/* --------------------------------------------------------------------------- Open Asset Import Library (ASSIMP) --------------------------------------------------------------------------- Copyright (c) 2006-2008, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file Implementation of the 3ds importer class */ #include "3DSLoader.h" #include "MaterialSystem.h" #include "../include/DefaultLogger.h" #include "../include/IOStream.h" #include "../include/IOSystem.h" #include "../include/aiMesh.h" #include "../include/aiScene.h" #include "../include/aiAssert.h" #include using namespace Assimp; // ------------------------------------------------------------------------------------------------ void Dot3DSImporter::ReplaceDefaultMaterial() { // try to find an existing material that matches the // typical default material setting: // - no textures // - diffuse color (in grey!) // NOTE: This is here to workaround the fact that some // exporters are writing a default material, too. unsigned int iIndex = 0xcdcdcdcd; for (unsigned int i = 0; i < this->mScene->mMaterials.size();++i) { if (std::string::npos == this->mScene->mMaterials[i].mName.find("default") && std::string::npos == this->mScene->mMaterials[i].mName.find("DEFAULT"))continue; if (this->mScene->mMaterials[i].mDiffuse.r != this->mScene->mMaterials[i].mDiffuse.g || this->mScene->mMaterials[i].mDiffuse.r != this->mScene->mMaterials[i].mDiffuse.b)continue; if (this->mScene->mMaterials[i].sTexDiffuse.mMapName.length() != 0 || this->mScene->mMaterials[i].sTexBump.mMapName.length()!= 0 || this->mScene->mMaterials[i].sTexOpacity.mMapName.length() != 0 || this->mScene->mMaterials[i].sTexEmissive.mMapName.length() != 0 || this->mScene->mMaterials[i].sTexSpecular.mMapName.length() != 0 || this->mScene->mMaterials[i].sTexShininess.mMapName.length() != 0 )continue; iIndex = i; } if (0xcdcdcdcd == iIndex)iIndex = this->mScene->mMaterials.size(); // now iterate through all meshes and through all faces and // find all faces that are using the default material unsigned int iCnt = 0; for (std::vector::iterator i = this->mScene->mMeshes.begin(); i != this->mScene->mMeshes.end();++i) { for (std::vector::iterator a = (*i).mFaceMaterials.begin(); a != (*i).mFaceMaterials.end();++a) { // NOTE: The additional check seems to be necessary, // some exporters seem to generate invalid data here if (0xcdcdcdcd == (*a)) { (*a) = iIndex; ++iCnt; } else if ( (*a) >= this->mScene->mMaterials.size()) { (*a) = iIndex; ++iCnt; DefaultLogger::get()->warn("Material index overflow in 3DS file. Assigning " "default material ..."); } } } if (0 != iCnt && iIndex == this->mScene->mMaterials.size()) { // we need to create our own default material Dot3DS::Material sMat; sMat.mDiffuse = aiColor3D(0.3f,0.3f,0.3f); sMat.mName = "%%%DEFAULT"; this->mScene->mMaterials.push_back(sMat); } return; } // ------------------------------------------------------------------------------------------------ void Dot3DSImporter::CheckIndices(Dot3DS::Mesh* sMesh) { for (std::vector< Dot3DS::Face >::iterator i = sMesh->mFaces.begin(); i != sMesh->mFaces.end();++i) { // check whether all indices are in range if ((*i).mIndices[0] >= sMesh->mPositions.size()) { DefaultLogger::get()->warn("Face index overflow in 3DS file (#1)"); (*i).mIndices[0] = sMesh->mPositions.size()-1; } if ((*i).mIndices[1] >= sMesh->mPositions.size()) { DefaultLogger::get()->warn("Face index overflow in 3DS file (#2)"); (*i).mIndices[1] = sMesh->mPositions.size()-1; } if ((*i).mIndices[2] >= sMesh->mPositions.size()) { DefaultLogger::get()->warn("Face index overflow in 3DS file (#3)"); (*i).mIndices[2] = sMesh->mPositions.size()-1; } } return; } // ------------------------------------------------------------------------------------------------ void Dot3DSImporter::MakeUnique(Dot3DS::Mesh* sMesh) { std::vector vNew; vNew.resize(sMesh->mFaces.size() * 3); std::vector vNew2; // TODO: Remove this step. By maintaining a small LUT it // would be possible to do this directly in the parsing step unsigned int iBase = 0; if (0 != sMesh->mTexCoords.size()) { vNew2.resize(sMesh->mFaces.size() * 3); for (unsigned int i = 0; i < sMesh->mFaces.size();++i) { uint32_t iTemp1,iTemp2; // position and texture coordinates vNew[iBase] = sMesh->mPositions[sMesh->mFaces[i].mIndices[2]]; vNew2[iBase] = sMesh->mTexCoords[sMesh->mFaces[i].mIndices[2]]; iTemp1 = iBase++; vNew[iBase] = sMesh->mPositions[sMesh->mFaces[i].mIndices[1]]; vNew2[iBase] = sMesh->mTexCoords[sMesh->mFaces[i].mIndices[1]]; iTemp2 = iBase++; vNew[iBase] = sMesh->mPositions[sMesh->mFaces[i].mIndices[0]]; vNew2[iBase] = sMesh->mTexCoords[sMesh->mFaces[i].mIndices[0]]; sMesh->mFaces[i].mIndices[2] = iBase++; sMesh->mFaces[i].mIndices[0] = iTemp1; sMesh->mFaces[i].mIndices[1] = iTemp2; // handle the face order ... /*if (iTemp1 > iTemp2) { sMesh->mFaces[i].bFlipped = true; }*/ } } else { for (unsigned int i = 0; i < sMesh->mFaces.size();++i) { uint32_t iTemp1,iTemp2; // position only vNew[iBase] = sMesh->mPositions[sMesh->mFaces[i].mIndices[2]]; iTemp1 = iBase++; vNew[iBase] = sMesh->mPositions[sMesh->mFaces[i].mIndices[1]]; iTemp2 = iBase++; vNew[iBase] = sMesh->mPositions[sMesh->mFaces[i].mIndices[0]]; sMesh->mFaces[i].mIndices[2] = iBase++; sMesh->mFaces[i].mIndices[0] = iTemp1; sMesh->mFaces[i].mIndices[1] = iTemp2; // handle the face order ... /*if (iTemp1 > iTemp2) { sMesh->mFaces[i].bFlipped = true; }*/ } } sMesh->mPositions = vNew; sMesh->mTexCoords = vNew2; return; } // ------------------------------------------------------------------------------------------------ void Dot3DSImporter::ConvertMaterial(Dot3DS::Material& oldMat, MaterialHelper& mat) { // NOTE: Pass the background image to the viewer by bypassing the // material system. This is an evil hack, never do it again! if (0 != this->mBackgroundImage.length() && this->bHasBG) { aiString tex; tex.Set( this->mBackgroundImage); mat.AddProperty( &tex, AI_MATKEY_GLOBAL_BACKGROUND_IMAGE); // be sure this is only done for the first material this->mBackgroundImage = std::string(""); } // At first add the base ambient color of the // scene to the material oldMat.mAmbient.r += this->mClrAmbient.r; oldMat.mAmbient.g += this->mClrAmbient.g; oldMat.mAmbient.b += this->mClrAmbient.b; aiString name; name.Set( oldMat.mName); mat.AddProperty( &name, AI_MATKEY_NAME); // material colors mat.AddProperty( &oldMat.mAmbient, 1, AI_MATKEY_COLOR_AMBIENT); mat.AddProperty( &oldMat.mDiffuse, 1, AI_MATKEY_COLOR_DIFFUSE); mat.AddProperty( &oldMat.mSpecular, 1, AI_MATKEY_COLOR_SPECULAR); mat.AddProperty( &oldMat.mEmissive, 1, AI_MATKEY_COLOR_EMISSIVE); // phong shininess and shininess strength if (Dot3DS::Dot3DSFile::Phong == oldMat.mShading || Dot3DS::Dot3DSFile::Metal == oldMat.mShading) { mat.AddProperty( &oldMat.mSpecularExponent, 1, AI_MATKEY_SHININESS); mat.AddProperty( &oldMat.mShininessStrength, 1, AI_MATKEY_SHININESS_STRENGTH); } // opacity mat.AddProperty( &oldMat.mTransparency,1,AI_MATKEY_OPACITY); // bump height scaling mat.AddProperty( &oldMat.mBumpHeight,1,AI_MATKEY_BUMPSCALING); // shading mode aiShadingMode eShading = aiShadingMode_NoShading; switch (oldMat.mShading) { case Dot3DS::Dot3DSFile::Flat: eShading = aiShadingMode_Flat; break; // I don't know what "Wire" shading should be, // assume it is simple lambertian diffuse (L dot N) shading case Dot3DS::Dot3DSFile::Wire: case Dot3DS::Dot3DSFile::Gouraud: eShading = aiShadingMode_Gouraud; break; // assume cook-torrance shading for metals. // NOTE: I assume the real shader inside 3ds max is an anisotropic // Phong-Blinn shader, but this is a good approximation too case Dot3DS::Dot3DSFile::Phong : eShading = aiShadingMode_Phong; break; case Dot3DS::Dot3DSFile::Metal : eShading = aiShadingMode_CookTorrance; break; } mat.AddProperty( (int*)&eShading,1,AI_MATKEY_SHADING_MODEL); if (Dot3DS::Dot3DSFile::Wire == oldMat.mShading) { // set the wireframe flag unsigned int iWire = 1; mat.AddProperty( (int*)&iWire,1,AI_MATKEY_ENABLE_WIREFRAME); } // texture, if there is one if( oldMat.sTexDiffuse.mMapName.length() > 0) { aiString tex; tex.Set( oldMat.sTexDiffuse.mMapName); mat.AddProperty( &tex, AI_MATKEY_TEXTURE_DIFFUSE(0)); if (is_not_qnan(oldMat.sTexDiffuse.mTextureBlend)) mat.AddProperty( &oldMat.sTexDiffuse.mTextureBlend, 1, AI_MATKEY_TEXBLEND_DIFFUSE(0)); } if( oldMat.sTexSpecular.mMapName.length() > 0) { aiString tex; tex.Set( oldMat.sTexSpecular.mMapName); mat.AddProperty( &tex, AI_MATKEY_TEXTURE_SPECULAR(0)); if (is_not_qnan(oldMat.sTexSpecular.mTextureBlend)) mat.AddProperty( &oldMat.sTexSpecular.mTextureBlend, 1, AI_MATKEY_TEXBLEND_SPECULAR(0)); } if( oldMat.sTexOpacity.mMapName.length() > 0) { aiString tex; tex.Set( oldMat.sTexOpacity.mMapName); mat.AddProperty( &tex, AI_MATKEY_TEXTURE_OPACITY(0)); if (is_not_qnan(oldMat.sTexOpacity.mTextureBlend)) mat.AddProperty( &oldMat.sTexOpacity.mTextureBlend, 1,AI_MATKEY_TEXBLEND_OPACITY(0)); } if( oldMat.sTexEmissive.mMapName.length() > 0) { aiString tex; tex.Set( oldMat.sTexEmissive.mMapName); mat.AddProperty( &tex, AI_MATKEY_TEXTURE_EMISSIVE(0)); if (is_not_qnan(oldMat.sTexEmissive.mTextureBlend)) mat.AddProperty( &oldMat.sTexEmissive.mTextureBlend, 1, AI_MATKEY_TEXBLEND_EMISSIVE(0)); } if( oldMat.sTexBump.mMapName.length() > 0) { aiString tex; tex.Set( oldMat.sTexBump.mMapName); mat.AddProperty( &tex, AI_MATKEY_TEXTURE_HEIGHT(0)); if (is_not_qnan(oldMat.sTexBump.mTextureBlend)) mat.AddProperty( &oldMat.sTexBump.mTextureBlend, 1, AI_MATKEY_TEXBLEND_HEIGHT(0)); } if( oldMat.sTexShininess.mMapName.length() > 0) { aiString tex; tex.Set( oldMat.sTexShininess.mMapName); mat.AddProperty( &tex, AI_MATKEY_TEXTURE_SHININESS(0)); if (is_not_qnan(oldMat.sTexShininess.mTextureBlend)) mat.AddProperty( &oldMat.sTexShininess.mTextureBlend, 1, AI_MATKEY_TEXBLEND_SHININESS(0)); } // store the name of the material itself, too if( oldMat.mName.length() > 0) { aiString tex; tex.Set( oldMat.mName); mat.AddProperty( &tex, AI_MATKEY_NAME); } return; } // ------------------------------------------------------------------------------------------------ void