeshes.reserve(this->mParser->m_vMeshes.size()*2); for (std::vector::iterator i = this->mParser->m_vMeshes.begin(); i != this->mParser->m_vMeshes.end();++i) { if ((*i).bSkip)continue; // transform all vertices into worldspace // world2obj transform is specified in the // transformation matrix of a scenegraph node this->TransformVertices(*i); // now we need to create proper meshes from the import // we need to split them by materials, build valid vertex/face lists ... this->BuildUniqueRepresentation(*i); // need to generate proper vertex normals if necessary this->GenerateNormals(*i); // convert all meshes to aiMesh objects this->ConvertMeshes(*i,avOutMeshes); } // now build the output mesh list pScene->mNumMeshes = (unsigned int)avOutMeshes.size(); pScene->mMeshes = new aiMesh*[pScene->mNumMeshes]; for (unsigned int i = 0; i < pScene->mNumMeshes;++i) pScene->mMeshes[i] = avOutMeshes[i]; // buil final material indices (remove submaterials and make the final list) this->BuildMaterialIndices(pScene); // build the final node graph this->BuildNodes(pScene); // delete the ASE parser delete this->mParser; this->mParser = NULL; return; } // ------------------------------------------------------------------------------------------------ void ASEImporter::GenerateDefaultMaterial() { ai_assert(NULL != this->mParser); // add a simple material without sub materials to the parser's list this->mParser->m_vMaterials.push_back ( ASE::Material() ); ASE::Material& mat = this->mParser->m_vMaterials.back(); mat.mDiffuse = aiColor3D(0.5f,0.5f,0.5f); mat.mSpecular = aiColor3D(1.0f,1.0f,1.0f); mat.mAmbient = aiColor3D(0.05f,0.05f,0.05f); mat.mShading = Dot3DSFile::Gouraud; mat.mName = "$$$ASE_DEFAULT"; } // ------------------------------------------------------------------------------------------------ void ASEImporter::AddNodes(aiScene* pcScene,aiNode* pcParent, const char* szName) { const size_t len = szName ? strlen(szName) : 0; ai_assert(4 <= AI_MAX_NUMBER_OF_COLOR_SETS); std::vector apcNodes; for (unsigned int i = 0; i < pcScene->mNumMeshes;++i) { // get the name of the mesh ([0] = name, [1] = parent) std::string* szMyName = (std::string*)pcScene->mMeshes[i]->mColors[1]; if (!szMyName) { continue; } if (szName) { if( len != szMyName[1].length() || 0 != ASSIMP_stricmp ( szName, szMyName[1].c_str() )) { continue; } } else if ('\0' != szMyName[1].c_str()[0])continue; apcNodes.push_back(new aiNode()); aiNode* node = apcNodes.back(); // get the transformation matrix of the mesh aiMatrix4x4* pmTransform = (aiMatrix4x4*)pcScene->mMeshes[i]->mColors[2]; node->mName.Set(szMyName[0]); node->mNumMeshes = 1; node->mMeshes = new unsigned int[1]; node->mMeshes[0] = i; node->mParent = pcParent; node->mTransformation = *pmTransform; // delete the matrix (a mesh is always the child of ONE node, so this is safe) delete pmTransform; pcScene->mMeshes[i]->mColors[2] = NULL; delete[] szMyName; pcScene->mMeshes[i]->mColors[1] = NULL; // add sub nodes this->AddNodes(pcScene,node,node->mName.data); } // allocate enough space for the child nodes pcParent->mNumChildren = (unsigned int)apcNodes.size(); pcParent->mChildren = new aiNode*[apcNodes.size()]; // now build all nodes for (unsigned int p = 0; p < apcNodes.size();++p) { pcParent->mChildren[p] = apcNodes[p]; } return; } // ------------------------------------------------------------------------------------------------ void ASEImporter::BuildNodes(aiScene* pcScene) { ai_assert(NULL != pcScene); // allocate the root node pcScene->mRootNode = new aiNode(); pcScene->mRootNode->mNumMeshes = 0; pcScene->mRootNode->mMeshes = 0; pcScene->mRootNode->mName.Set(""); // add all nodes