/* Open Asset Import Library (assimp) ---------------------------------------------------------------------- Copyright (c) 2006-2024, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------- */ /** @file BlenderLoader.cpp * @brief Implementation of the Blender3D importer class. */ //#define ASSIMP_BUILD_NO_COMPRESSED_BLEND // Uncomment this to disable support for (gzip)compressed .BLEND files #ifndef ASSIMP_BUILD_NO_BLEND_IMPORTER #include "BlenderBMesh.h" #include "BlenderCustomData.h" #include "BlenderIntermediate.h" #include "BlenderModifier.h" #include #include #include #include #include #include #include #include #include // zlib is needed for compressed blend files #ifndef ASSIMP_BUILD_NO_COMPRESSED_BLEND #include "Common/Compression.h" #endif namespace Assimp { template <> const char *LogFunctions::Prefix() { return "BLEND: "; } } // namespace Assimp using namespace Assimp; using namespace Assimp::Blender; using namespace Assimp::Formatter; static constexpr aiImporterDesc blenderDesc = { "Blender 3D Importer (http://www.blender3d.org)", "", "", "No animation support yet", aiImporterFlags_SupportBinaryFlavour, 0, 0, 2, 50, "blend" }; // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer BlenderImporter::BlenderImporter() : modifier_cache(new BlenderModifierShowcase()) { // empty } // ------------------------------------------------------------------------------------------------ // Destructor, private as well BlenderImporter::~BlenderImporter() { delete modifier_cache; } static const char Token[] = "BLENDER"; // ------------------------------------------------------------------------------------------------ // Returns whether the class can handle the format of the given file. bool BlenderImporter::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool /*checkSig*/) const { return ParseMagicToken(pFile, pIOHandler).error.empty(); } // ------------------------------------------------------------------------------------------------ // Loader registry entry const aiImporterDesc *BlenderImporter::GetInfo() const { return &blenderDesc; } // ------------------------------------------------------------------------------------------------ // Setup configuration properties for the loader void BlenderImporter::SetupProperties(const Importer * /*pImp*/) { // nothing to be done for the moment } // ------------------------------------------------------------------------------------------------ // Imports the given file into the given scene structure. void BlenderImporter::InternReadFile(const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler) { FileDatabase file; StreamOrError streamOrError = ParseMagicToken(pFile, pIOHandler); if (!streamOrError.error.empty()) { ThrowException(streamOrError.error); } std::shared_ptr stream = std::move(streamOrError.stream); char version[4] = { 0 }; file.i64bit = (stream->Read(version, 1, 1), version[0] == '-'); file.little = (stream->Read(version, 1, 1), version[0] == 'v'); stream->Read(version, 3, 1); version[3] = '\0'; LogInfo("Blender version is ", version[0], ".", version + 1, " (64bit: ", file.i64bit ? "true" : "false", ", little endian: ", file.little ? "true" : "false", ")"); ParseBlendFile(file, std::move(stream)); Scene scene; ExtractScene(scene, file); ConvertBlendFile(pScene, scene, file); } // ------------------------------------------------------------------------------------------------ void BlenderImporter::ParseBlendFile(FileDatabase &out, std::shared_ptr stream) { out.reader = std::make_shared(stream, out.little); DNAParser dna_reader(out); const DNA *dna = nullptr; out.entries.reserve(128); { // even small BLEND files tend to consist of many file blocks SectionParser parser(*out.reader, out.i64bit); // first parse the file in search for the DNA and insert all other sections into the database while ((parser.Next(), 1)) { const FileBlockHead &head = parser.GetCurrent(); if (head.id == "ENDB") { break; // only valid end of the file } else if (head.id == "DNA1") { dna_reader.Parse(); dna = &dna_reader.GetDNA(); continue; } out.entries.push_back(head); } } if (!dna) { ThrowException("SDNA not found"); } std::sort(out.entries.begin(), out.entries.end()); } // ------------------------------------------------------------------------------------------------ void BlenderImporter::ExtractScene(Scene &out, const FileDatabase &file) { const FileBlockHead *block = nullptr; std::map::const_iterator it = file.dna.indices.find("Scene"); if (it == file.dna.indices.end()) { ThrowException("There is no `Scene` structure record"); } const Structure &ss = file.dna.structures[(*it).second]; // we need a scene somewhere to start with. for (const FileBlockHead &bl : file.entries) { // Fix: using the DNA index is more reliable to locate scenes //if (bl.id == "SC") { if (bl.dna_index == (*it).second) { block = &bl; break; } } if (!block) { ThrowException("There is not a single `Scene` record to load"); } file.reader->SetCurrentPos(block->start); ss.Convert(out, file); #ifndef ASSIMP_BUILD_BLENDER_NO_STATS ASSIMP_LOG_INFO( "(Stats) Fields read: ", file.stats().fields_read, ", pointers resolved: ", file.stats().pointers_resolved, ", cache