SetupMatUVSrc (aiMaterial* pcMat, const Dot3DS::Material* pcMatIn) { MaterialHelper* pcHelper = (MaterialHelper*)pcMat; pcHelper->AddProperty(&pcMatIn->sTexDiffuse.iUVSrc,1,AI_MATKEY_UVWSRC_DIFFUSE(0)); pcHelper->AddProperty(&pcMatIn->sTexSpecular.iUVSrc,1,AI_MATKEY_UVWSRC_SPECULAR(0)); pcHelper->AddProperty(&pcMatIn->sTexEmissive.iUVSrc,1,AI_MATKEY_UVWSRC_EMISSIVE(0)); pcHelper->AddProperty(&pcMatIn->sTexBump.iUVSrc,1,AI_MATKEY_UVWSRC_HEIGHT(0)); pcHelper->AddProperty(&pcMatIn->sTexShininess.iUVSrc,1,AI_MATKEY_UVWSRC_SHININESS(0)); pcHelper->AddProperty(&pcMatIn->sTexOpacity.iUVSrc,1,AI_MATKEY_UVWSRC_OPACITY(0)); } // ------------------------------------------------------------------------------------------------ void Dot3DSImporter::ConvertMeshes(aiScene* pcOut) { std::vector avOutMeshes; avOutMeshes.reserve(this->mScene->mMeshes.size() * 2); unsigned int iFaceCnt = 0; // we need to split all meshes by their materials for (std::vector::iterator i = this->mScene->mMeshes.begin(); i != this->mScene->mMeshes.end();++i) { std::vector* aiSplit = new std::vector[ this->mScene->mMaterials.size()]; unsigned int iNum = 0; for (std::vector::const_iterator a = (*i).mFaceMaterials.begin(); a != (*i).mFaceMaterials.end();++a,++iNum) { // check range if ((*a) >= this->mScene->mMaterials.size()) { // use the last material instead aiSplit[this->mScene->mMaterials.size()-1].push_back(iNum); } else aiSplit[*a].push_back(iNum); } // now generate submeshes bool bFirst = true; for (unsigned int p = 0; p < this->mScene->mMaterials.size();++p) { if (aiSplit[p].size() != 0) { aiMesh* p_pcOut = new aiMesh(); // be sure to setup the correct material index p_pcOut->mMaterialIndex = p; // use the color data as temporary storage p_pcOut->mColors[0] = (aiColor4D*)new std::string((*i).mName); avOutMeshes.push_back(p_pcOut); if (bFirst) { p_pcOut->mColors[1] = (aiColor4D*)new aiMatrix4x4(); *((aiMatrix4x4*)p_pcOut->mColors[1]) = (*i).mMat; bFirst = false; } // convert vertices p_pcOut->mNumVertices = aiSplit[p].size()*3; p_pcOut->mNumFaces = aiSplit[p].size(); // allocate enough storage for faces p_pcOut->mFaces = new aiFace[p_pcOut->mNumFaces]; iFaceCnt += p_pcOut->mNumFaces; if (p_pcOut->mNumVertices != 0) { p_pcOut->mVertices = new aiVector3D[p_pcOut->mNumVertices]; p_pcOut->mNormals = new aiVector3D[p_pcOut->mNumVertices]; unsigned int iBase = 0; for (unsigned int q = 0; q < aiSplit[p].size();++q) { unsigned int iIndex = aiSplit[p][q]; p_pcOut->mFaces[q].mIndices = new unsigned int[3]; p_pcOut->mFaces[q].mNumIndices = 3; p_pcOut->mFaces[q].mIndices[2] = iBase; p_pcOut->mVertices[iBase] = (*i).mPositions[(*i).mFaces[iIndex].mIndices[0]]; p_pcOut->mNormals[iBase++] = (*i).mNormals[(*i).mFaces[iIndex].mIndices[0]]; p_pcOut->mFaces[q].mIndices[1] = iBase; p_pcOut->mVertices[iBase] = (*i).mPositions[(*i).mFaces[iIndex].mIndices[1]]; p_pcOut->mNormals[iBase++] = (*i).mNormals[(*i).mFaces[iIndex].mIndices[1]]; p_pcOut->mFaces[q].mIndices[0] = iBase; p_pcOut->mVertices[iBase] = (*i).mPositions[(*i).mFaces[iIndex].mIndices[2]]; p_pcOut->mNormals[iBase++] = (*i).mNormals[(*i).mFaces[iIndex].mIndices[2]]; } } // convert texture coordinates if ((*i).mTexCoords.size() != 0) { p_pcOut->mTextureCoords[0] = new aiVector3D[p_pcOut->mNumVertices]; unsigned int iBase = 0; for (unsigned int q = 0; q < aiSplit[p].size();++q) { unsigned int iIndex2 = aiSplit[p][q]; unsigned int iIndex = (*i).mFaces[iIndex2].mIndices[0]; aiVector2D& pc = (*i).mTexCoords[iIndex]; p_pcOut->mTextureCoords[0][iBase++] = aiVector3D(pc.x,pc.y,0.0f); iIndex = (*i).mFaces[iIndex2].mIndices[1]; pc = (*i).mTexCoords[iIndex]; p_pcOut->mTextureCoords[0][iBase++] = aiVector3D(pc.x,pc.y,0.0f); iIndex = (*i).mFaces[iIndex2].mIndices[2]; pc = (*i).mTexCoords[iIndex]; p_pcOut->mTextureCoords[0][iBase++] = aiVector3D(pc.x,pc.y,0.0f); } // apply texture coordinate scalings this->BakeScaleNOffset ( p_pcOut, &this->mScene->mMaterials[ p_pcOut->mMaterialIndex] ); // setup bitflags to indicate which texture coordinate // channels are used p_pcOut->mNumUVComponents[0] = 2; if (p_pcOut->HasTextureCoords(1)) p_pcOut->mNumUVComponents[1] = 2; if (p_pcOut->HasTextureCoords(2)) p_pcOut->mNumUVComponents[2] = 2; if (p_pcOut->HasTextureCoords(3)) p_pcOut->mNumUVComponents[3] = 2; } } } delete[] aiSplit; } pcOut->mNumMeshes = avOutMeshes.size(); pcOut->mMeshes = new aiMesh*[pcOut->mNumMeshes](); for (unsigned int a = 0; a < pcOut->mNumMeshes;++a) { pcOut->mMeshes[a] = avOutMeshes[a]; } if (0 == iFaceCnt) { throw new ImportErrorException("No faces loaded. The mesh is empty"); } // for each material in the scene we need to setup the UV source // set for each texture for (unsigned int a = 0; a < pcOut->mNumMaterials;++a) { SetupMatUVSrc( pcOut->mMaterials[a], &this->mScene->mMaterials[a] ); } return; } // ------------------------------------------------------------------------------------------------ void Dot3DSImporter::AddNodeToGraph(aiScene* pcSOut,aiNode* pcOut,Dot3DS::Node* pcIn) { // find the corresponding mesh indices std::vector iArray; if (pcIn->mName != "$$$DUMMY") { for (unsigned int a = 0; a < pcSOut->mNumMeshes;++a) { if (0 == ASSIMP_stricmp(pcIn->mName.c_str(), ((std::string*)pcSOut->mMeshes[a]->mColors[0])->c_str())) { iArray.push_back(a); } } } pcOut->mName.Set(pcIn->mName); pcOut->mNumMeshes = iArray.size(); pcOut->mMeshes = new unsigned int[iArray.size()]; for (unsigned int i = 0;i < iArray.size();++i) { const unsigned int iIndex = iArray[i]; if (NULL != pcSOut->mMeshes[iIndex]->mColors[1]) { pcOut->mTransformation = *((aiMatrix4x4*) (pcSOut->mMeshes[iIndex]->mColors[1])); delete (aiMatrix4x4*)pcSOut->mMeshes[iIndex]->mColors[1]; pcSOut->mMeshes[iIndex]->mColors[1] = NULL; } pcOut->mMeshes[i] = iIndex; } // (code for keyframe animation. however, this is currently not supported by Assimp) #if 0 // build the scaling matrix. Toggle y and z axis aiMatrix4x4 mS; mS.a1 = pcIn->vScaling.x; mS.b2 = pcIn->vScaling.z; mS.c3 = pcIn->vScaling.y; // build the translation matrix. Toggle y and z axis aiMatrix4x4 mT; mT.a4 = pcIn->vPosition.x; mT.b4 = pcIn->vPosition.z; mT.c4 = pcIn->vPosition.y; // build the pivot matrix. Toggle y and z axis aiMatrix4x4 mP; mP.a4 = -pcIn->vPivot.x; mP.b4 = -pcIn->vPivot.z; mP.c4 = -pcIn->vPivot.y; #endif // build a matrix to flip the z coordinate of the vertices aiMatrix4x4 mF; mF.c3 = -1.0f; // build the final matrix // NOTE: This should be the identity. Theoretically. In reality // there are many models with very funny local matrices and // very different keyframe values ... this is the only reason // why we extract the data from the first keyframe. pcOut->mTransformation = mF; /* mF * mT * pcIn->mRotation * mS * mP * pcOut->mTransformation.Inverse(); */ // (code for keyframe animation. however, this is currently not supported by Assimp) #if 0 if (pcOut->mTransformation != mF) { DefaultLogger::get()->warn("The local transformation matrix of the " "3ds file does not match the first keyframe. Using the " "information from the keyframe."); } #endif pcOut->mNumChildren = pcIn->mChildren.size(); pcOut->mChildren = new aiNode*[pcIn->mChildren.size()]; for (unsigned int i = 0; i < pcIn->mChildren.size();++i) { pcOut->mChildren[i] = new aiNode(); pcOut->mChildren[i]->mParent = pcOut; AddNodeToGraph(pcSOut,pcOut->mChildren[i], pcIn->mChildren[i]); } return; } // ------------------------------------------------------------------------------------------------ inline bool HasUVTransform(const Dot3DS::Texture& rcIn) { return (0.0f != rcIn.mOffsetU || 0.0f != rcIn.mOffsetV || 1.0f != rcIn.mScaleU || 1.0f != rcIn.mScaleV || 0.0f != rcIn.mRotation); } // ------------------------------------------------------------------------------------------------ void Dot3DSImporter::ApplyScaleNOffset() { unsigned int iNum = 0; for (std::vector::iterator i = this->mScene->mMaterials.begin(); i != this->mScene->mMaterials.end();++i,++iNum) { unsigned int iCnt = 0; Dot3DS::Texture* pcTexture = NULL; if (HasUVTransform((*i).sTexDiffuse)) { (*i).sTexDiffuse.bPrivate = true; pcTexture = &(*i).sTexDiffuse; ++iCnt; } if (HasUVTransform((*i).sTexSpecular)) { (*i).sTexSpecular.bPrivate = true; pcTexture = &(*i).sTexSpecular; ++iCnt; } if (HasUVTransform((*i).sTexOpacity)) { (*i).sTexOpacity.bPrivate = true; pcTexture = &(*i).sTexOpacity; ++iCnt; } if (HasUVTransform((*i).sTexEmissive)) { (*i).sTexEmissive.bPrivate = true; pcTexture = &(*i).sTexEmissive; ++iCnt; } if (HasUVTransform((*i).sTexBump)) { (*i).sTexBump.bPrivate = true; pcTexture = &(*i).sTexBump; ++iCnt; } if (HasUVTransform((*i).sTexShininess)) { (*i).sTexShininess.bPrivate = true; pcTexture = &(*i).sTexShininess; ++iCnt; } if (0 != iCnt) { // if only one texture needs scaling/offset operations // we can apply them directly to the first texture // coordinate sets of all meshes referencing *this* material // However, we can't do it now. We need to wait until // everything is sorted by materials. if (1 == iCnt) { (*i).iBakeUVTransform = 1; (*i).pcSingleTexture = pcTexture; } // we will need to generate a separate new texture channel // for each texture. // However, we can't do it now. We need to wait until // everything is sorted by materials. else (*i).iBakeUVTransform = 2; } } } // ------------------------------------------------------------------------------------------------ struct STransformVecInfo { float fScaleU; float fScaleV; float fOffsetU; float fOffsetV; float fRotation; std::vector pcTextures; }; // ------------------------------------------------------------------------------------------------ void AddToList(std::vector& rasVec,Dot3DS::Texture* pcTex) { if (0 == pcTex->mMapName.length())return; for (std::vector::iterator i = rasVec.begin(); i != rasVec.end();++i) { if ((*i).fOffsetU == pcTex->mOffsetU && (*i).fOffsetV == pcTex->mOffsetV && (*i).fScaleU == pcTex->mScaleU && (*i).fScaleV == pcTex->mScaleV && (*i).fRotation == pcTex->mRotation) { (*i).pcTextures.push_back(pcTex); return; } } STransformVecInfo sInfo; sInfo.fScaleU = pcTex->mScaleU; sInfo.fScaleV = pcTex->mScaleV; sInfo.fOffsetU = pcTex->mOffsetU; sInfo.fOffsetV = pcTex->mOffsetV; sInfo.fRotation = pcTex->mRotation; sInfo.pcTextures.push_back(pcTex); rasVec.push_back(sInfo); } // ------------------------------------------------------------------------------------------------ void Dot3DSImporter::BakeScaleNOffset( aiMesh* pcMesh, Dot3DS::Material* pcSrc) { if (!pcMesh->mTextureCoords[0])return; if (1 == pcSrc->iBakeUVTransform) { if (0.0f == pcSrc->pcSingleTexture->mRotation) { for (unsigned int i = 0; i < pcMesh->mNumVertices;++i) { pcMesh->mTextureCoords[0][i].x /= pcSrc->pcSingleTexture->mScaleU; pcMesh->mTextureCoords[0][i].y /= pcSrc->pcSingleTexture->mScaleV; pcMesh->mTextureCoords[0][i].x += pcSrc->pcSingleTexture->mOffsetU; pcMesh->mTextureCoords[0][i].y += pcSrc->pcSingleTexture->mOffsetV; } } else { const float fSin = sinf(pcSrc->pcSingleTexture->mRotation); const float fCos = cosf(pcSrc->pcSingleTexture->mRotation); for (unsigned int i = 0; i < pcMesh->mNumVertices;++i) { pcMesh->mTextureCoords[0][i].x /= pcSrc->pcSingleTexture->mScaleU; pcMesh->mTextureCoords[0][i].y /= pcSrc->pcSingleTexture->mScaleV; pcMesh->mTextureCoords[0][i].x *= fCos; pcMesh->mTextureCoords[0][i].y *= fSin; pcMesh->mTextureCoords[0][i].x += pcSrc->pcSingleTexture->mOffsetU; pcMesh->mTextureCoords[0][i].y += pcSrc->pcSingleTexture->mOffsetV; } } } else if (2 == pcSrc->iBakeUVTransform) { // now we need to find all textures in the material // which require scaling/offset operations std::vector sOps; AddToList(sOps,&pcSrc->sTexDiffuse); AddToList(sOps,&pcSrc->sTexSpecular); AddToList(sOps,&pcSrc->sTexEmissive); AddToList(sOps,&pcSrc->sTexOpacity); AddToList(sOps,&pcSrc->sTexBump); AddToList(sOps,&pcSrc->sTexShininess); const aiVector3D* _pvBase; if (0.0f == sOps[0].fOffsetU && 0.0f == sOps[0].fOffsetV && 1.0f == sOps[0].fScaleU && 1.0f == sOps[0].fScaleV && 0.0f == sOps[0].fRotation) { // we'll have an unmodified set, so we can use *this* one _pvBase = pcMesh->mTextureCoords[0]; } else { _pvBase = new aiVector3D[pcMesh->mNumVertices]; memcpy(const_cast(_pvBase),pcMesh->mTextureCoords[0], pcMesh->mNumVertices * sizeof(aiVector3D)); } unsigned int iCnt = 0; for (std::vector::iterator i = sOps.begin(); i != sOps.end();++i,++iCnt) { if (!pcMesh->mTextureCoords[iCnt]) { pcMesh->mTextureCoords[iCnt] = new aiVector3D[pcMesh->mNumVertices]; } // more than 4 UV texture channels are not available if (iCnt > 3) { for (std::vector::iterator a = (*i).pcTextures.begin(); a != (*i).pcTextures.end();++a) { (*a)->iUVSrc = 0; } DefaultLogger::get()->error("There are too many " "combinations of different UV scaling/offset/rotation operations " "to generate an UV channel for each (maximum is 4). Using the " "first UV channel ..."); continue; } const aiVector3D* pvBase = _pvBase; if (0.0f == (*i).fRotation) { for (unsigned int n = 0; n < pcMesh->mNumVertices;++n) { pcMesh->mTextureCoords[iCnt][n].x = pvBase->x / (*i).fScaleU; pcMesh->mTextureCoords[iCnt][n].y = pvBase->y / (*i).fScaleV; pcMesh->mTextureCoords[iCnt][n].x += (*i).fOffsetU; pcMesh->mTextureCoords[iCnt][n].y += (*i).fOffsetV; pvBase++; } } else { const float fSin = sinf((*i).fRotation); const float fCos = cosf((*i).fRotation); for (unsigned int n = 0; n < pcMesh->mNumVertices;++n) { pcMesh->mTextureCoords[iCnt][n].x = pvBase->x / (*i).fScaleU; pcMesh->mTextureCoords[iCnt][n].y = pvBase->y / (*i).fScaleV; pcMesh->mTextureCoords[iCnt][n].x *= fCos; pcMesh->mTextureCoords[iCnt][n].y *= fSin; pcMesh->mTextureCoords[iCnt][n].x += (*i).fOffsetU; pcMesh->mTextureCoords[iCnt][n].y += (*i).fOffsetV; pvBase++; } } // setup UV source for (std::vector::iterator a = (*i).pcTextures.begin(); a != (*i).pcTextures.end();++a) { (*a)->iUVSrc = iCnt; } } // release temporary storage if (_pvBase != pcMesh->mTextureCoords[0]) delete[] _pvBase; } } // ------------------------------------------------------------------------------------------------ void Dot3DSImporter::GenerateNodeGraph(aiScene* pcOut) { pcOut->mRootNode = new aiNode(); if (0 == this->mRootNode->mChildren.size()) { // seems the file has not even a hierarchy. // generate a flat hiearachy which looks like this: // // ROOT_NODE // | // ---------------------------------------- // | | | | // MESH_0 MESH_1 MESH_2 ... MESH_N // unsigned int iCnt = 0; DefaultLogger::get()->warn("No hierarchy information has been " "found in the file. A flat hierarchy tree is built ..."); pcOut->mRootNode->mNumChildren = pcOut->mNumMeshes; pcOut->mRootNode->mChildren = new aiNode* [ pcOut->mNumMeshes ]; for (unsigned int i = 0; i < pcOut->mNumMeshes;++i) { aiNode* pcNode = new aiNode(); pcNode->mParent = pcOut->mRootNode; pcNode->mNumChildren = 0; pcNode->mChildren = 0; pcNode->mMeshes = new unsigned int[1]; pcNode->mMeshes[0] = i; pcNode->mNumMeshes = 1; std::string s; std::stringstream ss(s); ss << "UNNAMED[" << i << + "]"; pcNode->mName.Set(s); // add the new child to the parent node pcOut->mRootNode->mChildren[i] = pcNode; } } else this->AddNodeToGraph(pcOut, pcOut->mRootNode, this->mRootNode); for (unsigned int a = 0; a < pcOut->mNumMeshes;++a) { delete (std::string*)pcOut->mMeshes[a]->mColors[0]; pcOut->mMeshes[a]->mColors[0] = NULL; // may be NULL delete (aiMatrix4x4*)pcOut->mMeshes[a]->mColors[1]; pcOut->mMeshes[a]->mColors[1] = NULL; } } // ------------------------------------------------------------------------------------------------ void Dot3DSImporter::ConvertScene(aiScene* pcOut) { pcOut->mNumMaterials = this->mScene->mMaterials.size(); pcOut->mMaterials = new aiMaterial*[pcOut->mNumMaterials]; for (unsigned int i = 0; i < pcOut->mNumMaterials;++i) { MaterialHelper* pcNew = new MaterialHelper(); this->ConvertMaterial(this->mScene->mMaterials[i],*pcNew); pcOut->mMaterials[i] = pcNew; } this->ConvertMeshes(pcOut); return; } #if 0 // ------------------------------------------------------------------------------------------------ void Dot3DSImporter::GenTexCoord (Dot3DS::Texture* pcTexture, const std::vector& p_vIn, std::vector& p_vOut) { p_vOut.resize(p_vIn.size()); std::vector::const_iterator i = p_vIn.begin(); std::vector::iterator a = p_vOut.begin(); for(;i != p_vOut.end();++i,++a) { // TODO: Find out in which order 3ds max is performing // scaling and translation. However it seems reasonable to // scale first. // // TODO: http://www.jalix.org/ressources/graphics/3DS/_specifications/3ds-0.1.htm // says it is not u and v scale but 1/u and 1/v scale. Other sources // tell different things. Believe this one, the author seems to be funny // or drunken or both ;-) (*a) = (*i); (*a).x /= pcTexture->mScaleU; (*a).y /= pcTexture->mScaleV; (*a).x += pcTexture->mOffsetU; (*a).y += pcTexture->mOffsetV; } return; } #endif