this->AddNodes(pcScene,pcScene->mRootNode,NULL); // now iterate through al meshes and find those that have not yet // been added to the nodegraph (= their parent could not be recognized) std::vector aiList; for (unsigned int i = 0; i < pcScene->mNumMeshes;++i) { // get the name of the mesh ([0] = name, [1] = parent) std::string* szMyName = (std::string*)pcScene->mMeshes[i]->mColors[1]; if (!szMyName) { continue; } // check whether our parent is known bool bKnowParent = false; for (unsigned int i2 = 0; i2 < pcScene->mNumMeshes;++i2) { if (i2 == i)continue; // get the name of the mesh ([0] = name, [1] = parent) std::string* szMyName2 = (std::string*)pcScene->mMeshes[i2]->mColors[1]; if (!szMyName2) { continue; } if (szMyName[0].length() == szMyName2[1].length() && 0 == ASSIMP_stricmp ( szMyName[1].c_str(), szMyName2[0].c_str())) { bKnowParent = true; break; } } if (!bKnowParent) { aiList.push_back(i); } } if (!aiList.empty()) { std::vector apcNodes; apcNodes.reserve(aiList.size() + pcScene->mRootNode->mNumChildren); for (unsigned int i = 0; i < pcScene->mRootNode->mNumChildren;++i) apcNodes.push_back(pcScene->mRootNode->mChildren[i]); delete[] pcScene->mRootNode->mChildren; for (std::vector::const_iterator i = aiList.begin(); i != aiList.end();++i) { std::string* szMyName = (std::string*)pcScene->mMeshes[*i]->mColors[1]; if (!szMyName)continue; // the parent is not known, so we can assume that we must add // this node to the root node of the whole scene aiNode* pcNode = new aiNode(); pcNode->mParent = pcScene->mRootNode; pcNode->mName.Set(szMyName[1]); this->AddNodes(pcScene,pcNode,szMyName[1].c_str()); apcNodes.push_back(pcNode); } pcScene->mRootNode->mChildren = new aiNode*[apcNodes.size()]; for (unsigned int i = 0; i < apcNodes.size();++i) pcScene->mRootNode->mChildren[i] = apcNodes[i]; pcScene->mRootNode->mNumChildren = (unsigned int)apcNodes.size(); } // if there is only one subnode, set it as root node if (1 == pcScene->mRootNode->mNumChildren) { aiNode* pc = pcScene->mRootNode; pcScene->mRootNode = pcScene->mRootNode->mChildren[0]; pcScene->mRootNode->mParent = NULL; // make sure the destructor won't delete us ... delete[] pc->mChildren; pc->mChildren = NULL; pc->mNumChildren = 0; delete pc; } else if (0 == pcScene->mRootNode->mNumChildren) { throw new ImportErrorException("No nodes loaded. The ASE/ASK file is either empty or corrupt"); } return; } // ------------------------------------------------------------------------------------------------ void ASEImporter::TransformVertices(ASE::Mesh& mesh) { // the matrix data is stored in column-major format, // but we need row major mesh.mTransform.Transpose(); } // ------------------------------------------------------------------------------------------------ void ASEImporter::BuildUniqueRepresentation(ASE::Mesh& mesh) { // allocate output storage std::vector mPositions; std::vector amTexCoords[AI_MAX_NUMBER_OF_TEXTURECOORDS]; std::vector mVertexColors; std::vector mNormals; std::vector mBoneVertices; unsigned int iSize = (unsigned int)mesh.mFaces.size() * 3; mPositions.resize(iSize); // optional texture coordinates for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS;++i) { if (!mesh.amTexCoords[i].empty()) { amTexCoords[i].resize(iSize); } } // optional vertex colors if (!mesh.mVertexColors.empty()) { mVertexColors.resize(iSize); } // optional vertex normals (vertex normals can simply be copied) if (!mesh.mNormals.empty()) { mNormals.resize(iSize); } // bone vertices. There is no need to change the bone list if (!mesh.mBoneVertices.empty()) { mBoneVertices.resize(iSize); } // iterate through all faces in the mesh unsigned int iCurrent = 0; for (std::vector::iterator i = mesh.mFaces.begin(); i != mesh.mFaces.end();++i) { for (unsigned int n = 0; n < 3;++n,++iCurrent) { mPositions[iCurrent] = mesh.mPositions[(*i).mIndices[n]]; // add texture coordinates for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c) { if (!mesh.amTexCoords[c].empty()) { amTexCoords[c][iCurrent] = mesh.amTexCoords[c][(*i).amUVIndices[c][n]]; } } // add vertex colors if (!mesh.mVertexColors.empty()) { mVertexColors[iCurrent] = mesh.mVertexColors[(*i).mColorIndices[n]]; } // add normal vectors if (!mesh.mNormals.empty()) { mNormals[iCurrent] = mesh.mNormals[(*i).mIndices[n]]; } // handle bone vertices if ((*i).mIndices[n] < mesh.mBoneVertices.size()) { // (sometimes this will cause bone verts to be duplicated // however, I' quite sure Schrompf' JoinVerticesStep // will fix that again ...) mBoneVertices[iCurrent] = mesh.mBoneVertices[(*i).mIndices[n]]; } } // we need to flip the order of the indices (*i).mIndices[0] = iCurrent-1; (*i).mIndices[1] = iCurrent-2; (*i).mIndices[2] = iCurrent-3; } // replace the old arrays mesh.mNormals = mNormals; mesh.mPositions = mPositions; mesh.mVertexColors = mVertexColors; for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c) mesh.amTexCoords[c] = amTexCoords[c]; // now need to transform all vertices with the inverse of their // transformation matrix ... aiMatrix4x4 mInverse = mesh.mTransform; mInverse.Inverse(); for (std::vector::iterator i = mesh.mPositions.begin(); i != mesh.mPositions.end();++i) { (*i) = mInverse * (*i); } return; } // ------------------------------------------------------------------------------------------------ void ASEImporter::ConvertMaterial(ASE::Material& mat) { // allocate the output material mat.pcInstance = new MaterialHelper(); // At first add the base ambient color of the // scene to the material mat.mAmbient.r += this->mParser->m_clrAmbient.r; mat.mAmbient.g += this->mParser->m_clrAmbient.g; mat.mAmbient.b += this->mParser->m_clrAmbient.b; aiString name; name.Set( mat.mName); mat.pcInstance->AddProperty( &name, AI_MATKEY_NAME); // material colors mat.pcInstance->AddProperty( &mat.mAmbient, 1, AI_MATKEY_COLOR_AMBIENT); mat.pcInstance->AddProperty( &mat.mDiffuse, 1, AI_MATKEY_COLOR_DIFFUSE); mat.pcInstance->AddProperty( &mat.mSpecular, 1, AI_MATKEY_COLOR_SPECULAR); mat.pcInstance->AddProperty( &mat.mEmissive, 1, AI_MATKEY_COLOR_EMISSIVE); // shininess if (0.0f != mat.mSpecularExponent && 0.0f != mat.mShininessStrength) { mat.pcInstance->AddProperty( &mat.mSpecularExponent, 1, AI_MATKEY_SHININESS); mat.pcInstance->AddProperty( &mat.mShininessStrength, 1, AI_MATKEY_SHININESS_STRENGTH); } // if there is no shininess, we can disable phong lighting else if (Dot3DS::Dot3DSFile::Metal == mat.mShading || Dot3DS::Dot3DSFile::Phong == mat.mShading || Dot3DS::Dot3DSFile::Blinn == mat.mShading) { mat.mShading = Dot3DS::Dot3DSFile::Gouraud; } // opacity mat.pcInstance->AddProperty( &mat.mTransparency,1,AI_MATKEY_OPACITY); // shading mode aiShadingMode eShading = aiShadingMode_NoShading; switch (mat.mShading) { case Dot3DS::Dot3DSFile::Flat: eShading = aiShadingMode_Flat; break; case Dot3DS::Dot3DSFile::Phong : eShading = aiShadingMode_Phong; break; case Dot3DS::Dot3DSFile::Blinn : eShading = aiShadingMode_Blinn; break; // I don't know what "Wire" shading should be, // assume it is simple lambertian diffuse (L dot N) shading case Dot3DS::Dot3DSFile::Wire: case Dot3DS::Dot3DSFile::Gouraud: eShading = aiShadingMode_Gouraud; break; case Dot3DS::Dot3DSFile::Metal : eShading = aiShadingMode_CookTorrance; break; } mat.pcInstance->AddProperty( (int*)&eShading,1,AI_MATKEY_SHADING_MODEL); if (Dot3DS::Dot3DSFile::Wire == mat.mShading) { // set the wireframe flag unsigned int iWire = 1; mat.pcInstance->AddProperty( (int*)&iWire,1,AI_MATKEY_ENABLE_WIREFRAME); } // texture, if there is one if( mat.sTexDiffuse.mMapName.length() > 0) { aiString tex; tex.Set( mat.sTexDiffuse.mMapName); mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_DIFFUSE(0)); if (is_not_qnan(mat.sTexDiffuse.mTextureBlend)) mat.pcInstance->AddProperty( &mat.sTexDiffuse.mTextureBlend, 1, AI_MATKEY_TEXBLEND_DIFFUSE(0)); } if( mat.sTexSpecular.mMapName.length() > 0) { aiString tex; tex.Set( mat.sTexSpecular.mMapName); mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_SPECULAR(0)); if (is_not_qnan(mat.sTexSpecular.mTextureBlend)) mat.pcInstance->AddProperty( &mat.sTexSpecular.mTextureBlend, 1, AI_MATKEY_TEXBLEND_SPECULAR(0)); } if( mat.sTexOpacity.mMapName.length() > 0) { aiString tex; tex.Set( mat.sTexOpacity.mMapName); mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_OPACITY(0)); if (is_not_qnan(mat.sTexOpacity.mTextureBlend)) mat.pcInstance->AddProperty( &mat.sTexOpacity.mTextureBlend, 1, AI_MATKEY_TEXBLEND_OPACITY(0)); } if( mat.sTexEmissive.mMapName.length() > 0) { aiString tex; tex.Set( mat.sTexEmissive.mMapName); mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_EMISSIVE(0)); if (is_not_qnan(mat.sTexEmissive.mTextureBlend)) mat.pcInstance->AddProperty( &mat.sTexEmissive.mTextureBlend, 1, AI_MATKEY_TEXBLEND_EMISSIVE(0)); } if( mat.sTexAmbient.mMapName.length() > 0) { aiString tex; tex.Set( mat.sTexAmbient.mMapName); mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_AMBIENT(0)); if (is_not_qnan(mat.sTexAmbient.mTextureBlend)) mat.pcInstance->AddProperty( &mat.sTexAmbient.mTextureBlend, 1, AI_MATKEY_TEXBLEND_AMBIENT(0)); } if( mat.sTexBump.mMapName.length() > 0) { aiString tex; tex.Set( mat.sTexBump.mMapName); mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_HEIGHT(0)); if (is_not_qnan(mat.sTexBump.mTextureBlend)) mat.pcInstance->AddProperty( &mat.sTexBump.mTextureBlend, 1, AI_MATKEY_TEXBLEND_HEIGHT(0)); } if( mat.sTexShininess.mMapName.length() > 0) { aiString tex; tex.Set( mat.sTexShininess.mMapName); mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_SHININESS(0)); if (is_not_qnan(mat.sTexShininess.mTextureBlend)) mat.pcInstance->AddProperty( &mat.sTexBump.mTextureBlend, 1, AI_MATKEY_TEXBLEND_SHININESS(0)); } // store the name of the material itself, too if( mat.mName.length() > 0) { aiString tex; tex.Set( mat.mName); mat.pcInstance->AddProperty( &tex, AI_MATKEY_NAME); } return; } // ------------------------------------------------------------------------------------------------ void ASEImporter::ConvertMeshes(ASE::Mesh& mesh, std::vector& avOutMeshes) { // validate the material index of the mesh if (mesh.iMaterialIndex >= this->mParser->m_vMaterials.size()) { mesh.iMaterialIndex = (unsigned int)this->mParser->m_vMaterials.size()-1; DefaultLogger::get()->warn("Material index is out of range"); } // if the material the mesh is assigned to is consisting of submeshes // we'll need to split it ... Quak. if (!this->mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials.empty()) { std::vector vSubMaterials = this->mParser-> m_vMaterials[mesh.iMaterialIndex].avSubMaterials; std::vector* aiSplit = new std::vector[ vSubMaterials.size()]; // build a list of all faces per submaterial unsigned int iNum = 0; for (unsigned int i = 0; i < mesh.mFaces.size();++i) { // check range if (mesh.mFaces[i].iMaterial >= vSubMaterials.size()) { DefaultLogger::get()->warn("Submaterial index is out of range"); // use the last material instead aiSplit[vSubMaterials.size()-1].push_back(i); } else