hits: ", file.stats().cache_hits, ", cached objects: ", file.stats().cached_objects); #endif } // ------------------------------------------------------------------------------------------------ void BlenderImporter::ParseSubCollection(const Blender::Scene &in, aiNode *root, const std::shared_ptr& collection, ConversionData &conv_data) { std::deque root_objects; // Count number of objects for (std::shared_ptr cur = std::static_pointer_cast(collection->gobject.first); cur; cur = cur->next) { if (cur->ob) { root_objects.push_back(cur->ob); } } std::deque root_children; // Count number of child nodes for (std::shared_ptr cur = std::static_pointer_cast(collection->children.first); cur; cur = cur->next) { if (cur->collection) { root_children.push_back(cur->collection.get()); } } root->mNumChildren = static_cast(root_objects.size() + root_children.size()); root->mChildren = new aiNode *[root->mNumChildren](); for (unsigned int i = 0; i < static_cast(root_objects.size()); ++i) { root->mChildren[i] = ConvertNode(in, root_objects[i], conv_data, aiMatrix4x4()); root->mChildren[i]->mParent = root; } // For each subcollection create a new node to represent it unsigned int iterator = static_cast(root_objects.size()); for (std::shared_ptr cur = std::static_pointer_cast(collection->children.first); cur; cur = cur->next) { if (cur->collection) { root->mChildren[iterator] = new aiNode(cur->collection->id.name + 2); // skip over the name prefix 'OB' root->mChildren[iterator]->mParent = root; ParseSubCollection(in, root->mChildren[iterator], cur->collection, conv_data); } iterator += 1; } } // ------------------------------------------------------------------------------------------------ void BlenderImporter::ConvertBlendFile(aiScene *out, const Scene &in, const FileDatabase &file) { ConversionData conv(file); aiNode *root = out->mRootNode = new aiNode(""); // Iterate over all objects directly under master_collection, // If in.master_collection == null, then we're parsing something older. if (in.master_collection) { ParseSubCollection(in, root, in.master_collection, conv); } else { std::deque no_parents; for (std::shared_ptr cur = std::static_pointer_cast(in.base.first); cur; cur = cur->next) { if (cur->object) { if (!cur->object->parent) { no_parents.push_back(cur->object.get()); } else { conv.objects.insert(cur->object.get()); } } } for (std::shared_ptr cur = in.basact; cur; cur = cur->next) { if (cur->object) { if (cur->object->parent) { conv.objects.insert(cur->object.get()); } } } if (no_parents.empty()) { ThrowException("Expected at least one object with no parent"); } root->mNumChildren = static_cast(no_parents.size()); root->mChildren = new aiNode *[root->mNumChildren](); for (unsigned int i = 0; i < root->mNumChildren; ++i) { root->mChildren[i] = ConvertNode(in, no_parents[i], conv, aiMatrix4x4()); root->mChildren[i]->mParent = root; } } BuildMaterials(conv); if (conv.meshes->size()) { out->mMeshes = new aiMesh *[out->mNumMeshes = static_cast(conv.meshes->size())]; std::copy(conv.meshes->begin(), conv.meshes->end(), out->mMeshes); conv.meshes.dismiss(); } if (conv.lights->size()) { out->mLights = new aiLight *[out->mNumLights = static_cast(conv.lights->size())]; std::copy(conv.lights->begin(), conv.lights->end(), out->mLights); conv.lights.dismiss(); } if (conv.cameras->size()) { out->mCameras = new aiCamera *[out->mNumCameras = static_cast(conv.cameras->size())]; std::copy(conv.cameras->begin(), conv.cameras->end(), out->mCameras); conv.cameras.dismiss(); } if (conv.materials->size()) { out->mMaterials = new aiMaterial *[out->mNumMaterials = static_cast(conv.materials->size())]; std::copy(conv.materials->begin(), conv.materials->end(), out->mMaterials); conv.materials.dismiss(); } if (conv.textures->size()) { out->mTextures = new aiTexture *[out->mNumTextures = static_cast(conv.textures->size())]; std::copy(conv.textures->begin(), conv.textures->end(), out->mTextures); conv.textures.dismiss(); } // acknowledge that the scene might come out incomplete // by Assimp's definition of `complete`: blender scenes // can consist of thousands of cameras or lights with // not a single mesh between them. if (!out->mNumMeshes) { out->mFlags |= AI_SCENE_FLAGS_INCOMPLETE; } } // ------------------------------------------------------------------------------------------------ void BlenderImporter::ResolveImage(aiMaterial *out, const Material *mat, const MTex *tex, const Image *img, ConversionData &conv_data) { (void)mat; (void)tex; (void)conv_data; aiString name; // check if the file contents are bundled with the BLEND file if (img->packedfile) { name.data[0] = '*'; name.length = 1 + ASSIMP_itoa10(name.data + 1, static_cast(MAXLEN - 1), static_cast(conv_data.textures->size())); conv_data.textures->push_back(new aiTexture()); aiTexture *curTex = conv_data.textures->back(); // usually 'img->name' will be the original file name of the embedded textures, // so we can extract the file extension from it. const size_t nlen = strlen(img->name); const char *s = img->name + nlen, *e = s; while (s >= img->name && *s != '.') { --s; } curTex->achFormatHint[0] = s + 1 > e ? '\0' : (char)::tolower((unsigned