/* --------------------------------------------------------------------------- Open Asset Import Library (assimp) --------------------------------------------------------------------------- Copyright (c) 2006-2020, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file Implementation of the XGL/ZGL importer class */ #ifndef ASSIMP_BUILD_NO_XGL_IMPORTER #include "XGLLoader.h" #include #include #include #include #include #include #include #include #include using namespace Assimp; using namespace irr; using namespace irr::io; // zlib is needed for compressed XGL files #ifndef ASSIMP_BUILD_NO_COMPRESSED_XGL #ifdef ASSIMP_BUILD_NO_OWN_ZLIB #include #else #include #endif #endif namespace Assimp { // this has to be in here because LogFunctions is in ::Assimp template <> const char *LogFunctions::Prefix() { static auto prefix = "XGL: "; return prefix; } } // namespace Assimp static const aiImporterDesc desc = { "XGL Importer", "", "", "", aiImporterFlags_SupportTextFlavour | aiImporterFlags_SupportCompressedFlavour, 0, 0, 0, 0, "xgl zgl" }; // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer XGLImporter::XGLImporter() : m_reader(nullptr), m_scene(nullptr) { // empty } // ------------------------------------------------------------------------------------------------ // Destructor, private as well XGLImporter::~XGLImporter() { // empty } // ------------------------------------------------------------------------------------------------ // Returns whether the class can handle the format of the given file. bool XGLImporter::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool checkSig) const { /* NOTE: A simple check for the file extension is not enough * here. XGL and ZGL are ok, but xml is too generic * and might be collada as well. So open the file and * look for typical signal tokens. */ const std::string extension = GetExtension(pFile); if (extension == "xgl" || extension == "zgl") { return true; } else if (extension == "xml" || checkSig) { ai_assert(pIOHandler != nullptr); const char *tokens[] = { "", "", "" }; return SearchFileHeaderForToken(pIOHandler, pFile, tokens, 3); } return false; } // ------------------------------------------------------------------------------------------------ // Get a list of all file extensions which are handled by this class const aiImporterDesc *XGLImporter::GetInfo() const { return &desc; } // ------------------------------------------------------------------------------------------------ // Imports the given file into the given scene structure. void XGLImporter::InternReadFile(const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler) { #ifndef ASSIMP_BUILD_NO_COMPRESSED_XGL std::vector uncompressed; #endif m_scene = pScene; std::shared_ptr stream(pIOHandler->Open(pFile, "rb")); // check whether we can read from the file if (stream.get() == nullptr) { throw DeadlyImportError("Failed to open XGL/ZGL file ", pFile, ""); } // see if its compressed, if so uncompress it if (GetExtension(pFile) == "zgl") { #ifdef ASSIMP_BUILD_NO_COMPRESSED_XGL ThrowException("Cannot read ZGL file since Assimp was built without compression support"); #else std::unique_ptr raw_reader(new StreamReaderLE(stream)); // build a zlib stream z_stream zstream; zstream.opaque = Z_NULL; zstream.zalloc = Z_NULL; zstream.zfree = Z_NULL; zstream.data_type = Z_BINARY; // raw decompression without a zlib or gzip header inflateInit2(&zstream, -MAX_WBITS); // skip two extra bytes, zgl files do carry a crc16 upfront (I think) raw_reader->IncPtr(2); zstream.next_in = reinterpret_cast(raw_reader->GetPtr()); zstream.avail_in = (uInt)raw_reader->GetRemainingSize(); size_t total = 0l; // TODO: be smarter