/* Open Asset Import Library (assimp) ---------------------------------------------------------------------- Copyright (c) 2006-2020, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------- */ #ifndef ASSIMP_BUILD_NO_EXPORT #ifndef ASSIMP_BUILD_NO_COLLADA_EXPORTER #include "ColladaExporter.h" #include <assimp/Bitmap.h> #include <assimp/ColladaMetaData.h> #include <assimp/DefaultIOSystem.h> #include <assimp/Exceptional.h> #include <assimp/MathFunctions.h> #include <assimp/SceneCombiner.h> #include <assimp/StringUtils.h> #include <assimp/XMLTools.h> #include <assimp/commonMetaData.h> #include <assimp/fast_atof.h> #include <assimp/scene.h> #include <assimp/Exporter.hpp> #include <assimp/IOSystem.hpp> #include <ctime> #include <memory> namespace Assimp { // ------------------------------------------------------------------------------------------------ // Worker function for exporting a scene to Collada. Prototyped and registered in Exporter.cpp void ExportSceneCollada(const char *pFile, IOSystem *pIOSystem, const aiScene *pScene, const ExportProperties * /*pProperties*/) { std::string path = DefaultIOSystem::absolutePath(std::string(pFile)); std::string file = DefaultIOSystem::completeBaseName(std::string(pFile)); // invoke the exporter ColladaExporter iDoTheExportThing(pScene, pIOSystem, path, file); if (iDoTheExportThing.mOutput.fail()) { throw DeadlyExportError("output data creation failed. Most likely the file became too large: " + std::string(pFile)); } // we're still here - export successfully completed. Write result to the given IOSYstem std::unique_ptr<IOStream> outfile(pIOSystem->Open(pFile, "wt")); if (outfile == nullptr) { throw DeadlyExportError("could not open output .dae file: " + std::string(pFile)); } // XXX maybe use a small wrapper around IOStream that behaves like std::stringstream in order to avoid the extra copy. outfile->Write(iDoTheExportThing.mOutput.str().c_str(), static_cast<size_t>(iDoTheExportThing.mOutput.tellp()), 1); } // ------------------------------------------------------------------------------------------------ // Encodes a string into a valid XML ID using the xsd:ID schema qualifications. static const std::string XMLIDEncode(const std::string &name) { const char XML_ID_CHARS[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_-."; const unsigned int XML_ID_CHARS_COUNT = sizeof(XML_ID_CHARS) / sizeof(char); if (name.length() == 0) { return name; } std::stringstream idEncoded; // xsd:ID must start with letter or underscore if (!((name[0] >= 'A' && name[0] <= 'z') || name[0] == '_')) { idEncoded << '_'; } for (std::string::const_iterator it = name.begin(); it != name.end(); ++it) { // xsd:ID can only contain letters, digits, underscores, hyphens and periods if (strchr(XML_ID_CHARS, *it) != nullptr) { idEncoded << *it; } else { // Select placeholder character based on invalid character to reduce ID collisions idEncoded << XML_ID_CHARS[(*it) % XML_ID_CHARS_COUNT]; } } return idEncoded.str(); } // ------------------------------------------------------------------------------------------------ // Helper functions to create unique ids inline bool IsUniqueId(const std::unordered_set<std::string> &idSet, const std::string &idStr) { return (idSet.find(idStr) == idSet.end()); } inline std::string MakeUniqueId(const std::unordered_set<std::string> &idSet, const std::string &idPrefix, const std::string &postfix) { std::string result(idPrefix + postfix); if (!IsUniqueId(idSet, result)) { // Select a number to append size_t idnum = 1; do { result = idPrefix + '_' + to_string(idnum) + postfix; ++idnum; } while (!IsUniqueId(idSet, result)); } return result; } // ------------------------------------------------------------------------------------------------ // Constructor for a specific scene to export