/** @file Implementation of the helper class to quickly find vertices close to a given position */ #include #include "SpatialSort.h" using namespace Assimp; // ------------------------------------------------------------------------------------------------ // Constructs a spatially sorted representation from the given position array. SpatialSort::SpatialSort( const aiVector3D* pPositions, unsigned int pNumPositions, unsigned int pElementOffset) { // define the reference plane. We choose some arbitrary vector away from all basic axises // in the hope that no model spreads all its vertices along this plane. mPlaneNormal.Set( 0.8523f, 0.34321f, 0.5736f); mPlaneNormal.Normalize(); // store references to all given positions along with their distance to the reference plane mPositions.reserve( pNumPositions); for( unsigned int a = 0; a < pNumPositions; a++) { const char* tempPointer = reinterpret_cast (pPositions); const aiVector3D* vec = reinterpret_cast (tempPointer + a * pElementOffset); // store position by index and distance float distance = *vec * mPlaneNormal; mPositions.push_back( Entry( a, *vec, distance)); } // now sort the array ascending by distance. std::sort( mPositions.begin(), mPositions.end()); } // ------------------------------------------------------------------------------------------------ // Destructor SpatialSort::~SpatialSort() { // nothing to do here, everything destructs automatically } // ------------------------------------------------------------------------------------------------ // Returns an iterator for all positions close to the given position. void SpatialSort::FindPositions( const aiVector3D& pPosition, float pRadius, std::vector& poResults) const { float dist = pPosition * mPlaneNormal; float minDist = dist - pRadius, maxDist = dist + pRadius; // clear the array in this strange fashion because a simple clear() would also deallocate // the array which we want to avoid poResults.erase( poResults.begin(), poResults.end()); // quick check for positions outside the range if( mPositions.size() == 0) return; if( maxDist < mPositions.front().mDistance) return; if( minDist > mPositions.back().mDistance) return; // do a binary search for the minimal distance to start the iteration there unsigned int index = mPositions.size() / 2; unsigned int binaryStepSize = mPositions.size() / 4; while( binaryStepSize > 1) { if( mPositions[index].mDistance < minDist) index += binaryStepSize; else index -= binaryStepSize; binaryStepSize /= 2; } // depending on the direction of the last step we need to single step a bit back or forth // to find the actual beginning element of the range while( index > 0 && mPositions[index].mDistance > minDist) index--; while( index < (mPositions.size() - 1) && mPositions[index].mDistance < minDist) index++; // Mow start iterating from there until the first position lays outside of the distance range. // Add all positions inside the distance range within the given radius to the result aray std::vector::const_iterator it = mPositions.begin() + index; float squareEpsilon = pRadius * pRadius; while( it->mDistance < maxDist) { if( (it->mPosition - pPosition).SquareLength() < squareEpsilon) poResults.push_back( it->mIndex); ++it; if( it == mPositions.end()) break; } // that's it }