about this, decompress directly into heap buffer // and decompress the data .... do 1k chunks in the hope that we won't kill the stack #define MYBLOCK 1024 Bytef block[MYBLOCK]; int ret; do { zstream.avail_out = MYBLOCK; zstream.next_out = block; ret = inflate(&zstream, Z_NO_FLUSH); if (ret != Z_STREAM_END && ret != Z_OK) { ThrowException("Failure decompressing this file using gzip, seemingly it is NOT a compressed .XGL file"); } const size_t have = MYBLOCK - zstream.avail_out; total += have; uncompressed.resize(total); memcpy(uncompressed.data() + total - have, block, have); } while (ret != Z_STREAM_END); // terminate zlib inflateEnd(&zstream); // replace the input stream with a memory stream stream.reset(new MemoryIOStream(reinterpret_cast(uncompressed.data()), total)); #endif } // construct the irrXML parser CIrrXML_IOStreamReader st(stream.get()); m_reader.reset(createIrrXMLReader((IFileReadCallBack *)&st)); // parse the XML file TempScope scope; while (ReadElement()) { if (!ASSIMP_stricmp(m_reader->getNodeName(), "world")) { ReadWorld(scope); } } std::vector &meshes = scope.meshes_linear; std::vector &materials = scope.materials_linear; if (!meshes.size() || !materials.size()) { ThrowException("failed to extract data from XGL file, no meshes loaded"); } // copy meshes m_scene->mNumMeshes = static_cast(meshes.size()); m_scene->mMeshes = new aiMesh *[m_scene->mNumMeshes](); std::copy(meshes.begin(), meshes.end(), m_scene->mMeshes); // copy materials m_scene->mNumMaterials = static_cast(materials.size()); m_scene->mMaterials = new aiMaterial *[m_scene->mNumMaterials](); std::copy(materials.begin(), materials.end(), m_scene->mMaterials); if (scope.light) { m_scene->mNumLights = 1; m_scene->mLights = new aiLight *[1]; m_scene->mLights[0] = scope.light; scope.light->mName = m_scene->mRootNode->mName; } scope.dismiss(); } // ------------------------------------------------------------------------------------------------ bool XGLImporter::ReadElement() { while (m_reader->read()) { if (m_reader->getNodeType() == EXN_ELEMENT) { return true; } } return false; } // ------------------------------------------------------------------------------------------------ bool XGLImporter::ReadElementUpToClosing(const char *closetag) { while (m_reader->read()) { if (m_reader->getNodeType() == EXN_ELEMENT) { return true; } else if (m_reader->getNodeType() == EXN_ELEMENT_END && !ASSIMP_stricmp(m_reader->getNodeName(), closetag)) { return false; } } LogError("unexpected EOF, expected closing <" + std::string(closetag) + "> tag"); return false; } // ------------------------------------------------------------------------------------------------ bool XGLImporter::SkipToText() { while (m_reader->read()) { if (m_reader->getNodeType() == EXN_TEXT) { return true; } else if (m_reader->getNodeType() == EXN_ELEMENT || m_reader->getNodeType() == EXN_ELEMENT_END) { ThrowException("expected text contents but found another element (or element end)"); } } return false; } // ------------------------------------------------------------------------------------------------ std::string XGLImporter::GetElementName() { const char *s = m_reader->getNodeName(); size_t len = strlen(s); std::string ret; ret.resize(len); std::transform(s, s + len, ret.begin(), ::ToLower); return ret; } // ------------------------------------------------------------------------------------------------ void XGLImporter::ReadWorld(TempScope &scope) { while (ReadElementUpToClosing("world")) { const std::string &s = GetElementName(); // XXX right now we'd skip if it comes after // or if (s == "lighting") { ReadLighting(scope); } else if (s == "object" || s == "mesh" || s == "mat") { break; } } aiNode *const nd = ReadObject(scope, true, "world"); if (!nd) { ThrowException("failure reading "); } if (!nd->mName.length) { nd->mName.Set("WORLD"); } m_scene->mRootNode = nd; } // ------------------------------------------------------------------------------------------------ void XGLImporter::ReadLighting(TempScope &scope) { while (ReadElementUpToClosing("lighting")) { const std::string &s = GetElementName(); if (s == "directionallight") { scope.light = ReadDirectionalLight(); } else if (s == "ambient") { LogWarn("ignoring tag"); } else if (s == "spheremap") { LogWarn("ignoring tag"); } } } // ------------------------------------------------------------------------------------------------ aiLight *XGLImporter::ReadDirectionalLight() { std::unique_ptr l(new aiLight()); l->mType = aiLightSource_DIRECTIONAL; while (ReadElementUpToClosing("directionallight")) { const std::string &s = GetElementName(); if (s == "direction") { l->mDirection = ReadVec3(); } else if (s == "diffuse") { l->mColorDiffuse = ReadCol3(); } else if (s == "specular") { l->mColorSpecular = ReadCol3(); } } return l.release(); } // ------------------------------------------------------------------------------------------------ aiNode *XGLImporter::ReadObject(TempScope &scope, bool skipFirst, const char *closetag) { aiNode *nd = new aiNode; std::vector children; std::vector meshes; try { while (skipFirst || ReadElementUpToClosing(closetag)) { skipFirst = false; const std::string &s = GetElementName(); if (s == "mesh") { const size_t prev = scope.meshes_linear.size(); if (ReadMesh(scope)) { const size_t newc = scope.meshes_linear.size(); for (size_t i = 0; i < newc - prev; ++i) { meshes.push_back(static_cast(i + prev)); } } } else if (s == "mat") { ReadMaterial(scope); } else if (s == "object") { children.push_back(ReadObject(scope)); } else if (s == "objectref") { // XXX } else if (s == "meshref") { const unsigned int id = static_cast(ReadIndexFromText()); std::multimap::iterator it = scope.meshes.find(id), end = scope.meshes.end(); if (it == end) { ThrowException(" index out of range"); } for (; it != end && (*it).first == id; ++it) { // ok, this is n^2 and should get optimized one day aiMesh *const m = (*it).second; unsigned int i = 0, mcount = static_cast(scope.meshes_linear.size()); for (; i < mcount; ++i) { if (scope.meshes_linear[i] == m) { meshes.push_back(i); break; } } ai_assert(i < mcount); } } else if (s == "transform") { nd->mTransformation = ReadTrafo(); } } } catch (...) { for (aiNode *ch : children) { delete ch; } throw; } // FIX: since we used std::multimap<> to keep meshes by id, mesh order now depends on the behaviour // of the multimap implementation with respect to the ordering of entries with same values. // C++11 gives the guarantee that it uses insertion order, before it is implementation-specific. // Sort by material id to always guarantee a deterministic result. std::sort(meshes.begin(), meshes.end(), SortMeshByMaterialId(scope)); // link meshes to node nd->mNumMeshes = static_cast(meshes.size()); if (nd->mNumMeshes) { nd->mMeshes = new unsigned int[nd->mNumMeshes](); for (unsigned int i = 0; i < nd->mNumMeshes; ++i) { nd->mMeshes[i] = meshes[i]; } } // link children to parent nd->mNumChildren = static_cast(children.size()); if (nd->mNumChildren) { nd->mChildren = new aiNode *[nd->mNumChildren](); for (unsigned int i = 0; i < nd->mNumChildren; ++i) { nd->mChildren[i] = children[i]; children[i]->mParent = nd; } } return nd; } // ------------------------------------------------------------------------------------------------ aiMatrix4x4 XGLImporter::ReadTrafo() { aiVector3D