/* --------------------------------------------------------------------------- Open Asset Import Library (ASSIMP) --------------------------------------------------------------------------- Copyright (c) 2006-2008, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file Implementation of the XFile importer class */ #include "XFileImporter.h" #include "XFileParser.h" #include "MaterialSystem.h" #include "ConvertToLHProcess.h" #include "../include/IOStream.h" #include "../include/IOSystem.h" #include "../include/aiMesh.h" #include "../include/aiScene.h" #include #include using namespace Assimp; // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer XFileImporter::XFileImporter() { } // ------------------------------------------------------------------------------------------------ // Destructor, private as well XFileImporter::~XFileImporter() { } // ------------------------------------------------------------------------------------------------ // Returns whether the class can handle the format of the given file. bool XFileImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler) const { // simple check of file extension is enough for the moment std::string::size_type pos = pFile.find_last_of( '.'); // no file extension - can't read if( pos == std::string::npos) return false; std::string extension = pFile.substr( pos); if( extension == ".x" || extension == ".X") return true; return false; } // ------------------------------------------------------------------------------------------------ // Imports the given file into the given scene structure. void XFileImporter::InternReadFile( const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler) { // read file into memory boost::scoped_ptr file( pIOHandler->Open( pFile)); if( file.get() == NULL) throw new ImportErrorException( "Failed to open file " + pFile + "."); size_t fileSize = file->FileSize(); if( fileSize < 16) throw new ImportErrorException( "XFile is too small."); mBuffer.resize( fileSize); file->Read( &mBuffer.front(), 1, fileSize); // parse the file into a temporary representation XFileParser parser( mBuffer); // and create the proper return structures out of it CreateDataRepresentationFromImport( pScene, parser.GetImportedData()); // if nothing came from it, report it as error if( !pScene->mRootNode) throw new ImportErrorException( "XFile is ill-formatted - no content imported."); } // ------------------------------------------------------------------------------------------------ // Constructs the return data structure out of the imported data. void XFileImporter::CreateDataRepresentationFromImport( aiScene* pScene, const XFile::Scene* pData) { // Read the global materials first so that meshes referring to them can find them later ConvertMaterials( pScene, pData->mGlobalMaterials); // copy nodes, extracting meshes and materials on the way pScene->mRootNode = CreateNodes( pScene, NULL, pData->mRootNode); // extract animations CreateAnimations( pScene, pData); // read the global meshes that were stored outside of any node if( pData->mGlobalMeshes.size() > 0) { // create a root node to hold them if there isn't any, yet if( pScene->mRootNode == NULL) { pScene->mRootNode = new aiNode; pScene->mRootNode->mName.Set( "$dummy_node"); } // convert all global meshes and store them in the root node. // If there was one before, the global meshes now suddenly have its transformation matrix... // Don't know what to do there, I don't want to insert another node under the present root node // just to avoid this. CreateMeshes( pScene, pScene->mRootNode, pData->mGlobalMeshes); } // convert