char)s[1]); curTex->achFormatHint[1] = s + 2 > e ? '\0' : (char)::tolower((unsigned char)s[2]); curTex->achFormatHint[2] = s + 3 > e ? '\0' : (char)::tolower((unsigned char)s[3]); curTex->achFormatHint[3] = '\0'; // tex->mHeight = 0; curTex->mWidth = img->packedfile->size; uint8_t *ch = new uint8_t[curTex->mWidth]; conv_data.db.reader->SetCurrentPos(static_cast(img->packedfile->data->val)); conv_data.db.reader->CopyAndAdvance(ch, curTex->mWidth); curTex->pcData = reinterpret_cast(ch); LogInfo("Reading embedded texture, original file was ", img->name); } else { name = aiString(img->name); } aiTextureType texture_type = aiTextureType_UNKNOWN; MTex::MapType map_type = tex->mapto; if (map_type & MTex::MapType_COL) texture_type = aiTextureType_DIFFUSE; else if (map_type & MTex::MapType_NORM) { if (tex->tex->imaflag & Tex::ImageFlags_NORMALMAP) { texture_type = aiTextureType_NORMALS; } else { texture_type = aiTextureType_HEIGHT; } out->AddProperty(&tex->norfac, 1, AI_MATKEY_BUMPSCALING); } else if (map_type & MTex::MapType_COLSPEC) texture_type = aiTextureType_SPECULAR; else if (map_type & MTex::MapType_COLMIR) texture_type = aiTextureType_REFLECTION; //else if (map_type & MTex::MapType_REF) else if (map_type & MTex::MapType_SPEC) texture_type = aiTextureType_SHININESS; else if (map_type & MTex::MapType_EMIT) texture_type = aiTextureType_EMISSIVE; //else if (map_type & MTex::MapType_ALPHA) //else if (map_type & MTex::MapType_HAR) //else if (map_type & MTex::MapType_RAYMIRR) //else if (map_type & MTex::MapType_TRANSLU) else if (map_type & MTex::MapType_AMB) texture_type = aiTextureType_AMBIENT; else if (map_type & MTex::MapType_DISPLACE) texture_type = aiTextureType_DISPLACEMENT; //else if (map_type & MTex::MapType_WARP) out->AddProperty(&name, AI_MATKEY_TEXTURE(texture_type, conv_data.next_texture[texture_type]++)); } // ------------------------------------------------------------------------------------------------ void BlenderImporter::AddSentinelTexture(aiMaterial *out, const Material *mat, const MTex *tex, ConversionData &conv_data) { (void)mat; (void)tex; (void)conv_data; aiString name; name.length = ai_snprintf(name.data, MAXLEN, "Procedural,num=%i,type=%s", conv_data.sentinel_cnt++, GetTextureTypeDisplayString(tex->tex->type)); out->AddProperty(&name, AI_MATKEY_TEXTURE_DIFFUSE( conv_data.next_texture[aiTextureType_DIFFUSE]++)); } // ------------------------------------------------------------------------------------------------ void BlenderImporter::ResolveTexture(aiMaterial *out, const Material *mat, const MTex *tex, ConversionData &conv_data) { const Tex *rtex = tex->tex.get(); if (!rtex || !rtex->type) { return; } // We can't support most of the texture types because they're mostly procedural. // These are substituted by a dummy texture. const char *dispnam = ""; switch (rtex->type) { // these are listed in blender's UI case Tex::Type_CLOUDS: case Tex::Type_WOOD: case Tex::Type_MARBLE: case Tex::Type_MAGIC: case Tex::Type_BLEND: case Tex::Type_STUCCI: case Tex::Type_NOISE: case Tex::Type_PLUGIN: case Tex::Type_MUSGRAVE: case Tex::Type_VORONOI: case Tex::Type_DISTNOISE: case Tex::Type_ENVMAP: // these do no appear in the UI, why? case Tex::Type_POINTDENSITY: case Tex::Type_VOXELDATA: LogWarn("Encountered a texture with an unsupported type: ", dispnam); AddSentinelTexture(out, mat, tex, conv_data); break; case Tex::Type_IMAGE: if (!rtex->ima) { LogError("A texture claims to be an Image, but no image reference is given"); break; } ResolveImage(out, mat, tex, rtex->ima.get(), conv_data); break; default: ai_assert(false); }; } // ------------------------------------------------------------------------------------------------ void BlenderImporter::BuildDefaultMaterial(Blender::ConversionData &conv_data) { // add a default material if necessary unsigned int index = static_cast(-1); for (aiMesh *mesh : conv_data.meshes.get()) { if (mesh->mMaterialIndex == static_cast(-1)) { if (index == static_cast(-1)) { // Setup a default material. std::shared_ptr p(new Material()); ai_assert(::strlen(AI_DEFAULT_MATERIAL_NAME) < sizeof(p->id.name) - 2); strcpy(p->id.name + 2, AI_DEFAULT_MATERIAL_NAME); // Note: MSVC11 does not zero-initialize Material here, although it should. // Thus all relevant fields should be explicitly initialized. We cannot add // a default constructor to Material since the DNA codegen does not support // parsing it. p->r = p->g = p->b = 0.6f; p->specr = p->specg = p->specb = 0.6f; p->ambr = p->ambg = p->ambb = 0.0f; p->mirr = p->mirg = p->mirb = 0.0f; p->emit = 0.f; p->alpha = 0.f; p->har = 0; index = static_cast(conv_data.materials_raw.size()); conv_data.materials_raw.push_back(p); LogInfo("Adding default material"); } mesh->mMaterialIndex = index; } } } void BlenderImporter::AddBlendParams(aiMaterial *result, const Material *source) { aiColor3D diffuseColor(source->r, source->g, source->b); result->AddProperty(&diffuseColor, 1, "$mat.blend.diffuse.color", 0, 0); float diffuseIntensity = source->ref; result->AddProperty(&diffuseIntensity, 1, "$mat.blend.diffuse.intensity", 0, 0); int diffuseShader = source->diff_shader; result->AddProperty(&diffuseShader, 1, "$mat.blend.diffuse.shader", 0, 0); int diffuseRamp = 0; result->AddProperty(&diffuseRamp, 1, "$mat.blend.diffuse.ramp", 0, 0); aiColor3D specularColor(source->specr, source->specg, source->specb); result->AddProperty(&specularColor, 1, "$mat.blend.specular.color", 0, 0); float specularIntensity = source->spec; result->AddProperty(&specularIntensity, 1, "$mat.blend.specular.intensity", 0, 0); int specularShader = source->spec_shader; result->AddProperty(&specularShader, 1, "$mat.blend.specular.shader", 0, 0); int specularRamp = 0; result->AddProperty(&specularRamp, 1, "$mat.blend.specular.ramp", 0, 0); int specularHardness = source->har; result->AddProperty(&specularHardness, 1, "$mat.blend.specular.hardness", 0, 0); int transparencyUse = source->mode & MA_TRANSPARENCY ? 