forward, up, right, position; float scale = 1.0f; while (ReadElementUpToClosing("transform")) { const std::string &s = GetElementName(); if (s == "forward") { forward = ReadVec3(); } else if (s == "up") { up = ReadVec3(); } else if (s == "position") { position = ReadVec3(); } if (s == "scale") { scale = ReadFloat(); if (scale < 0.f) { // this is wrong, but we can leave the value and pass it to the caller LogError("found negative scaling in , ignoring"); } } } aiMatrix4x4 m; if (forward.SquareLength() < 1e-4 || up.SquareLength() < 1e-4) { LogError("A direction vector in is zero, ignoring trafo"); return m; } forward.Normalize(); up.Normalize(); right = forward ^ up; if (std::fabs(up * forward) > 1e-4) { // this is definitely wrong - a degenerate coordinate space ruins everything // so substitute identity transform. LogError(" and vectors in are skewing, ignoring trafo"); return m; } right *= scale; up *= scale; forward *= scale; m.a1 = right.x; m.b1 = right.y; m.c1 = right.z; m.a2 = up.x; m.b2 = up.y; m.c2 = up.z; m.a3 = forward.x; m.b3 = forward.y; m.c3 = forward.z; m.a4 = position.x; m.b4 = position.y; m.c4 = position.z; return m; } // ------------------------------------------------------------------------------------------------ aiMesh *XGLImporter::ToOutputMesh(const TempMaterialMesh &m) { std::unique_ptr mesh(new aiMesh()); mesh->mNumVertices = static_cast(m.positions.size()); mesh->mVertices = new aiVector3D[mesh->mNumVertices]; std::copy(m.positions.begin(), m.positions.end(), mesh->mVertices); if (m.normals.size()) { mesh->mNormals = new aiVector3D[mesh->mNumVertices]; std::copy(m.normals.begin(), m.normals.end(), mesh->mNormals); } if (m.uvs.size()) { mesh->mNumUVComponents[0] = 2; mesh->mTextureCoords[0] = new aiVector3D[mesh->mNumVertices]; for (unsigned int i = 0; i < mesh->mNumVertices; ++i) { mesh->mTextureCoords[0][i] = aiVector3D(m.uvs[i].x, m.uvs[i].y, 0.f); } } mesh->mNumFaces = static_cast(m.vcounts.size()); mesh->mFaces = new aiFace[m.vcounts.size()]; unsigned int idx = 0; for (unsigned int i = 0; i < mesh->mNumFaces; ++i) { aiFace &f = mesh->mFaces[i]; f.mNumIndices = m.vcounts[i]; f.mIndices = new unsigned int[f.mNumIndices]; for (unsigned int c = 0; c < f.mNumIndices; ++c) { f.mIndices[c] = idx++; } } ai_assert(idx == mesh->mNumVertices); mesh->mPrimitiveTypes = m.pflags; mesh->mMaterialIndex = m.matid; return mesh.release(); } // ------------------------------------------------------------------------------------------------ bool XGLImporter::ReadMesh(TempScope &scope) { TempMesh t; std::map bymat; const unsigned int mesh_id = ReadIDAttr(); while (ReadElementUpToClosing("mesh")) { const std::string &s = GetElementName(); if (s == "mat") { ReadMaterial(scope); } else if (s == "p") { if (!m_reader->getAttributeValue("ID")) { LogWarn("no ID attribute on

, ignoring"); } else { int id = m_reader->getAttributeValueAsInt("ID"); t.points[id] = ReadVec3(); } } else if (s == "n") { if (!m_reader->getAttributeValue("ID")) { LogWarn("no ID attribute on , ignoring"); } else { int id = m_reader->getAttributeValueAsInt("ID"); t.normals[id] = ReadVec3(); } } else if (s == "tc") { if (!m_reader->getAttributeValue("ID")) { LogWarn("no ID attribute on , ignoring"); } else { int id = m_reader->getAttributeValueAsInt("ID"); t.uvs[id] = ReadVec2(); } } else if (s == "f" || s == "l" || s == "p") { const unsigned int vcount = s == "f" ? 3 : (s == "l" ? 