the root node's transformation to OGL coords if( pScene->mRootNode) ConvertToLHProcess::ConvertToOGL( pScene->mRootNode->mTransformation); // finally: create a dummy material if not material was imported if( pScene->mNumMaterials == 0) { pScene->mNumMaterials = 1; // create the Material Assimp::MaterialHelper* mat = new Assimp::MaterialHelper; int shadeMode = (int) aiShadingMode_Gouraud; mat->AddProperty( &shadeMode, 1, AI_MATKEY_SHADING_MODEL); // material colours int specExp = 1; mat->AddProperty( &aiColor3D( 0, 0, 0), 1, AI_MATKEY_COLOR_EMISSIVE); mat->AddProperty( &aiColor3D( 0.5f, 0.5f, 0.5f), 1, AI_MATKEY_COLOR_DIFFUSE); mat->AddProperty( &aiColor3D( 0, 0, 0), 1, AI_MATKEY_COLOR_SPECULAR); mat->AddProperty( &specExp, 1, AI_MATKEY_SHININESS); pScene->mMaterials = new aiMaterial*[1]; pScene->mMaterials[0] = mat; } } // ------------------------------------------------------------------------------------------------ // Recursively creates scene nodes from the imported hierarchy. aiNode* XFileImporter::CreateNodes( aiScene* pScene, aiNode* pParent, const XFile::Node* pNode) { if( !pNode) return NULL; // create node aiNode* node = new aiNode; node->mName.length = pNode->mName.length(); node->mParent = pParent; memcpy( node->mName.data, pNode->mName.c_str(), pNode->mName.length()); node->mName.data[node->mName.length] = 0; node->mTransformation = pNode->mTrafoMatrix; // convert meshes from the source node CreateMeshes( pScene, node, pNode->mMeshes); // handle childs if( pNode->mChildren.size() > 0) { node->mNumChildren = pNode->mChildren.size(); node->mChildren = new aiNode* [node->mNumChildren]; for( unsigned int a = 0; a < pNode->mChildren.size(); a++) node->mChildren[a] = CreateNodes( pScene, node, pNode->mChildren[a]); } return node; } // ------------------------------------------------------------------------------------------------ // Creates the meshes for the given node. void XFileImporter::CreateMeshes( aiScene* pScene, aiNode* pNode, const std::vector& pMeshes) { if( pMeshes.size() == 0) return; // create a mesh for each mesh-material combination in the source node std::vector meshes; for( unsigned int a = 0; a < pMeshes.size(); a++) { const XFile::Mesh* sourceMesh = pMeshes[a]; // first convert its materials so that we can find them when searching by name afterwards ConvertMaterials( pScene, sourceMesh->mMaterials); unsigned int numMaterials = std::max( sourceMesh->mMaterials.size(), 1u); for( unsigned int b = 0; b < numMaterials; b++) { // collect the faces belonging to this material std::vector faces; unsigned int numVertices = 0; if( sourceMesh->mFaceMaterials.size() > 0) { // if there is a per-face material defined, select the faces with the corresponding material for( unsigned int c = 0; c < sourceMesh->mFaceMaterials.size(); c++) { if( sourceMesh->mFaceMaterials[c] == b) { faces.push_back( c); numVertices += sourceMesh->mPosFaces[c].mIndices.size(); } } } else { // if there is no per-face material, place everything into one mesh for( unsigned int c = 0; c < sourceMesh->mPosFaces.size(); c++) { faces.push_back( c); numVertices += sourceMesh->mPosFaces[c].mIndices.size(); } } // no faces/vertices using this material? strange... if( numVertices == 0) continue; // create a submesh using this material aiMesh* mesh = new aiMesh; meshes.push_back( mesh); // find the material by name in the scene's material list. Either own material // or referenced material, it should already be found there if( sourceMesh->mFaceMaterials.size() > 0) { std::map::const_iterator matIt = mImportedMats.find( sourceMesh->mMaterials[b].mName); if( matIt == mImportedMats.end()) mesh->mMaterialIndex = 0; else mesh->mMaterialIndex = matIt->second; } else { mesh->mMaterialIndex = 0; } // Create properly sized data arrays in the mesh. We store unique vertices per face, // as specified mesh->mNumVertices = numVertices; mesh->mVertices = new aiVector3D[numVertices]; mesh->mNumFaces = faces.size(); mesh->mFaces = new aiFace[mesh->mNumFaces]; // normals? if( sourceMesh->mNormals.size() > 0) mesh->mNormals = new aiVector3D[numVertices]; // texture coords for( unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; c++) { if( sourceMesh->mTexCoords[c].size() > 0) mesh->mTextureCoords[c] = new aiVector3D[numVertices]; } // vertex colors for( unsigned int c = 0; c < AI_MAX_NUMBER_OF_COLOR_SETS; c++) { if( sourceMesh->mColors[c].size() > 0) mesh->mColors[c] = new aiColor4D[numVertices]; } // now collect the vertex data of all data streams present in the imported mesh unsigned int newIndex = 0; std::vector orgPoints; // from which original point each new vertex stems orgPoints.resize( numVertices, 0); for( unsigned int c = 0; c < faces.size(); c++) { unsigned int f = faces[c]; // index of the source face const XFile::Face& pf = sourceMesh->mPosFaces[f]; // position source face // create face. either triangle or triangle fan depending on the index count aiFace& df = mesh->mFaces[c]; // destination face df.mNumIndices = pf.mIndices.size(); df.mIndices = new unsigned int[ df.mNumIndices]; // collect vertex data for indices of this face for( unsigned int d = 0; d < df.mNumIndices; d++) { df.mIndices[df.mNumIndices - 1 - d] = newIndex; // inverted face orientation for OGL orgPoints[newIndex] = pf.mIndices[d]; // Position mesh->mVertices[newIndex] = sourceMesh->mPositions[pf.mIndices[d]]; // Normal, if present if( mesh->HasNormals()) mesh->mNormals[newIndex] = sourceMesh->mNormals[sourceMesh->mNormFaces[f].mIndices[d]]; // texture coord sets for( unsigned int e = 0; e < AI_MAX_NUMBER_OF_TEXTURECOORDS; e++) { if( mesh->HasTextureCoords( e)) { aiVector2D tex = sourceMesh->mTexCoords[e][pf.mIndices[d]]; mesh->mTextureCoords[e][newIndex] = aiVector3D( tex.x, 1.0f - tex.y, 0.0f); } } // vertex color sets for( unsigned int e = 0; e < AI_MAX_NUMBER_OF_COLOR_SETS; e++) if( mesh->HasVertexColors( e)) mesh->mColors[e][newIndex] = sourceMesh->mColors[e][pf.mIndices[d]]; newIndex++; } } // there should be as much new vertices as we calculated before assert( newIndex == numVertices); // convert all bones of the source mesh which influence vertices in this newly created mesh const std::vector& bones = sourceMesh->mBones; std::vector newBones; for( unsigned int c = 0; c < bones.size(); c++) { const XFile::Bone& obone = bones[c]; // set up a vertex-linear array of the weights for quick searching if a bone influences a vertex std::vector oldWeights( sourceMesh->mPositions.size(), 0.0f); for( unsigned int d = 0; d < obone.mWeights.size(); d++) oldWeights[obone.mWeights[d].mVertex] = obone.mWeights[d].mWeight; // collect all vertex weights that influence a vertex in the new mesh std::vector newWeights; newWeights.reserve( numVertices); for( unsigned int d = 0; d < orgPoints.size(); d++) { // does the new vertex stem from an old vertex which was influenced by this bone? float w = oldWeights[orgPoints[d]]; if( w > 0.0f) newWeights.push_back( aiVertexWeight( d, w)); } // if the bone has no weights in the newly created mesh, ignore it if( newWeights.size() == 0) continue; // create aiBone* nbone = new aiBone; newBones.push_back( nbone); // copy name and matrix