1 : 0; result->AddProperty(&transparencyUse, 1, "$mat.blend.transparency.use", 0, 0); int transparencyMethod = source->mode & MA_RAYTRANSP ? 2 : (source->mode & MA_ZTRANSP ? 1 : 0); result->AddProperty(&transparencyMethod, 1, "$mat.blend.transparency.method", 0, 0); float transparencyAlpha = source->alpha; result->AddProperty(&transparencyAlpha, 1, "$mat.blend.transparency.alpha", 0, 0); float transparencySpecular = source->spectra; result->AddProperty(&transparencySpecular, 1, "$mat.blend.transparency.specular", 0, 0); float transparencyFresnel = source->fresnel_tra; result->AddProperty(&transparencyFresnel, 1, "$mat.blend.transparency.fresnel", 0, 0); float transparencyBlend = source->fresnel_tra_i; result->AddProperty(&transparencyBlend, 1, "$mat.blend.transparency.blend", 0, 0); float transparencyIor = source->ang; result->AddProperty(&transparencyIor, 1, "$mat.blend.transparency.ior", 0, 0); float transparencyFilter = source->filter; result->AddProperty(&transparencyFilter, 1, "$mat.blend.transparency.filter", 0, 0); float transparencyFalloff = source->tx_falloff; result->AddProperty(&transparencyFalloff, 1, "$mat.blend.transparency.falloff", 0, 0); float transparencyLimit = source->tx_limit; result->AddProperty(&transparencyLimit, 1, "$mat.blend.transparency.limit", 0, 0); int transparencyDepth = source->ray_depth_tra; result->AddProperty(&transparencyDepth, 1, "$mat.blend.transparency.depth", 0, 0); float transparencyGlossAmount = source->gloss_tra; result->AddProperty(&transparencyGlossAmount, 1, "$mat.blend.transparency.glossAmount", 0, 0); float transparencyGlossThreshold = source->adapt_thresh_tra; result->AddProperty(&transparencyGlossThreshold, 1, "$mat.blend.transparency.glossThreshold", 0, 0); int transparencyGlossSamples = source->samp_gloss_tra; result->AddProperty(&transparencyGlossSamples, 1, "$mat.blend.transparency.glossSamples", 0, 0); int mirrorUse = source->mode & MA_RAYMIRROR ? 1 : 0; result->AddProperty(&mirrorUse, 1, "$mat.blend.mirror.use", 0, 0); float mirrorReflectivity = source->ray_mirror; result->AddProperty(&mirrorReflectivity, 1, "$mat.blend.mirror.reflectivity", 0, 0); aiColor3D mirrorColor(source->mirr, source->mirg, source->mirb); result->AddProperty(&mirrorColor, 1, "$mat.blend.mirror.color", 0, 0); float mirrorFresnel = source->fresnel_mir; result->AddProperty(&mirrorFresnel, 1, "$mat.blend.mirror.fresnel", 0, 0); float mirrorBlend = source->fresnel_mir_i; result->AddProperty(&mirrorBlend, 1, "$mat.blend.mirror.blend", 0, 0); int mirrorDepth = source->ray_depth; result->AddProperty(&mirrorDepth, 1, "$mat.blend.mirror.depth", 0, 0); float mirrorMaxDist = source->dist_mir; result->AddProperty(&mirrorMaxDist, 1, "$mat.blend.mirror.maxDist", 0, 0); int mirrorFadeTo = source->fadeto_mir; result->AddProperty(&mirrorFadeTo, 1, "$mat.blend.mirror.fadeTo", 0, 0); float mirrorGlossAmount = source->gloss_mir; result->AddProperty(&mirrorGlossAmount, 1, "$mat.blend.mirror.glossAmount", 0, 0); float mirrorGlossThreshold = source->adapt_thresh_mir; result->AddProperty(&mirrorGlossThreshold, 1, "$mat.blend.mirror.glossThreshold", 0, 0); int mirrorGlossSamples = source->samp_gloss_mir; result->AddProperty(&mirrorGlossSamples, 1, "$mat.blend.mirror.glossSamples", 0, 0); float mirrorGlossAnisotropic = source->aniso_gloss_mir; result->AddProperty(&mirrorGlossAnisotropic, 1, "$mat.blend.mirror.glossAnisotropic", 0, 0); } void BlenderImporter::BuildMaterials(ConversionData &conv_data) { conv_data.materials->reserve(conv_data.materials_raw.size()); BuildDefaultMaterial(conv_data); for (const std::shared_ptr &mat : conv_data.materials_raw) { // reset per material global counters for (size_t i = 0; i < sizeof(conv_data.next_texture) / sizeof(conv_data.next_texture[0]); ++i) { conv_data.next_texture[i] = 0; } aiMaterial *mout = new aiMaterial(); conv_data.materials->push_back(mout); // For any new material field handled here, the default material above must be updated with an appropriate default value. // set material name aiString name = aiString(mat->id.name + 2); // skip over the name prefix 'MA' mout->AddProperty(&name, AI_MATKEY_NAME); // basic material colors aiColor3D col(mat->r, mat->g, mat->b); if (mat->r || mat->g || mat->b) { // Usually, zero diffuse color means no diffuse color at all in the equation. // So we omit this member to express this intent. mout->AddProperty(&col, 1, AI_MATKEY_COLOR_DIFFUSE); if (mat->emit) { aiColor3D emit_col(mat->emit * mat->r, mat->emit * mat->g, mat->emit * mat->b); mout->AddProperty(&emit_col, 1, AI_MATKEY_COLOR_EMISSIVE); } } col = aiColor3D(mat->specr, mat->specg, mat->specb); mout->AddProperty(&col, 1, AI_MATKEY_COLOR_SPECULAR); // is hardness/shininess set? if (mat->har) { const float har = mat->har; mout->AddProperty(&har, 1, AI_MATKEY_SHININESS); } col = aiColor3D(mat->ambr, mat->ambg, mat->ambb); mout->AddProperty(&col, 1, AI_MATKEY_COLOR_AMBIENT); // is mirror enabled? if (mat->mode & MA_RAYMIRROR) { const float ray_mirror = mat->ray_mirror; mout->AddProperty(&ray_mirror, 1, AI_MATKEY_REFLECTIVITY); } col = aiColor3D(mat->mirr, mat->mirg, mat->mirb); mout->AddProperty(&col, 1, AI_MATKEY_COLOR_REFLECTIVE); for (size_t i = 0; i < sizeof(mat->mtex) / sizeof(mat->mtex[0]); ++i) { if (!mat->mtex[i]) { continue; } ResolveTexture(mout, mat.get(), mat->mtex[i].get(), conv_data); } AddBlendParams(mout, mat.get()); } } // ------------------------------------------------------------------------------------------------ void BlenderImporter::CheckActualType(const ElemBase *dt, const char *check) { ai_assert(dt); if (strcmp(dt->dna_type, check)) { ThrowException("Expected object at ", std::hex, dt, " to be of type `", check, "`, but it claims to be a `", dt->dna_type, "`instead"); } } // ------------------------------------------------------------------------------------------------ void BlenderImporter::NotSupportedObjectType(const Object *obj, const char *type) { LogWarn("Object `", obj->id.name, "` - type is unsupported: `", type, "`, skipping"); } // ------------------------------------------------------------------------------------------------ void BlenderImporter::ConvertMesh(const Scene & /*in*/, const Object * /*obj*/, const Mesh *mesh, ConversionData &conv_data, TempArray &temp) { // TODO: Resolve various problems with BMesh triangulation before re-enabling. // See issues #400, #373, #318 #315 and #132. #if defined(TODO_FIX_BMESH_CONVERSION) BlenderBMeshConverter BMeshConverter(mesh); if (BMeshConverter.ContainsBMesh()) { mesh = BMeshConverter.TriangulateBMesh(); } #endif typedef std::pair MyPair; if ((!mesh->totface && !mesh->totloop) || !mesh->totvert) { return; } // some sanity checks if (static_cast(mesh->totface) > mesh->mface.size()) { ThrowException("Number of faces is larger than the corresponding array"); } if (static_cast(mesh->totvert) > mesh->mvert.size()) { ThrowException("Number of vertices is larger than the corresponding array"); } if (static_cast(mesh->totloop) > mesh->mloop.size()) { ThrowException("Number of vertices is larger than the corresponding array"); } // collect per-submesh numbers std::map per_mat; std::map per_mat_verts; for (int i = 0; i < mesh->totface; ++i) { const MFace &mf = mesh->mface[i]; per_mat[mf.mat_nr]++; per_mat_verts[mf.mat_nr] += mf.v4 ? 4 : 3; } for (int i = 0; i < mesh->totpoly; ++i) { const MPoly &mp = mesh->mpoly[i]; per_mat[mp.mat_nr]++; per_mat_verts[mp.mat_nr] += mp.totloop; } // ... and allocate the corresponding meshes const size_t old = temp->size(); temp->reserve(temp->size() + per_mat.size()); std::map mat_num_to_mesh_idx; for (MyPair &it : per_mat) { mat_num_to_mesh_idx[it.first] = temp->size(); temp->push_back(new aiMesh()); aiMesh *out = temp->back(); out->mVertices = new aiVector3D[per_mat_verts[it.first]]; out->mNormals = new aiVector3D[per_mat_verts[it.first]]; //out->mNumFaces = 0 //out->mNumVertices = 0 out->mFaces = new aiFace[it.second](); // all sub-meshes created from this mesh are named equally. this allows // curious users to recover the original adjacency. out->mName = aiString(mesh->id.name + 2); // skip over the name prefix 'ME' // resolve the material reference and add this material to the set of // output materials. The (temporary) material index is the index // of the material entry within the list of resolved materials. if (mesh->mat) { if (static_cast(it.first) >= mesh->mat.size()) { ThrowException("Material index is out of range"); } std::shared_ptr mat = mesh->mat[it.first]; const std::deque>::iterator has = std::find( conv_data.materials_raw.begin(), conv_data.materials_raw.end(), mat); if (has != conv_data.materials_raw.end()) { out->mMaterialIndex = static_cast(std::distance(conv_data.materials_raw.begin(), has)); } else { out->mMaterialIndex = static_cast(conv_data.materials_raw.size()); conv_data.materials_raw.push_back(mat); } } else out->mMaterialIndex = static_cast(-1); } for (int i = 0; i < mesh->totface; ++i) { const MFace &mf = mesh->mface[i]; aiMesh *const out = temp[mat_num_to_mesh_idx[mf.mat_nr]]; aiFace &f = out->mFaces[out->mNumFaces++]; f.mIndices = new unsigned int[f.mNumIndices = mf.v4 ? 