2 : 1); unsigned int mid = ~0u; TempFace tf[3]; bool has[3] = { 0 }; while (ReadElementUpToClosing(s.c_str())) { const std::string &elemName = GetElementName(); if (elemName == "fv1" || elemName == "lv1" || elemName == "pv1") { ReadFaceVertex(t, tf[0]); has[0] = true; } else if (elemName == "fv2" || elemName == "lv2") { ReadFaceVertex(t, tf[1]); has[1] = true; } else if (elemName == "fv3") { ReadFaceVertex(t, tf[2]); has[2] = true; } else if (elemName == "mat") { if (mid != ~0u) { LogWarn("only one material tag allowed per "); } mid = ResolveMaterialRef(scope); } else if (elemName == "matref") { if (mid != ~0u) { LogWarn("only one material tag allowed per "); } mid = ResolveMaterialRef(scope); } } if (mid == ~0u) { ThrowException("missing material index"); } bool nor = false; bool uv = false; for (unsigned int i = 0; i < vcount; ++i) { if (!has[i]) { ThrowException("missing face vertex data"); } nor = nor || tf[i].has_normal; uv = uv || tf[i].has_uv; } if (mid >= (1 << 30)) { LogWarn("material indices exhausted, this may cause errors in the output"); } unsigned int meshId = mid | ((nor ? 1 : 0) << 31) | ((uv ? 1 : 0) << 30); TempMaterialMesh &mesh = bymat[meshId]; mesh.matid = mid; for (unsigned int i = 0; i < vcount; ++i) { mesh.positions.push_back(tf[i].pos); if (nor) { mesh.normals.push_back(tf[i].normal); } if (uv) { mesh.uvs.push_back(tf[i].uv); } mesh.pflags |= 1 << (vcount - 1); } mesh.vcounts.push_back(vcount); } } // finally extract output meshes and add them to the scope typedef std::pair pairt; for (const pairt &p : bymat) { aiMesh *const m = ToOutputMesh(p.second); scope.meshes_linear.push_back(m); // if this is a definition, keep it on the stack if (mesh_id != ~0u) { scope.meshes.insert(std::pair(mesh_id, m)); } } // no id == not a reference, insert this mesh right *here* return mesh_id == ~0u; } // ---------------------------------------------------------------------------------------------- unsigned int XGLImporter::ResolveMaterialRef(TempScope &scope) { const std::string &s = GetElementName(); if (s == "mat") { ReadMaterial(scope); return static_cast(scope.materials_linear.size() - 1); } const int id = ReadIndexFromText(); std::map::iterator it = scope.materials.find(id), end = scope.materials.end(); if (it == end) { ThrowException(" index out of range"); } // ok, this is n^2 and should get optimized one day aiMaterial *const m = (*it).second; unsigned int i = 0, mcount = static_cast(scope.materials_linear.size()); for (; i < mcount; ++i) { if (scope.materials_linear[i] == m) { return i; } } ai_assert(false); return 0; } // ------------------------------------------------------------------------------------------------ void XGLImporter::ReadMaterial(TempScope &scope) { const unsigned int mat_id = ReadIDAttr(); aiMaterial *mat(new aiMaterial); while (ReadElementUpToClosing("mat")) { const std::string &s = GetElementName(); if (s == "amb") { const aiColor3D c = ReadCol3(); mat->AddProperty(&c, 1, AI_MATKEY_COLOR_AMBIENT); } else if (s == "diff") { const aiColor3D c = ReadCol3(); mat->AddProperty(&c, 1, AI_MATKEY_COLOR_DIFFUSE); } else if (s == "spec") { const aiColor3D c = ReadCol3(); mat->AddProperty(&c, 1, AI_MATKEY_COLOR_SPECULAR); } else if (s == "emiss") { const aiColor3D c = ReadCol3(); mat->AddProperty(&c, 1, AI_MATKEY_COLOR_EMISSIVE); } else if (s == "alpha") { const float f = ReadFloat(); mat->AddProperty(&f, 1, AI_MATKEY_OPACITY); } else if (s == "shine") { const float f = ReadFloat(); mat->AddProperty(&f, 1, AI_MATKEY_SHININESS); } } scope.materials[mat_id] = mat; scope.materials_linear.push_back(mat); } // ---------------------------------------------------------------------------------------------- void XGLImporter::ReadFaceVertex(const TempMesh &t, TempFace &out) { const std::string &end = GetElementName(); bool havep = false; while (ReadElementUpToClosing(end.c_str())) { const std::string &s = GetElementName(); if (s == "pref") { const