nbone->mName.Set( obone.mName); nbone->mOffsetMatrix = obone.mOffsetMatrix; nbone->mNumWeights = newWeights.size(); nbone->mWeights = new aiVertexWeight[nbone->mNumWeights]; for( unsigned int d = 0; d < newWeights.size(); d++) nbone->mWeights[d] = newWeights[d]; } // store the bones in the mesh mesh->mNumBones = newBones.size(); mesh->mBones = new aiBone*[mesh->mNumBones]; for( unsigned int c = 0; c < newBones.size(); c++) mesh->mBones[c] = newBones[c]; } } // reallocate scene mesh array to be large enough aiMesh** prevArray = pScene->mMeshes; pScene->mMeshes = new aiMesh*[pScene->mNumMeshes + meshes.size()]; if( prevArray) { memcpy( pScene->mMeshes, prevArray, pScene->mNumMeshes * sizeof( aiMesh*)); delete [] prevArray; } // allocate mesh index array in the node pNode->mNumMeshes = meshes.size(); pNode->mMeshes = new unsigned int[pNode->mNumMeshes]; // store all meshes in the mesh library of the scene and store their indices in the node for( unsigned int a = 0; a < meshes.size(); a++) { pScene->mMeshes[pScene->mNumMeshes] = meshes[a]; pNode->mMeshes[a] = pScene->mNumMeshes; pScene->mNumMeshes++; } } // ------------------------------------------------------------------------------------------------ // Converts the animations from the given imported data and creates them in the scene. void XFileImporter::CreateAnimations( aiScene* pScene, const XFile::Scene* pData) { std::vector newAnims; for( unsigned int a = 0; a < pData->mAnims.size(); a++) { const XFile::Animation* anim = pData->mAnims[a]; // create a new animation to hold the data aiAnimation* nanim = new aiAnimation; newAnims.push_back( nanim); nanim->mName.Set( anim->mName); // duration will be determined by the maximum length nanim->mDuration = 0; nanim->mTicksPerSecond = pData->mAnimTicksPerSecond; nanim->mNumBones = anim->mAnims.size(); nanim->mBones = new aiBoneAnim*[nanim->mNumBones]; for( unsigned int b = 0; b < anim->mAnims.size(); b++) { const XFile::AnimBone* bone = anim->mAnims[b]; aiBoneAnim* nbone = new aiBoneAnim; nbone->mBoneName.Set( bone->mBoneName); nanim->mBones[b] = nbone; // apply the LH->RH conversion if the animation affects the root bone bool isRootAnim = (bone->mBoneName == pScene->mRootNode->mName.data); // keyframes are given as combined transformation matrix keys if( bone->mTrafoKeys.size() > 0) { nbone->mNumPositionKeys = bone->mTrafoKeys.size(); nbone->mPositionKeys = new aiVectorKey[nbone->mNumPositionKeys]; nbone->mNumRotationKeys = bone->mTrafoKeys.size(); nbone->mRotationKeys = new aiQuatKey[nbone->mNumRotationKeys]; nbone->mNumScalingKeys = bone->mTrafoKeys.size(); nbone->mScalingKeys = new aiVectorKey[nbone->mNumScalingKeys]; for( unsigned int c = 0; c < bone->mTrafoKeys.size(); c++) { // deconstruct each matrix into separate position, rotation and scaling double time = bone->mTrafoKeys[c].mTime; aiMatrix4x4 trafo = bone->mTrafoKeys[c].mMatrix; // extract position aiVector3D pos( trafo.a4, trafo.b4, trafo.c4); if( isRootAnim) ConvertToLHProcess::ConvertToOGL( pos); nbone->mPositionKeys[c].mTime = time; nbone->mPositionKeys[c].mValue = pos; // extract scaling aiVector3D scale; scale.x = aiVector3D( trafo.a1, trafo.b1, trafo.c1).Length(); scale.y = aiVector3D( trafo.a2, trafo.b2, trafo.c2).Length(); scale.z = aiVector3D( trafo.a3, trafo.b3, trafo.c3).Length(); nbone->mScalingKeys[c].mTime = time; nbone->mScalingKeys[c].mValue = scale; // reconstruct rotation matrix without scaling aiMatrix3x3 rotmat( trafo.a1 / scale.x, trafo.a2 / scale.y, trafo.a3 / scale.z, trafo.b1 / scale.x, trafo.b2 / scale.y, trafo.b3 / scale.z, trafo.c1 / scale.x, trafo.c2 / scale.y, trafo.c3 / scale.z); if( isRootAnim) ConvertToLHProcess::ConvertToOGL( rotmat); // and convert it into a quaternion nbone->mRotationKeys[c].mTime = time; nbone->mRotationKeys[c].mValue = aiQuaternion( rotmat); } // longest lasting key sequence determines duration nanim->mDuration = std::max( nanim->mDuration, bone->mTrafoKeys.back().mTime); } else { // separate key sequences for position, rotation, scaling nbone->mNumPositionKeys = bone->mPosKeys.size(); nbone->mPositionKeys = new aiVectorKey[nbone->mNumPositionKeys]; for( unsigned int c = 0; c < nbone->mNumPositionKeys; c++) { aiVector3D pos = bone->mPosKeys[c].mValue; if( isRootAnim) ConvertToLHProcess::ConvertToOGL( pos); nbone->mPositionKeys[c].mTime = bone->mPosKeys[c].mTime; nbone->mPositionKeys[c].mValue = pos; } // rotation nbone->mNumRotationKeys = bone->mRotKeys.size(); nbone->mRotationKeys = new aiQuatKey[nbone->mNumRotationKeys]; for( unsigned int c = 0; c < nbone->mNumRotationKeys; c++) { aiMatrix3x3 rotmat = bone->mRotKeys[c].mValue.GetMatrix(); if( isRootAnim) ConvertToLHProcess::ConvertToOGL( rotmat); nbone->mRotationKeys[c].mTime = bone->mRotKeys[c].mTime; nbone->mRotationKeys[c].mValue = aiQuaternion( rotmat); } // scaling nbone->mNumScalingKeys = bone->mScaleKeys.size(); nbone->mScalingKeys = new aiVectorKey[nbone->mNumScalingKeys]; for( unsigned int c = 0; c < nbone->mNumScalingKeys; c++) nbone->mScalingKeys[c] = bone->mScaleKeys[c]; // longest lasting key sequence determines duration if( bone->mPosKeys.size() > 0) nanim->mDuration = std::max( nanim->mDuration, bone->mPosKeys.back().mTime); if( bone->mRotKeys.size() > 0) nanim->mDuration = std::max( nanim->mDuration, bone->mRotKeys.back().mTime); if( bone->mScaleKeys.size() > 0) nanim->mDuration = std::max( nanim->mDuration, bone->mScaleKeys.back().mTime); } } } // store all converted animations in the scene if( newAnims.size() > 0) { pScene->mNumAnimations = newAnims.size(); pScene->mAnimations = new aiAnimation* [pScene->mNumAnimations]; for( unsigned int a = 0; a < newAnims.size(); a++) pScene->mAnimations[a] = newAnims[a]; } } // ------------------------------------------------------------------------------------------------ // Converts all materials in the given array and stores them in the scene's material list. void XFileImporter::ConvertMaterials( aiScene* pScene, const std::vector& pMaterials) { // count the non-referrer materials in the array unsigned int numMaterials = 0; for( unsigned int a = 0; a < pMaterials.size(); a++) if( !pMaterials[a].mIsReference) numMaterials++; if( numMaterials == 0) return; // resize the scene's material list to offer enough space for the new materials aiMaterial** prevMats = pScene->mMaterials; pScene->mMaterials = new aiMaterial*[pScene->mNumMaterials + numMaterials]; if( prevMats) { memcpy( pScene->mMaterials, prevMats, pScene->mNumMaterials * sizeof( aiMaterial*)); delete [] prevMats; } // convert all the materials given in the array for( unsigned int a = 0; a < pMaterials.size(); a++) { const XFile::Material& oldMat = pMaterials[a]; if( oldMat.mIsReference) continue; Assimp::MaterialHelper* mat = new Assimp::MaterialHelper; aiString name; name.Set( oldMat.mName); mat->AddProperty( &name, AI_MATKEY_NAME); // Shading model: hardcoded to PHONG, there is no such information in an XFile // FIX (aramis): If the specular exponent is 0, use gouraud shading. This is a bugfix // for some models in the SDK (e.g. good old tiny.x) int shadeMode = (int)oldMat.mSpecularExponent == 0.0f ? aiShadingMode_Gouraud : aiShadingMode_Phong; mat->AddProperty( &shadeMode, 