aiSplit[mesh.mFaces[i].iMaterial].push_back(i); } // now generate submeshes for (unsigned int p = 0; p < vSubMaterials.size();++p) { if (aiSplit[p].size() != 0) { aiMesh* p_pcOut = new aiMesh(); // let the sub material index p_pcOut->mMaterialIndex = p; // we will need this material this->mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials[p].bNeed = true; // store the real index here ... color channel 3 p_pcOut->mColors[3] = (aiColor4D*)(uintptr_t)mesh.iMaterialIndex; // store the real transformation matrix in color channel 2 p_pcOut->mColors[2] = (aiColor4D*) new aiMatrix4x4(mesh.mTransform); // store the name of the mesh and the // name of its parent in color channel 1 p_pcOut->mColors[1] = (aiColor4D*) new std::string[2]; ((std::string*)p_pcOut->mColors[1])[0] = mesh.mName; ((std::string*)p_pcOut->mColors[1])[1] = mesh.mParent; avOutMeshes.push_back(p_pcOut); // convert vertices p_pcOut->mNumVertices = (unsigned int)aiSplit[p].size()*3; p_pcOut->mNumFaces = (unsigned int)aiSplit[p].size(); // receive output vertex weights std::vector >* avOutputBones; if (!mesh.mBones.empty()) { avOutputBones = new std::vector >[mesh.mBones.size()]; } // allocate enough storage for faces p_pcOut->mFaces = new aiFace[p_pcOut->mNumFaces]; if (p_pcOut->mNumVertices != 0) { p_pcOut->mVertices = new aiVector3D[p_pcOut->mNumVertices]; p_pcOut->mNormals = new aiVector3D[p_pcOut->mNumVertices]; unsigned int iBase = 0; for (unsigned int q = 0; q < aiSplit[p].size();++q) { unsigned int iIndex = aiSplit[p][q]; p_pcOut->mFaces[q].mIndices = new unsigned int[3]; p_pcOut->mFaces[q].mNumIndices = 3; for (unsigned int t = 0; t < 3;++t) { const uint32_t iIndex2 = mesh.mFaces[iIndex].mIndices[t]; p_pcOut->mVertices[iBase] = mesh.mPositions[iIndex2]; p_pcOut->mNormals[iBase] = mesh.mNormals[iIndex2]; // convert bones, if existing if (!mesh.mBones.empty()) { // check whether there is a vertex weight that is using // this vertex index ... if (iIndex2 < mesh.mBoneVertices.size()) { for (std::vector >::const_iterator blubb = mesh.mBoneVertices[iIndex2].mBoneWeights.begin(); blubb != mesh.mBoneVertices[iIndex2].mBoneWeights.end();++blubb) { // NOTE: illegal cases have already been filtered out avOutputBones[(*blubb).first].push_back(std::pair( iBase,(*blubb).second)); } } } ++iBase; } p_pcOut->mFaces[q].mIndices[0] = iBase-2; p_pcOut->mFaces[q].mIndices[1] = iBase-1; p_pcOut->mFaces[q].mIndices[2] = iBase; } } // convert texture coordinates for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c) { if (!mesh.amTexCoords[c].empty()) { p_pcOut->mTextureCoords[c] = new aiVector3D[p_pcOut->mNumVertices]; unsigned int iBase = 0; for (unsigned int q = 0; q < aiSplit[p].size();++q) { unsigned int iIndex = aiSplit[p][q]; for (unsigned int t = 0; t < 3;++t) { p_pcOut->mTextureCoords[c][iBase++] = mesh.amTexCoords[c][mesh.mFaces[iIndex].mIndices[t]]; } } // setup the number of valid vertex components p_pcOut->mNumUVComponents[c] = mesh.mNumUVComponents[c]; } } // convert vertex colors (only one set supported) if (!mesh.mVertexColors.empty()) { p_pcOut->mColors[0] = new aiColor4D[p_pcOut->mNumVertices]; unsigned int iBase = 0; for (unsigned int q = 0; q < aiSplit[p].size();++q) { unsigned int iIndex = aiSplit[p][q]; for (unsigned int t = 0; t < 3;++t) { p_pcOut->mColors[0][iBase++] = mesh.mVertexColors[mesh.mFaces[iIndex].mIndices[t]]; } } } if (!mesh.mBones.empty()) { p_pcOut->mNumBones = 0; for (unsigned int mrspock = 0; mrspock < mesh.mBones.size();++mrspock) if (!avOutputBones[mrspock].empty())p_pcOut->mNumBones++; p_pcOut->mBones = new aiBone* [ p_pcOut->mNumBones ]; aiBone** pcBone = p_pcOut->mBones; for (unsigned int mrspock = 0; mrspock < mesh.mBones.size();++mrspock) { if (!avOutputBones[mrspock].empty()) { // we will need this bone. add it to the output mesh and // add all per-vertex weights aiBone* pc = *pcBone = new aiBone(); pc->mName.Set(mesh.mBones[mrspock].mName); pc->mNumWeights = (unsigned int)avOutputBones[mrspock].size(); pc->mWeights = new aiVertexWeight[pc->mNumWeights]; for (unsigned int captainkirk = 0; captainkirk < pc->mNumWeights;++captainkirk) { const std::pair& ref = avOutputBones[mrspock][captainkirk]; pc->mWeights[captainkirk].mVertexId = ref.first; pc->mWeights[captainkirk].mWeight = ref.second; } ++pcBone; } } // delete allocated storage delete[] avOutputBones; } } } // delete storage delete[] aiSplit; } else { // otherwise we can simply copy the data to one output mesh aiMesh* p_pcOut = new aiMesh(); // set an empty sub material index p_pcOut->mMaterialIndex = ASE::Face::DEFAULT_MATINDEX; this->mParser->m_vMaterials[mesh.iMaterialIndex].bNeed = true; // store the real index here ... in color channel 3 p_pcOut->mColors[3] = (aiColor4D*)(uintptr_t)mesh.iMaterialIndex; // store the transformation matrix in color channel 2 p_pcOut->mColors[2] = (aiColor4D*) new aiMatrix4x4(mesh.mTransform); avOutMeshes.push_back(p_pcOut); // store the name of the mesh and the // name of its parent in color channel 1 p_pcOut->mColors[1] = (aiColor4D*) new std::string[2]; ((std::string*)p_pcOut->mColors[1])[0] = mesh.mName; ((std::string*)p_pcOut->mColors[1])[1] = mesh.mParent; // convert vertices p_pcOut->mNumVertices = (unsigned int)mesh.mPositions.size(); p_pcOut->mNumFaces = (unsigned int)mesh.mFaces.size(); // allocate enough storage for faces p_pcOut->mFaces = new aiFace[p_pcOut->mNumFaces]; // copy vertices p_pcOut->mVertices = new aiVector3D[mesh.mPositions.size()]; memcpy(p_pcOut->mVertices,&mesh.mPositions[0], mesh.mPositions.size() * sizeof(aiVector3D)); // copy normals p_pcOut->mNormals = new aiVector3D[mesh.mNormals.size()]; memcpy(p_pcOut->mNormals,&mesh.mNormals[0], mesh.mNormals.size() * sizeof(aiVector3D)); // copy texture coordinates for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c) { if (!mesh.amTexCoords[c].empty()) { p_pcOut->mTextureCoords[c] = new aiVector3D[mesh.amTexCoords[c].size()]; memcpy(p_pcOut->mTextureCoords[c],&mesh.amTexCoords[c][0], mesh.amTexCoords[c].size() * sizeof(aiVector3D)); // setup the number of valid vertex components p_pcOut->mNumUVComponents[c] = mesh.mNumUVComponents[c]; } } // copy vertex colors if (!mesh.mVertexColors.empty()) { p_pcOut->mColors[0] = new aiColor4D[mesh.mVertexColors.size()]; memcpy(p_pcOut->mColors[0],&mesh.mVertexColors[0], mesh.mVertexColors.size() * sizeof(aiColor4D)); } // copy faces for (unsigned int iFace = 0; iFace < p_pcOut->mNumFaces;++iFace) { p_pcOut->mFaces[iFace].mNumIndices = 3; p_pcOut->mFaces[iFace].mIndices = new unsigned int[3]; // copy indices p_pcOut->mFaces[iFace].mIndices[0] = mesh.mFaces[iFace].mIndices[0]; p_pcOut->mFaces[iFace].mIndices[1] = mesh.mFaces[iFace].mIndices[1]; p_pcOut->mFaces[iFace].mIndices[2] = mesh.mFaces[iFace].mIndices[2]; } // copy vertex bones if (!mesh.mBones.empty() && !mesh.mBoneVertices.empty()) { std::vector* avBonesOut = new std::vector[mesh.mBones.size()]; // find all vertex weights for this bone unsigned int quak = 0; for (std::vector::const_iterator harrypotter = mesh.mBoneVertices.begin(); harrypotter != mesh.mBoneVertices.end();++harrypotter,++quak) { for (std::vector >::const_iterator ronaldweasley = (*harrypotter).mBoneWeights.begin(); ronaldweasley != (*harrypotter).mBoneWeights.end();++ronaldweasley) { aiVertexWeight weight; weight.mVertexId = quak; weight.mWeight = (*ronaldweasley).second; avBonesOut[(*ronaldweasley).first].push_back(weight); } } // now build a final bone list p_pcOut->mNumBones = 0; for (unsigned int jfkennedy = 0; jfkennedy < mesh.mBones.size();++jfkennedy) if (!avBonesOut[jfkennedy].empty())p_pcOut->mNumBones++; p_pcOut->mBones = new aiBone*[p_pcOut->mNumBones]; aiBone** pcBone = p_pcOut->mBones; for (unsigned int jfkennedy = 0; jfkennedy < mesh.mBones.size();++jfkennedy) { if (!avBonesOut[jfkennedy].empty()) { aiBone* pc = *pcBone = new aiBone(); pc->mName.Set(mesh.mBones[jfkennedy].mName); pc->mNumWeights = (unsigned int)avBonesOut[jfkennedy].size(); pc->mWeights = new aiVertexWeight[pc->mNumWeights]; memcpy(pc->mWeights,&avBonesOut[jfkennedy][0], sizeof(aiVertexWeight) * pc->mNumWeights); ++pcBone; } } } } return; } // ------------------------------------------------------------------------------------------------ void ComputeBounds(ASE::Mesh& mesh,aiVector3D& minVec, aiVector3D& maxVec, aiMatrix4x4& matrix) { minVec = aiVector3D( 1e10f, 1e10f, 1e10f); maxVec = aiVector3D( -1e10f, -1e10f, -1e10f); for( std::vector::const_iterator i = mesh.mPositions.begin(); i != mesh.mPositions.end();++i) { aiVector3D v = matrix*(*i); minVec.x = std::min( minVec.x, v.x); minVec.y = std::min( minVec.y, v.y); minVec.z = std::min( minVec.z, v.z); maxVec.x = std::max( maxVec.x, v.x); maxVec.y = std::max( maxVec.y, v.y); maxVec.z = std::max( maxVec.z, v.z); } return; } // ------------------------------------------------------------------------------------------------ void ASEImporter::BuildMaterialIndices(aiScene* pcScene) { ai_assert(NULL != pcScene); // iterate through all materials and check whether we need them unsigned int iNum = 0; for (unsigned int iMat = 0; iMat < this->mParser->m_vMaterials.size();++iMat) { if (this->mParser->m_vMaterials[iMat].bNeed) { // convert it to the aiMaterial layout this->ConvertMaterial(this->mParser->m_vMaterials[iMat]); iNum++; } for (unsigned int iSubMat = 0; iSubMat < this->mParser->m_vMaterials[ iMat].avSubMaterials.size();++iSubMat) { if (this->mParser->m_vMaterials[iMat].avSubMaterials[iSubMat].bNeed) { // convert it to the aiMaterial layout this->ConvertMaterial(this->mParser->m_vMaterials[iMat].avSubMaterials[iSubMat]); iNum++; } } } // allocate the output material array pcScene->mNumMaterials = iNum; pcScene->mMaterials = new aiMaterial*[pcScene->mNumMaterials]; Dot3DS::Material** pcIntMaterials = new Dot3DS::Material*[pcScene->mNumMaterials]; iNum = 0; for (unsigned int iMat = 0; iMat < this->mParser->m_vMaterials.size();++iMat) { if (this->mParser->m_vMaterials[iMat].bNeed) { ai_assert(NULL != this->mParser->m_vMaterials[iMat].pcInstance); pcScene->mMaterials[iNum] = this->mParser->m_vMaterials[iMat].pcInstance; // store the internal material, too pcIntMaterials[iNum] = &this->mParser->m_vMaterials[iMat]; // iterate through all meshes and search for one which is using // this top-level material index for (unsigned int iMesh = 0; iMesh < pcScene->mNumMeshes;++iMesh) { if (ASE::Face::DEFAULT_MATINDEX == pcScene->mMeshes[iMesh]->mMaterialIndex && iMat == (uintptr_t)pcScene->mMeshes[iMesh]->mColors[3]) { pcScene->mMeshes[iMesh]->mMaterialIndex = iNum; pcScene->mMeshes[iMesh]->mColors[3] = NULL; } } iNum++; } for (unsigned int iSubMat = 0; iSubMat < this->mParser->m_vMaterials[iMat].avSubMaterials.size();++iSubMat) { if (this->mParser->m_vMaterials[iMat].avSubMaterials[iSubMat].bNeed) { ai_assert(NULL != this->mParser->m_vMaterials[iMat].avSubMaterials[iSubMat].pcInstance); pcScene->mMaterials[iNum] = this->mParser->m_vMaterials[iMat]. avSubMaterials[iSubMat].pcInstance; // store the internal material, too