unsigned int id = ReadIndexFromText(); std::map::const_iterator it = t.points.find(id); if (it == t.points.end()) { ThrowException("point index out of range"); } out.pos = (*it).second; havep = true; } else if (s == "nref") { const unsigned int id = ReadIndexFromText(); std::map::const_iterator it = t.normals.find(id); if (it == t.normals.end()) { ThrowException("normal index out of range"); } out.normal = (*it).second; out.has_normal = true; } else if (s == "tcref") { const unsigned int id = ReadIndexFromText(); std::map::const_iterator it = t.uvs.find(id); if (it == t.uvs.end()) { ThrowException("uv index out of range"); } out.uv = (*it).second; out.has_uv = true; } else if (s == "p") { out.pos = ReadVec3(); } else if (s == "n") { out.normal = ReadVec3(); } else if (s == "tc") { out.uv = ReadVec2(); } } if (!havep) { ThrowException("missing in element"); } } // ------------------------------------------------------------------------------------------------ unsigned int XGLImporter::ReadIDAttr() { for (int i = 0, e = m_reader->getAttributeCount(); i < e; ++i) { if (!ASSIMP_stricmp(m_reader->getAttributeName(i), "id")) { return m_reader->getAttributeValueAsInt(i); } } return ~0u; } // ------------------------------------------------------------------------------------------------ float XGLImporter::ReadFloat() { if (!SkipToText()) { LogError("unexpected EOF reading float element contents"); return 0.f; } const char *s = m_reader->getNodeData(), *se; if (!SkipSpaces(&s)) { LogError("unexpected EOL, failed to parse float"); return 0.f; } float t; se = fast_atoreal_move(s, t); if (se == s) { LogError("failed to read float text"); return 0.f; } return t; } // ------------------------------------------------------------------------------------------------ unsigned int XGLImporter::ReadIndexFromText() { if (!SkipToText()) { LogError("unexpected EOF reading index element contents"); return ~0u; } const char *s = m_reader->getNodeData(), *se; if (!SkipSpaces(&s)) { LogError("unexpected EOL, failed to parse index element"); return ~0u; } const unsigned int t = strtoul10(s, &se); if (se == s) { LogError("failed to read index"); return ~0u; } return t; } // ------------------------------------------------------------------------------------------------ aiVector2D XGLImporter::ReadVec2() { aiVector2D vec; if (!SkipToText()) { LogError("unexpected EOF reading vec2 contents"); return vec; } const char *s = m_reader->getNodeData(); ai_real v[2]; for (int i = 0; i < 2; ++i) { if (!SkipSpaces(&s)) { LogError("unexpected EOL, failed to parse vec2"); return vec; } v[i] = fast_atof(&s); SkipSpaces(&s); if (i != 1 && *s != ',') { LogError("expected comma, failed to parse vec2"); return vec; } ++s; } vec.x = v[0]; vec.y = v[1]; return vec; } // ------------------------------------------------------------------------------------------------ aiVector3D XGLImporter::ReadVec3() { aiVector3D vec; if (!SkipToText()) { LogError("unexpected EOF reading vec3 contents"); return vec; } const char *s = m_reader->getNodeData(); for (int i = 0; i < 3; ++i) { if (!SkipSpaces(&s)) { LogError("unexpected EOL, failed to parse vec3"); return vec; } vec[i] = fast_atof(&s); SkipSpaces(&s); if (i != 2 && *s != ',') { LogError("expected comma, failed to parse vec3"); return vec; } ++s; } return vec; } // ------------------------------------------------------------------------------------------------ aiColor3D XGLImporter::ReadCol3() { const aiVector3D &v = ReadVec3(); if (v.x < 0.f || v.x > 1.0f || v.y < 0.f || v.y > 1.0f || v.z < 0.f || v.z > 1.0f) { LogWarn("color values out of range, ignoring"); } return aiColor3D(v.x, v.y, v.z); } #endif