ColladaExporter::ColladaExporter(const aiScene *pScene, IOSystem *pIOSystem, const std::string &path, const std::string &file) : mIOSystem(pIOSystem), mPath(path), mFile(file), mScene(pScene), endstr("\n") { // make sure that all formatting happens using the standard, C locale and not the user's current locale mOutput.imbue(std::locale("C")); mOutput.precision(ASSIMP_AI_REAL_TEXT_PRECISION); // start writing the file WriteFile(); } // ------------------------------------------------------------------------------------------------ // Destructor ColladaExporter::~ColladaExporter() { } // ------------------------------------------------------------------------------------------------ // Starts writing the contents void ColladaExporter::WriteFile() { // write the DTD mOutput << "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\" ?>" << endstr; // COLLADA element start mOutput << "<COLLADA xmlns=\"http://www.collada.org/2005/11/COLLADASchema\" version=\"1.4.1\">" << endstr; PushTag(); WriteTextures(); WriteHeader(); // Add node names to the unique id database first so they are most likely to use their names as unique ids CreateNodeIds(mScene->mRootNode); WriteCamerasLibrary(); WriteLightsLibrary(); WriteMaterials(); WriteGeometryLibrary(); WriteControllerLibrary(); WriteSceneLibrary(); // customized, Writes the animation library WriteAnimationsLibrary(); // instantiate the scene(s) // For Assimp there will only ever be one mOutput << startstr << "<scene>" << endstr; PushTag(); mOutput << startstr << "<instance_visual_scene url=\"#" + mSceneId + "\" />" << endstr; PopTag(); mOutput << startstr << "</scene>" << endstr; PopTag(); mOutput << "</COLLADA>" << endstr; } // ------------------------------------------------------------------------------------------------ // Writes the asset header void ColladaExporter::WriteHeader() { static const ai_real epsilon = Math::getEpsilon<ai_real>(); static const aiQuaternion x_rot(aiMatrix3x3( 0, -1, 0, 1, 0, 0, 0, 0, 1)); static const aiQuaternion y_rot(aiMatrix3x3( 1, 0, 0, 0, 1, 0, 0, 0, 1)); static const aiQuaternion z_rot(aiMatrix3x3( 1, 0, 0, 0, 0, 1, 0, -1, 0)); static const unsigned int date_nb_chars = 20; char date_str[date_nb_chars]; std::time_t date = std::time(nullptr); std::strftime(date_str, date_nb_chars, "%Y-%m-%dT%H:%M:%S", std::localtime(&date)); aiVector3D scaling; aiQuaternion rotation; aiVector3D position; mScene->mRootNode->mTransformation.Decompose(scaling, rotation, position); rotation.Normalize(); mAdd_root_node = false; ai_real scale = 1.0; if (std::abs(scaling.x - scaling.y) <= epsilon && std::abs(scaling.x - scaling.z) <= epsilon && std::abs(scaling.y - scaling.z) <= epsilon) { scale = (ai_real)((((double)scaling.x) + ((double)scaling.y) + ((double)scaling.z)) / 3.0); } else { mAdd_root_node = true; } std::string up_axis = "Y_UP"; if (rotation.Equal(x_rot, epsilon)) { up_axis = "X_UP"; } else if (rotation.Equal(y_rot, epsilon)) { up_axis = "Y_UP"; } else if (rotation.Equal(z_rot, epsilon)) { up_axis = "Z_UP"; } else { mAdd_root_node = true; } if (!position.Equal(aiVector3D(0, 0, 0))) { mAdd_root_node = true; } // Assimp root nodes can have meshes, Collada Scenes cannot if (mScene->mRootNode->mNumChildren == 0 || mScene->mRootNode->mMeshes != 0) { mAdd_root_node = true; } if (mAdd_root_node) { up_axis = "Y_UP"; scale = 1.0; } mOutput << startstr << "<asset>" << endstr; PushTag(); mOutput << startstr << "<contributor>" << endstr; PushTag(); // If no Scene metadata, use root node metadata aiMetadata *meta = mScene->mMetaData; if (nullptr == meta) { meta = mScene->mRootNode->mMetaData; } aiString value; if (!meta || !meta->Get("Author", value)) { mOutput << startstr << "<author>" << "Assimp" << "</author>" << endstr; } else { mOutput << startstr << "<author>" << XMLEscape(value.C_Str()) << "</author>" << endstr; } if (nullptr == meta || !meta->Get(AI_METADATA_SOURCE_GENERATOR, value)) { mOutput << startstr << "<authoring_tool>" << "Assimp Exporter" << "</authoring_tool>" << endstr; } else { mOutput << startstr << "<authoring_tool>" << XMLEscape(value.C_Str()) << "</authoring_tool>" << endstr; } if (meta) { if (meta->Get("Comments", value)) { mOutput << startstr << "<comments>" << XMLEscape(value.C_Str()) << "</comments>" << endstr; } if (meta->Get(AI_METADATA_SOURCE_COPYRIGHT, value)) { mOutput << startstr << "<copyright>" << XMLEscape(value.C_Str()) << "</copyright>" << endstr; } if (meta->Get("SourceData", value)) { mOutput << startstr << "<source_data>" << XMLEscape(value.C_Str()) << "</source_data>" << endstr; } } PopTag(); mOutput << startstr << "</contributor>" << endstr; if (nullptr == meta || !meta->Get("Created", value)) { mOutput << startstr << "<created>" << date_str << "</created>" << endstr; } else { mOutput << startstr << "<created>" << XMLEscape(value.C_Str()) << "</created>" << endstr; } // Modified date is always the date saved mOutput << startstr << "<modified>" << date_str << "</modified>" << endstr; if (meta) { if (meta->Get("Keywords", value)) { mOutput << startstr << "<keywords>" << XMLEscape(value.C_Str()) << "</keywords>" << endstr; } if (meta->Get("Revision", value)) { mOutput << startstr << "<revision>" << XMLEscape(value.C_Str()) << "</revision>" << endstr; } if (meta->Get("Subject", value)) { mOutput << startstr << "<subject>" << XMLEscape(value.C_Str()) << "</subject>" << endstr; } if (meta->Get("Title", value)) { mOutput << startstr << "<title>" << XMLEscape(value.C_Str()) << "</title>" << endstr; } } mOutput << startstr << "<unit name=\"meter\" meter=\"" << scale << "\" />" << endstr; mOutput << startstr << "<up_axis>" << up_axis << "</up_axis>" << endstr; PopTag(); mOutput << startstr << "</asset>" << endstr; } // ------------------------------------------------------------------------------------------------ // Write the embedded textures void ColladaExporter::WriteTextures() { static const unsigned int buffer_size = 1024; char str[buffer_size]; if (mScene->HasTextures()) { for (unsigned int i = 0; i < mScene->mNumTextures; i++) { // It would be great to be able to create a directory in portable standard C++, but it's not the case, // so we just write the textures in the current directory. aiTexture *texture = mScene->mTextures[i]; if (nullptr == texture) { continue; } ASSIMP_itoa10(str, buffer_size, i + 1); std::string name = mFile + "_texture_" + (i < 1000 ? "0" : "") + (i < 100 ? "0" : "") + (i < 10 ? "0" : "") + str + "." + ((const char *)texture->achFormatHint); std::unique_ptr<IOStream> outfile(mIOSystem->Open(mPath + mIOSystem->getOsSeparator() + name, "wb")); if (outfile == nullptr) { throw DeadlyExportError("could not open output texture file: " + mPath + name); } if (texture->mHeight == 0) { outfile->Write((void *)texture->pcData, texture->mWidth, 1); } else { Bitmap::Save(texture, outfile.get()); } outfile->Flush(); textures.insert(std::make_pair(i, name)); } } } // ------------------------------------------------------------------------------------------------ // Write the embedded textures void ColladaExporter::WriteCamerasLibrary() { if (mScene->HasCameras()) { mOutput << startstr << "<library_cameras>" << endstr; PushTag(); for (size_t a = 0; a < mScene->mNumCameras; ++a) WriteCamera(a); PopTag(); mOutput << startstr << "</library_cameras>" << endstr; } } void ColladaExporter::WriteCamera(size_t pIndex) { const aiCamera *cam = mScene->mCameras[pIndex]; const std::string cameraId = GetObjectUniqueId(AiObjectType::Camera, pIndex); const std::string cameraName = GetObjectName(AiObjectType::Camera, pIndex); mOutput << startstr << "<camera id=\"" << cameraId << "\" name=\"" << cameraName << "\" >" << endstr; PushTag(); mOutput << startstr << "<optics>" << endstr; PushTag(); mOutput << startstr << "<technique_common>" << endstr; PushTag(); //assimp doesn't support the import of orthographic cameras! se we write //always perspective mOutput << startstr << "<perspective>" << endstr; PushTag(); mOutput << startstr << "<xfov sid=\"xfov\">" << AI_RAD_TO_DEG(cam->mHorizontalFOV) << "</xfov>" << endstr; mOutput << startstr << "<aspect_ratio>" << cam->mAspect << "</aspect_ratio>" << endstr; mOutput << startstr << "<znear sid=\"znear\">" << cam->mClipPlaneNear << "</znear>" << endstr; mOutput << startstr << "<zfar sid=\"zfar\">" << cam->mClipPlaneFar << "</zfar>" << endstr; PopTag(); mOutput << startstr << "</perspective>" << endstr; PopTag(); mOutput << startstr << "</technique_common>" << endstr; PopTag(); mOutput << startstr << "</optics>" << endstr; PopTag(); mOutput << startstr << "</camera>" << endstr; } // ------------------------------------------------------------------------------------------------ // Write the embedded textures void ColladaExporter::WriteLightsLibrary() { if (mScene->HasLights()) { mOutput << startstr << "<library_lights>" << endstr; PushTag(); for (size_t a = 0; a < mScene->mNumLights; ++a) WriteLight(a); PopTag(); mOutput << startstr << "</library_lights>" << endstr; } } void ColladaExporter::WriteLight(size_t pIndex) { const aiLight *light = mScene->mLights[pIndex]; const std::string lightId = GetObjectUniqueId(AiObjectType::Light, pIndex); const std::string lightName = GetObjectName(AiObjectType::Light, pIndex); mOutput << startstr << "<light id=\"" << lightId << "\" name=\"" << lightName << "\" >" << endstr; PushTag(); mOutput << startstr << "<technique_common>" << endstr; PushTag(); switch (light->mType) { case aiLightSource_AMBIENT: WriteAmbienttLight(light); break; case aiLightSource_DIRECTIONAL: WriteDirectionalLight(light); break; case aiLightSource_POINT: WritePointLight(light); break; case aiLightSource_SPOT: WriteSpotLight(light); break; case aiLightSource_AREA: case aiLightSource_UNDEFINED: case _aiLightSource_Force32Bit: break; } PopTag(); mOutput << startstr << "</technique_common>" << endstr; PopTag(); mOutput << startstr << "</light>" << endstr; } void ColladaExporter::WritePointLight(const aiLight *const light) { const aiColor3D &color = light->mColorDiffuse; mOutput << startstr << "<point>" << endstr; PushTag(); mOutput << startstr << "<color sid=\"color\">" << color.r << " " << color.g << " " << color.b << "</color>" << endstr; mOutput << startstr << "<constant_attenuation>" << light->mAttenuationConstant << "</constant_attenuation>" << endstr; mOutput << startstr << "<linear_attenuation>" << light->mAttenuationLinear << "</linear_attenuation>" << endstr; mOutput << startstr << "<quadratic_attenuation>" << light->mAttenuationQuadratic << "</quadratic_attenuation>" << endstr; PopTag(); mOutput << startstr << "</point>" << endstr; } void ColladaExporter::WriteDirectionalLight(const aiLight *const light) { const aiColor3D &color = light->mColorDiffuse; mOutput << startstr << "<directional>" << endstr; PushTag(); mOutput << startstr << "<color sid=\"color\">" << color.r << " " << color.g << " " << color.b << "</color>" << endstr; PopTag(); mOutput << startstr << "</directional>" << endstr; } void ColladaExporter::WriteSpotLight(const aiLight *const light) { const aiColor3D &color = light->mColorDiffuse; mOutput << startstr << "<spot>" << endstr; PushTag(); mOutput << startstr << "<color sid=\"color\">" << color.r << " " << color.g << " " << color.b << "</color>" << endstr; mOutput << startstr << "<constant_attenuation>" << light->mAttenuationConstant << "</constant_attenuation>" << endstr; mOutput << startstr << "<linear_attenuation>" << light->mAttenuationLinear << "</linear_attenuation>" << endstr; mOutput << startstr << "<quadratic_attenuation>" << light->mAttenuationQuadratic << "</quadratic_attenuation>" << endstr; /* out->mAngleOuterCone = AI_DEG_TO_RAD (std::acos(std::pow(0.1f,1.f/srcLight->mFalloffExponent))+ srcLight->mFalloffAngle); */ const ai_real fallOffAngle = AI_RAD_TO_DEG(light->mAngleInnerCone); mOutput << startstr << "<falloff_angle sid=\"fall_off_angle\">" << fallOffAngle << "</falloff_angle>" << endstr; double temp = light->mAngleOuterCone - light->mAngleInnerCone; temp = std::cos(temp); temp = std::log(temp) / std::log(0.1); temp = 1 / temp; mOutput << startstr << "<falloff_exponent sid=\"fall_off_exponent\">" << temp << "</falloff_exponent>" << endstr; PopTag(); mOutput << startstr << "</spot>" << endstr; } void ColladaExporter::WriteAmbienttLight(const aiLight *const light) { const aiColor3D &color = light->mColorAmbient; mOutput << startstr << "<ambient>" << endstr; PushTag(); mOutput << startstr << "<color sid=\"color\">" << color.r << " " << color.g << " " << color.b << "</color>" << endstr; PopTag(); mOutput << startstr << "</ambient>" << endstr; } // ------------------------------------------------------------------------------------------------ // Reads a single surface entry from the given material keys bool ColladaExporter::ReadMaterialSurface(Surface &poSurface, const aiMaterial &pSrcMat, aiTextureType pTexture, const char *pKey, size_t pType, size_t pIndex) { if (pSrcMat.GetTextureCount(pTexture) > 0) { aiString texfile; unsigned int uvChannel = 0; pSrcMat.GetTexture(pTexture, 0, &texfile, nullptr, &uvChannel); std::string index_str(texfile.C_Str()); if (index_str.size() != 0 && index_str[0] == '*') { unsigned int index; index_str = index_str.substr(1, std::string::npos); try { index = (unsigned int)strtoul10_64<DeadlyExportError>(index_str.c_str()); } catch (std::exception &error) { throw DeadlyExportError(error.what()); } std::map<unsigned int, std::string>::const_iterator name = textures.find(index); if (name != textures.end()) { poSurface.texture = name->second; } else { throw DeadlyExportError("could not find embedded texture at index " + index_str); } } else { poSurface.texture = texfile.C_Str(); } poSurface.channel = uvChannel; poSurface.exist = true; } else { if (pKey) poSurface.exist = pSrcMat.Get(pKey, static_cast<unsigned int>(pType), static_cast<unsigned int>(pIndex), poSurface.color) == aiReturn_SUCCESS; } return poSurface.exist; } // ------------------------------------------------------------------------------------------------ // Reimplementation of isalnum(,C locale), because AppVeyor does not see standard version. static bool isalnum_C(char c) { return (nullptr != strchr("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz", c)); } // ------------------------------------------------------------------------------------------------ // Writes an image entry for the given surface void ColladaExporter::WriteImageEntry(const Surface &pSurface, const std::string &imageId) { if (!pSurface.texture.empty()) { mOutput << startstr << "<image id=\"" << imageId << "\">" << endstr; PushTag(); mOutput << startstr << "<init_from>"; // URL encode image file name first, then XML encode on top std::stringstream imageUrlEncoded; for (std::string::const_iterator it = pSurface.texture.begin(); it != pSurface.texture.end(); ++it) { if (isalnum_C((unsigned char)*it) || *it == ':' || *it == '_' || *it == '-' || *it == '.' || *it == '/' || *it == '\\') imageUrlEncoded << *it; else imageUrlEncoded << '%' << std::hex << size_t((unsigned char)*it) << std::dec; } mOutput << XMLEscape(imageUrlEncoded.str()); mOutput << "</init_from>" << endstr; PopTag(); mOutput << startstr << "</image>" << endstr; } } // ------------------------------------------------------------------------------------------------ // Writes