4 : 3]; aiVector3D *vo = out->mVertices + out->mNumVertices; aiVector3D *vn = out->mNormals + out->mNumVertices; // XXX we can't fold this easily, because we are restricted // to the member names from the BLEND file (v1,v2,v3,v4) // which are assigned by the genblenddna.py script and // cannot be changed without breaking the entire // import process. if (mf.v1 >= mesh->totvert) { ThrowException("Vertex index v1 out of range"); } const MVert *v = &mesh->mvert[mf.v1]; vo->x = v->co[0]; vo->y = v->co[1]; vo->z = v->co[2]; vn->x = v->no[0]; vn->y = v->no[1]; vn->z = v->no[2]; f.mIndices[0] = out->mNumVertices++; ++vo; ++vn; // if (f.mNumIndices >= 2) { if (mf.v2 >= mesh->totvert) { ThrowException("Vertex index v2 out of range"); } v = &mesh->mvert[mf.v2]; vo->x = v->co[0]; vo->y = v->co[1]; vo->z = v->co[2]; vn->x = v->no[0]; vn->y = v->no[1]; vn->z = v->no[2]; f.mIndices[1] = out->mNumVertices++; ++vo; ++vn; if (mf.v3 >= mesh->totvert) { ThrowException("Vertex index v3 out of range"); } // if (f.mNumIndices >= 3) { v = &mesh->mvert[mf.v3]; vo->x = v->co[0]; vo->y = v->co[1]; vo->z = v->co[2]; vn->x = v->no[0]; vn->y = v->no[1]; vn->z = v->no[2]; f.mIndices[2] = out->mNumVertices++; ++vo; ++vn; if (mf.v4 >= mesh->totvert) { ThrowException("Vertex index v4 out of range"); } // if (f.mNumIndices >= 4) { if (mf.v4) { v = &mesh->mvert[mf.v4]; vo->x = v->co[0]; vo->y = v->co[1]; vo->z = v->co[2]; vn->x = v->no[0]; vn->y = v->no[1]; vn->z = v->no[2]; f.mIndices[3] = out->mNumVertices++; ++vo; ++vn; out->mPrimitiveTypes |= aiPrimitiveType_POLYGON; } else out->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE; // } // } // } } for (int i = 0; i < mesh->totpoly; ++i) { const MPoly &mf = mesh->mpoly[i]; aiMesh *const out = temp[mat_num_to_mesh_idx[mf.mat_nr]]; aiFace &f = out->mFaces[out->mNumFaces++]; f.mIndices = new unsigned int[f.mNumIndices = mf.totloop]; aiVector3D *vo = out->mVertices + out->mNumVertices; aiVector3D *vn = out->mNormals + out->mNumVertices; // XXX we can't fold this easily, because we are restricted // to the member names from the BLEND file (v1,v2,v3,v4) // which are assigned by the genblenddna.py script and // cannot be changed without breaking the entire // import process. for (int j = 0; j < mf.totloop; ++j) { const MLoop &loop = mesh->mloop[mf.loopstart + j]; if (loop.v >= mesh->totvert) { ThrowException("Vertex index out of range"); } const MVert &v = mesh->mvert[loop.v]; vo->x = v.co[0]; vo->y = v.co[1]; vo->z = v.co[2]; vn->x = v.no[0]; vn->y = v.no[1]; vn->z = v.no[2]; f.mIndices[j] = out->mNumVertices++; ++vo; ++vn; } if (mf.totloop == 3) { out->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE; } else { out->mPrimitiveTypes |= aiPrimitiveType_POLYGON; } } // TODO should we create the TextureUVMapping map in Convert to prevent redundant processing? // create texture <-> uvname mapping for all materials // key is texture number, value is data * typedef std::map TextureUVMapping; // key is material number, value is the TextureUVMapping for the material typedef std::map MaterialTextureUVMappings; MaterialTextureUVMappings matTexUvMappings; const uint32_t maxMat = static_cast(mesh->mat.size()); for (uint32_t m = 0; m < maxMat; ++m) { // get material by index const std::shared_ptr pMat = mesh->mat[m]; TextureUVMapping texuv; const uint32_t maxTex = sizeof(pMat->mtex) / sizeof(pMat->mtex[0]); for (uint32_t t = 0; t < maxTex; ++t) { if (pMat->mtex[t] && pMat->mtex[t]->uvname[0]) { // get the CustomData layer for given uvname and correct type const ElemBase *pLoop = getCustomDataLayerData(mesh->ldata, CD_MLOOPUV, pMat->mtex[t]->uvname); if (pLoop) { texuv.insert(std::make_pair(t, dynamic_cast(pLoop))); } } } if (texuv.size()) { matTexUvMappings.insert(std::make_pair(m, texuv)); } } // collect texture coordinates, they're stored in a separate per-face buffer if (mesh->mtface || mesh->mloopuv) { if (mesh->totface > static_cast(mesh->mtface.size())) { ThrowException("Number of UV faces is larger than the corresponding UV face array (#1)"); } for (std::vector::iterator it = temp->begin() + old; it != temp->end(); ++it) { ai_assert(0 != (*it)->mNumVertices); ai_assert(0 != (*it)->mNumFaces); const auto itMatTexUvMapping = matTexUvMappings.find((*it)->mMaterialIndex); if (itMatTexUvMapping == matTexUvMappings.end()) { // default behaviour like before (*it)->mTextureCoords[0] = new aiVector3D[(*it)->mNumVertices]; } else { // create texture coords for every mapped tex for (uint32_t i = 0; i < itMatTexUvMapping->second.size(); ++i) { (*it)->mTextureCoords[i] = new aiVector3D[(*it)->mNumVertices]; } } (*it)->mNumFaces = (*it)->mNumVertices = 0; } for (int i = 0; i < mesh->totface; ++i) { const MTFace *v = &mesh->mtface[i]; aiMesh *const out = temp[mat_num_to_mesh_idx[mesh->mface[i].mat_nr]]; const aiFace &f = out->mFaces[out->mNumFaces++]; aiVector3D *vo = &out->mTextureCoords[0][out->mNumVertices]; for (unsigned int j = 0; j < f.mNumIndices; ++j, ++vo, ++out->mNumVertices) { vo->x = v->uv[j][0]; vo->y = v->uv[j][1]; } } for (int i = 0; i < mesh->totpoly; ++i) { const MPoly &v = mesh->mpoly[i]; aiMesh *const out = temp[mat_num_to_mesh_idx[v.mat_nr]]; const aiFace &f = out->mFaces[out->mNumFaces++]; const auto itMatTexUvMapping = matTexUvMappings.find(v.mat_nr); if (itMatTexUvMapping == matTexUvMappings.end()) { // old behavior aiVector3D *vo = &out->mTextureCoords[0][out->mNumVertices]; for (unsigned int j = 0; j < f.mNumIndices; ++j, ++vo, ++out->mNumVertices) { const MLoopUV &uv = mesh->mloopuv[v.loopstart + j]; vo->x = uv.uv[0]; vo->y = uv.uv[1]; } } else { // create textureCoords for every mapped