/** @file Quaternion structure, including operators when compiling in C++ */ #ifndef AI_QUATERNION_H_INC #define AI_QUATERNION_H_INC #include #include "aiTypes.h" #ifdef __cplusplus extern "C" { #endif // --------------------------------------------------------------------------- /** Represents a quaternion in a 4D vector. */ struct aiQuaternion { #ifdef __cplusplus aiQuaternion() : w(0.0f), x(0.0f), y(0.0f), z(0.0f) {} aiQuaternion(float _w, float _x, float _y, float _z) : w(_w), x(_x), y(_y), z(_z) {} /** Construct from rotation matrix. Result is undefined if the matrix is not orthonormal. */ aiQuaternion( const aiMatrix3x3& pRotMatrix); /** Returns a matrix representation of the quaternion */ aiMatrix3x3 GetMatrix() const; #endif // __cplusplus //! w,x,y,z components of the quaternion float w, x, y, z; } ; #ifdef __cplusplus // --------------------------------------------------------------------------- // Constructs a quaternion from a rotation matrix inline aiQuaternion::aiQuaternion( const aiMatrix3x3 &pRotMatrix) { float t = 1 + pRotMatrix.a1 + pRotMatrix.b2 + pRotMatrix.c3; // large enough if( t > 0.00001f) { float s = sqrt( t) * 2.0f; x = (pRotMatrix.b3 - pRotMatrix.c2) / s; y = (pRotMatrix.c1 - pRotMatrix.a3) / s; z = (pRotMatrix.a2 - pRotMatrix.b1) / s; w = 0.25f * s; } // else we have to check several cases else if( pRotMatrix.a1 > pRotMatrix.b2 && pRotMatrix.a1 > pRotMatrix.c3 ) { // Column 0: float s = sqrt( 1.0f + pRotMatrix.a1 - pRotMatrix.b2 - pRotMatrix.c3) * 2.0f; x = 0.25f * s; y = (pRotMatrix.a2 + pRotMatrix.b1) / s; z = (pRotMatrix.c1 + pRotMatrix.a3) / s; w = (pRotMatrix.b3 - pRotMatrix.c2) / s; } else if( pRotMatrix.b2 > pRotMatrix.c3) { // Column 1: float s = sqrt( 1.0f + pRotMatrix.b2 - pRotMatrix.a1 - pRotMatrix.c3) * 2.0f; x = (pRotMatrix.a2 + pRotMatrix.b1) / s; y = 0.25f * s; z = (pRotMatrix.b3 + pRotMatrix.c2) / s; w = (pRotMatrix.c1 - pRotMatrix.a3) / s; } else { // Column 2: float s = sqrt( 1.0f + pRotMatrix.c3 - pRotMatrix.a1 - pRotMatrix.b2) * 2.0f; x = (pRotMatrix.c1 + pRotMatrix.a3) / s; y = (pRotMatrix.b3 + pRotMatrix.c2) / s; z = 0.25f * s; w = (pRotMatrix.a2 - pRotMatrix.b1) / s; } } // --------------------------------------------------------------------------- // Returns a matrix representation of the quaternion inline aiMatrix3x3 aiQuaternion::GetMatrix() const { aiMatrix3x3 resMatrix; resMatrix.a1 = 1.0f - 2.0f * (y * y + z * z); resMatrix.a2 = 2.0f * (x * y + z * w); resMatrix.a3 = 2.0f * (x * z - y * w); resMatrix.b1 = 2.0f * (x * y - z * w); resMatrix.b2 = 1.0f - 2.0f * (x * x + z * z); resMatrix.b3 = 2.0f * (y * z + x * w); resMatrix.c1 = 2.0f * (x * z + y * w); resMatrix.c2 = 2.0f * (y * z - x * w); resMatrix.c3 = 1.0f - 2.0f * (x * x + y * y); return resMatrix; } } // end extern "C" #endif // __cplusplus #endif // AI_QUATERNION_H_INC