pcIntMaterials[iNum] = &this->mParser->m_vMaterials[iMat].avSubMaterials[iSubMat]; // iterate through all meshes and search for one which is using // this sub-level material index for (unsigned int iMesh = 0; iMesh < pcScene->mNumMeshes;++iMesh) { if (iSubMat == pcScene->mMeshes[iMesh]->mMaterialIndex && iMat == (uintptr_t)pcScene->mMeshes[iMesh]->mColors[3]) { pcScene->mMeshes[iMesh]->mMaterialIndex = iNum; pcScene->mMeshes[iMesh]->mColors[3] = NULL; } } iNum++; } } } // prepare for the next step for (unsigned int hans = 0; hans < pcScene->mNumMaterials;++hans) { TextureTransform::ApplyScaleNOffset(this->mParser->m_vMaterials[hans]); } // now we need to iterate through all meshes, // generating correct texture coordinates and material uv indices for (unsigned int curie = 0; curie < pcScene->mNumMeshes;++curie) { aiMesh* pcMesh = pcScene->mMeshes[curie]; // apply texture coordinate transformations TextureTransform::BakeScaleNOffset(pcMesh,pcIntMaterials[pcMesh->mMaterialIndex]); } for (unsigned int hans = 0; hans < pcScene->mNumMaterials;++hans) { // setup the correct UV indices for each material TextureTransform::SetupMatUVSrc(pcScene->mMaterials[hans], pcIntMaterials[hans]); } delete[] pcIntMaterials; // finished! return; } // ------------------------------------------------------------------------------------------------ // Generate normal vectors basing on smoothing groups void ASEImporter::GenerateNormals(ASE::Mesh& mesh) { if (mesh.mNormals.empty()) { // need to calculate normals ... // TODO: Find a way to merge this with the code in 3DSGenNormals.cpp mesh.mNormals.resize(mesh.mPositions.size(),aiVector3D()); for( unsigned int a = 0; a < mesh.mFaces.size(); a++) { const ASE::Face& face = mesh.mFaces[a]; // assume it is a triangle aiVector3D* pV1 = &mesh.mPositions[face.mIndices[2]]; aiVector3D* pV2 = &mesh.mPositions[face.mIndices[1]]; aiVector3D* pV3 = &mesh.mPositions[face.mIndices[0]]; aiVector3D pDelta1 = *pV2 - *pV1; aiVector3D pDelta2 = *pV3 - *pV1; aiVector3D vNor = pDelta1 ^ pDelta2; mesh.mNormals[face.mIndices[0]] = vNor; mesh.mNormals[face.mIndices[1]] = vNor; mesh.mNormals[face.mIndices[2]] = vNor; } // calculate the position bounds so we have a reliable epsilon to // check position differences against // @Schrompf: This is the 7th time this snippet is repeated! aiVector3D minVec( 1e10f, 1e10f, 1e10f), maxVec( -1e10f, -1e10f, -1e10f); for( unsigned int a = 0; a < mesh.mPositions.size(); a++) { minVec.x = std::min( minVec.x, mesh.mPositions[a].x); minVec.y = std::min( minVec.y, mesh.mPositions[a].y); minVec.z = std::min( minVec.z, mesh.mPositions[a].z); maxVec.x = std::max( maxVec.x, mesh.mPositions[a].x); maxVec.y = std::max( maxVec.y, mesh.mPositions[a].y); maxVec.z = std::max( maxVec.z, mesh.mPositions[a].z); } const float posEpsilon = (maxVec - minVec).Length() * 1e-5f; std::vector avNormals; avNormals.resize(mesh.mNormals.size()); // now generate the spatial sort tree D3DSSpatialSorter sSort; for( std::vector::iterator i = mesh.mFaces.begin(); i != mesh.mFaces.end();++i){sSort.AddFace(&(*i),mesh.mPositions);} sSort.Prepare(); for( std::vector::iterator i = mesh.mFaces.begin(); i != mesh.mFaces.end();++i) { std::vector poResult; for (unsigned int c = 0; c < 3;++c) { sSort.FindPositions(mesh.mPositions[(*i).mIndices[c]],(*i).iSmoothGroup, posEpsilon,poResult); aiVector3D vNormals; float fDiv = 0.0f; for (std::vector::const_iterator a = poResult.begin(); a != poResult.end();++a) { vNormals += mesh.mNormals[(*a)]; fDiv += 1.0f; } vNormals.x /= fDiv;vNormals.y /= fDiv;vNormals.z /= fDiv; vNormals.Normalize(); avNormals[(*i).mIndices[c]] = vNormals; poResult.clear(); } } mesh.mNormals = avNormals; } return; }