tex for (uint32_t m = 0; m < itMatTexUvMapping->second.size(); ++m) { const MLoopUV *tm = itMatTexUvMapping->second[m]; aiVector3D *vo = &out->mTextureCoords[m][out->mNumVertices]; uint32_t j = 0; for (; j < f.mNumIndices; ++j, ++vo) { const MLoopUV &uv = tm[v.loopstart + j]; vo->x = uv.uv[0]; vo->y = uv.uv[1]; } // only update written mNumVertices in last loop // TODO why must the numVertices be incremented here? if (m == itMatTexUvMapping->second.size() - 1) { out->mNumVertices += j; } } } } } // collect texture coordinates, old-style (marked as deprecated in current blender sources) if (mesh->tface) { if (mesh->totface > static_cast(mesh->tface.size())) { ThrowException("Number of faces is larger than the corresponding UV face array (#2)"); } for (std::vector::iterator it = temp->begin() + old; it != temp->end(); ++it) { ai_assert(0 != (*it)->mNumVertices); ai_assert(0 != (*it)->mNumFaces); (*it)->mTextureCoords[0] = new aiVector3D[(*it)->mNumVertices]; (*it)->mNumFaces = (*it)->mNumVertices = 0; } for (int i = 0; i < mesh->totface; ++i) { const TFace *v = &mesh->tface[i]; aiMesh *const out = temp[mat_num_to_mesh_idx[mesh->mface[i].mat_nr]]; const aiFace &f = out->mFaces[out->mNumFaces++]; aiVector3D *vo = &out->mTextureCoords[0][out->mNumVertices]; for (unsigned int j = 0; j < f.mNumIndices; ++j, ++vo, ++out->mNumVertices) { vo->x = v->uv[j][0]; vo->y = v->uv[j][1]; } } } // collect vertex colors, stored separately as well if (mesh->mcol || mesh->mloopcol) { if (mesh->totface > static_cast((mesh->mcol.size() / 4))) { ThrowException("Number of faces is larger than the corresponding color face array"); } for (std::vector::iterator it = temp->begin() + old; it != temp->end(); ++it) { ai_assert(0 != (*it)->mNumVertices); ai_assert(0 != (*it)->mNumFaces); (*it)->mColors[0] = new aiColor4D[(*it)->mNumVertices]; (*it)->mNumFaces = (*it)->mNumVertices = 0; } for (int i = 0; i < mesh->totface; ++i) { aiMesh *const out = temp[mat_num_to_mesh_idx[mesh->mface[i].mat_nr]]; const aiFace &f = out->mFaces[out->mNumFaces++]; aiColor4D *vo = &out->mColors[0][out->mNumVertices]; for (unsigned int n = 0; n < f.mNumIndices; ++n, ++vo, ++out->mNumVertices) { const MCol *col = &mesh->mcol[(i << 2) + n]; vo->r = col->r; vo->g = col->g; vo->b = col->b; vo->a = col->a; } for (unsigned int n = f.mNumIndices; n < 4; ++n) ; } for (int i = 0; i < mesh->totpoly; ++i) { const MPoly &v = mesh->mpoly[i]; aiMesh *const out = temp[mat_num_to_mesh_idx[v.mat_nr]]; const aiFace &f = out->mFaces[out->mNumFaces++]; aiColor4D *vo = &out->mColors[0][out->mNumVertices]; const ai_real scaleZeroToOne = 1.f / 255.f; for (unsigned int j = 0; j < f.mNumIndices; ++j, ++vo, ++out->mNumVertices) { const MLoopCol &col = mesh->mloopcol[v.loopstart + j]; vo->r = ai_real(col.r) * scaleZeroToOne; vo->g = ai_real(col.g) * scaleZeroToOne; vo->b = ai_real(col.b) * scaleZeroToOne; vo->a = ai_real(col.a) * scaleZeroToOne; } } } return; } // ------------------------------------------------------------------------------------------------ aiCamera *BlenderImporter::ConvertCamera(const Scene & /*in*/, const Object *obj, const Camera *cam, ConversionData & /*conv_data*/) { std::unique_ptr out(new aiCamera()); out->mName = obj->id.name + 2; out->mPosition = aiVector3D(0.f, 0.f, 0.f); out->mUp = aiVector3D(0.f, 1.f, 0.f); out->mLookAt = aiVector3D(0.f, 0.f, -1.f); if (cam->sensor_x && cam->lens) { out->mHorizontalFOV = 2.f * std::atan2(cam->sensor_x, 2.f * cam->lens); } out->mClipPlaneNear = cam->clipsta; out->mClipPlaneFar = cam->clipend; return out.release(); } // ------------------------------------------------------------------------------------------------ aiLight *BlenderImporter::ConvertLight(const Scene & /*in*/, const Object *obj, const Lamp *lamp, ConversionData & /*conv_data*/) { std::unique_ptr out(new aiLight()); out->mName = obj->id.name + 2; switch (lamp->type) { case Lamp::Type_Local: out->mType = aiLightSource_POINT; break; case Lamp::Type_Spot: out->mType = aiLightSource_SPOT; // blender orients directional lights as facing toward -z out->mDirection = aiVector3D(0.f, 0.f, -1.f); out->mUp = aiVector3D(0.f, 1.f, 0.f); out->mAngleInnerCone = lamp->spotsize * (1.0f - lamp->spotblend); out->mAngleOuterCone = lamp->spotsize; break; case Lamp::Type_Sun: out->mType = aiLightSource_DIRECTIONAL; // blender orients directional lights as facing toward -z out->mDirection = aiVector3D(0.f, 0.f, -1.f); out->mUp = aiVector3D(0.f, 1.f, 0.f); break; case Lamp::Type_Area: out->mType = aiLightSource_AREA; if (lamp->area_shape == 0) { out->mSize = aiVector2D(lamp->area_size, lamp->area_size); } else { out->mSize = aiVector2D(lamp->area_size, lamp->area_sizey); } // blender orients directional lights as facing toward -z out->mDirection = aiVector3D(0.f, 0.f, -1.f); out->mUp = aiVector3D(0.f, 1.f, 0.f); break; default: break; } out->mColorAmbient = aiColor3D(lamp->r, lamp->g, lamp->b) * lamp->energy; out->mColorSpecular = aiColor3D(lamp->r, lamp->g, lamp->b) * lamp->energy; out->mColorDiffuse = aiColor3D(lamp->r, lamp->g, lamp->b) * lamp->energy; // If default values are supplied, compute the coefficients from light's max distance // Read