1, AI_MATKEY_SHADING_MODEL); // material colours // FIX: Setup this as ambient not as emissive color mat->AddProperty( &oldMat.mEmissive, 1, AI_MATKEY_COLOR_AMBIENT); mat->AddProperty( &oldMat.mDiffuse, 1, AI_MATKEY_COLOR_DIFFUSE); mat->AddProperty( &oldMat.mSpecular, 1, AI_MATKEY_COLOR_SPECULAR); mat->AddProperty( &oldMat.mSpecularExponent, 1, AI_MATKEY_SHININESS); // texture, if there is one if (1 == oldMat.mTextures.size()) { // if there is only one texture, assume it contains the // diffuse color aiString tex; tex.Set( oldMat.mTextures[0]); mat->AddProperty( &tex, AI_MATKEY_TEXTURE_DIFFUSE(0)); } else { // Otherwise ... try to search for typical strings in the // texture's file name like 'bump' or 'diffuse' unsigned int iHM = 0,iNM = 0,iDM = 0,iSM = 0,iAM = 0,iEM = 0; for( unsigned int b = 0; b < oldMat.mTextures.size(); b++) { std::string sz = oldMat.mTextures[b]; char key[256]; // find the file name const size_t iLen = sz.length(); std::string::size_type s = sz.rfind('\\',iLen-1); if (std::string::npos == s) { s = sz.rfind('/',iLen-1); if (std::string::npos == s)s = 0; } // cut off the file extension std::string::size_type sExt = sz.rfind('.',iLen-1); if (std::string::npos != sExt) { sz[sExt] = '\0'; } // bump map std::string::size_type s2 = sz.find("bump",s); if (std::string::npos == s2) { s2 = sz.find("BUMP",s); if (std::string::npos == s2) { s2 = sz.find("Bump",s); if (std::string::npos == s2) { s2 = sz.find("height",s); if (std::string::npos == s2) { s2 = sz.find("HEIGHT",s); if (std::string::npos == s2) { s2 = sz.find("Height",s); } } } } } if (std::string::npos != s2) { sprintf(key,AI_MATKEY_TEXTURE_HEIGHT_ "[%i]",iHM++); } else { // Normal map std::string::size_type s2 = sz.find("normal",s); if (std::string::npos == s2) { s2 = sz.find("NORMAL",s); if (std::string::npos == s2) { s2 = sz.find("nm",s); // not really unique if (std::string::npos == s2) { s2 = sz.find("Normal",s); if (std::string::npos == s2) { s2 = sz.find("NM",s); } } } } if (std::string::npos != s2) { sprintf(key,AI_MATKEY_TEXTURE_NORMALS_ "[%i]",iNM++); } else { // specular color texture (not unique, too. Could // also be the material's shininess) std::string::size_type s2 = sz.find("spec",s); if (std::string::npos == s2) { s2 = sz.find("Spec",s); if (std::string::npos == s2) { s2 = sz.find("SPEC",s); if (std::string::npos == s2) { s2 = sz.find("Glanz",s); if (std::string::npos == s2) { s2 = sz.find("glanz",s); } } } } if (std::string::npos != s2) { sprintf(key,AI_MATKEY_TEXTURE_SPECULAR_ "[%i]",iSM++); } else { // ambient color texture std::string::size_type s2 = sz.find("ambi",s); if (std::string::npos == s2) { s2 = sz.find("AMBI",s); if (std::string::npos == s2) { s2 = sz.find("umgebungsfarbe",s); if (std::string::npos == s2) { s2 = sz.find("Ambi",s); } } } if (std::string::npos != s2) { sprintf(key,AI_MATKEY_TEXTURE_AMBIENT_ "[%i]",iAM++); } else { // emissive color texture std::string::size_type s2 = sz.find("emissive",s); if (std::string::npos == s2) { s2 = sz.find("EMISSIVE",s); if (std::string::npos == s2) { // self illumination s2 = sz.find("self",s); if (std::string::npos == s2) { s2 = sz.find("Emissive",s); } } } if (std::string::npos != s2) { sprintf(key,AI_MATKEY_TEXTURE_EMISSIVE_ "[%i]",iEM++); } else { // assume it is a diffuse texture sprintf(key,AI_MATKEY_TEXTURE_DIFFUSE_ "[%i]",iDM++); } } } } } aiString tex; tex.Set( oldMat.mTextures[b] ); mat->AddProperty( &tex, key); } } pScene->mMaterials[pScene->mNumMaterials] = mat; mImportedMats[oldMat.mName] = pScene->mNumMaterials; pScene->mNumMaterials++; } }