this: https://imdoingitwrong.wordpress.com/2011/01/31/light-attenuation/ // if (lamp->constant_coefficient == 1.0f && lamp->linear_coefficient == 0.0f && lamp->quadratic_coefficient == 0.0f && lamp->dist > 0.0f) { out->mAttenuationConstant = 1.0f; out->mAttenuationLinear = 2.0f / lamp->dist; out->mAttenuationQuadratic = 1.0f / (lamp->dist * lamp->dist); } else { out->mAttenuationConstant = lamp->constant_coefficient; out->mAttenuationLinear = lamp->linear_coefficient; out->mAttenuationQuadratic = lamp->quadratic_coefficient; } return out.release(); } // ------------------------------------------------------------------------------------------------ aiNode *BlenderImporter::ConvertNode(const Scene &in, const Object *obj, ConversionData &conv_data, const aiMatrix4x4 &parentTransform) { std::deque children; for (ObjectSet::iterator it = conv_data.objects.begin(); it != conv_data.objects.end();) { const Object *object = *it; if (object->parent == obj) { children.push_back(object); conv_data.objects.erase(it++); continue; } ++it; } std::unique_ptr node(new aiNode(obj->id.name + 2)); // skip over the name prefix 'OB' if (obj->data) { switch (obj->type) { case Object ::Type_EMPTY: break; // do nothing // supported object types case Object ::Type_MESH: { const size_t old = conv_data.meshes->size(); CheckActualType(obj->data.get(), "Mesh"); ConvertMesh(in, obj, static_cast(obj->data.get()), conv_data, conv_data.meshes); if (conv_data.meshes->size() > old) { node->mMeshes = new unsigned int[node->mNumMeshes = static_cast(conv_data.meshes->size() - old)]; for (unsigned int i = 0; i < node->mNumMeshes; ++i) { node->mMeshes[i] = static_cast(i + old); } } } break; case Object ::Type_LAMP: { CheckActualType(obj->data.get(), "Lamp"); aiLight *mesh = ConvertLight(in, obj, static_cast(obj->data.get()), conv_data); if (mesh) { conv_data.lights->push_back(mesh); } } break; case Object ::Type_CAMERA: { CheckActualType(obj->data.get(), "Camera"); aiCamera *mesh = ConvertCamera(in, obj, static_cast(obj->data.get()), conv_data); if (mesh) { conv_data.cameras->push_back(mesh); } } break; // unsupported object types / log, but do not break case Object ::Type_CURVE: NotSupportedObjectType(obj, "Curve"); break; case Object ::Type_SURF: NotSupportedObjectType(obj, "Surface"); break; case Object ::Type_FONT: NotSupportedObjectType(obj, "Font"); break; case Object ::Type_MBALL: NotSupportedObjectType(obj, "MetaBall"); break; case Object ::Type_WAVE: NotSupportedObjectType(obj, "Wave"); break; case Object ::Type_LATTICE: NotSupportedObjectType(obj, "Lattice"); break; // invalid or unknown type default: break; } } for (unsigned int x = 0; x < 4; ++x) { for (unsigned int y = 0; y < 4; ++y) { node->mTransformation[y][x] = obj->obmat[x][y]; } } aiMatrix4x4 m = parentTransform; m = m.Inverse(); node->mTransformation = m * node->mTransformation; if (children.size()) { node->mNumChildren = static_cast(children.size()); aiNode **nd = node->mChildren = new aiNode *[node->mNumChildren](); for (const Object *nobj : children) { *nd = ConvertNode(in, nobj, conv_data, node->mTransformation * parentTransform); (*nd++)->mParent = node.get(); } } // apply modifiers modifier_cache->ApplyModifiers(*node, conv_data, in, *obj); return node.release(); } BlenderImporter::StreamOrError BlenderImporter::ParseMagicToken(const std::string &pFile, IOSystem *pIOHandler) const { std::shared_ptr stream(pIOHandler->Open(pFile, "rb")); if (stream == nullptr) { return {{}, {}, "Could not open file for reading"}; } char magic[8] = { 0 }; stream->Read(magic, 7, 1); if (strcmp(magic, Token) == 0) { return {stream, {}, {}}; } // Check for presence of the gzip header. If yes, assume it is a // compressed blend file and try uncompressing it, else fail. This is to // avoid uncompressing random files which our loader might end up with. #ifdef ASSIMP_BUILD_NO_COMPRESSED_BLEND return {{}, {}, "BLENDER magic bytes are missing, is this file compressed (Assimp was built without decompression support)?"}; #else if (magic[0] != 0x1f || static_cast(magic[1]) != 0x8b) { return {{}, {}, "BLENDER magic bytes are missing, couldn't find GZIP header either"}; } LogDebug("Found no BLENDER magic word but a GZIP header, might be a compressed file"); if (magic[2] != 8) { return {{}, {}, "Unsupported GZIP compression method"}; } // http://www.gzip.org/zlib/rfc-gzip.html#header-trailer stream->Seek(0L, aiOrigin_SET); std::shared_ptr reader = std::shared_ptr(new StreamReaderLE(stream)); size_t total = 0; Compression compression; auto uncompressed = std::make_shared>(); if (compression.open(Compression::Format::Binary, Compression::FlushMode::NoFlush, 16 + Compression::MaxWBits)) { total = compression.decompress((unsigned char *)reader->GetPtr(), reader->GetRemainingSize(), *uncompressed); compression.close(); } // replace the input stream with a memory stream stream = std::make_shared(reinterpret_cast(uncompressed->data()), total); // .. and retry stream->Read(magic, 7, 1); if (strcmp(magic, Token) == 0) { return {stream, uncompressed, {}}; } return {{}, {}, "Found no BLENDER magic word in decompressed GZIP file"}; #endif } #endif // ASSIMP_BUILD_NO_BLEND_IMPORTER