a color-or-texture entry into an effect definition void ColladaExporter::WriteTextureColorEntry(const Surface &pSurface, const std::string &pTypeName, const std::string &imageId) { if (pSurface.exist) { mOutput << startstr << "<" << pTypeName << ">" << endstr; PushTag(); if (pSurface.texture.empty()) { mOutput << startstr << "<color sid=\"" << pTypeName << "\">" << pSurface.color.r << " " << pSurface.color.g << " " << pSurface.color.b << " " << pSurface.color.a << "</color>" << endstr; } else { mOutput << startstr << "<texture texture=\"" << imageId << "\" texcoord=\"CHANNEL" << pSurface.channel << "\" />" << endstr; } PopTag(); mOutput << startstr << "</" << pTypeName << ">" << endstr; } } // ------------------------------------------------------------------------------------------------ // Writes the two parameters necessary for referencing a texture in an effect entry void ColladaExporter::WriteTextureParamEntry(const Surface &pSurface, const std::string &pTypeName, const std::string &materialId) { // if surface is a texture, write out the sampler and the surface parameters necessary to reference the texture if (!pSurface.texture.empty()) { mOutput << startstr << "<newparam sid=\"" << materialId << "-" << pTypeName << "-surface\">" << endstr; PushTag(); mOutput << startstr << "<surface type=\"2D\">" << endstr; PushTag(); mOutput << startstr << "<init_from>" << materialId << "-" << pTypeName << "-image</init_from>" << endstr; PopTag(); mOutput << startstr << "</surface>" << endstr; PopTag(); mOutput << startstr << "</newparam>" << endstr; mOutput << startstr << "<newparam sid=\"" << materialId << "-" << pTypeName << "-sampler\">" << endstr; PushTag(); mOutput << startstr << "<sampler2D>" << endstr; PushTag(); mOutput << startstr << "<source>" << materialId << "-" << pTypeName << "-surface</source>" << endstr; PopTag(); mOutput << startstr << "</sampler2D>" << endstr; PopTag(); mOutput << startstr << "</newparam>" << endstr; } } // ------------------------------------------------------------------------------------------------ // Writes a scalar property void ColladaExporter::WriteFloatEntry(const Property &pProperty, const std::string &pTypeName) { if (pProperty.exist) { mOutput << startstr << "<" << pTypeName << ">" << endstr; PushTag(); mOutput << startstr << "<float sid=\"" << pTypeName << "\">" << pProperty.value << "</float>" << endstr; PopTag(); mOutput << startstr << "</" << pTypeName << ">" << endstr; } } // ------------------------------------------------------------------------------------------------ // Writes the material setup void ColladaExporter::WriteMaterials() { std::vector<Material> materials; materials.resize(mScene->mNumMaterials); /// collect all materials from the scene size_t numTextures = 0; for (size_t a = 0; a < mScene->mNumMaterials; ++a) { Material &material = materials[a]; material.id = GetObjectUniqueId(AiObjectType::Material, a); material.name = GetObjectName(AiObjectType::Material, a); const aiMaterial &mat = *(mScene->mMaterials[a]); aiShadingMode shading = aiShadingMode_Flat; material.shading_model = "phong"; if (mat.Get(AI_MATKEY_SHADING_MODEL, shading) == aiReturn_SUCCESS) { if (shading == aiShadingMode_Phong) { material.shading_model = "phong"; } else if (shading == aiShadingMode_Blinn) { material.shading_model = "blinn"; } else if (shading == aiShadingMode_NoShading) { material.shading_model = "constant"; } else if (shading == aiShadingMode_Gouraud) { material.shading_model = "lambert"; } } if (ReadMaterialSurface(material.ambient, mat, aiTextureType_AMBIENT, AI_MATKEY_COLOR_AMBIENT)) ++numTextures; if (ReadMaterialSurface(material.diffuse, mat, aiTextureType_DIFFUSE, AI_MATKEY_COLOR_DIFFUSE)) ++numTextures; if (ReadMaterialSurface(material.specular, mat, aiTextureType_SPECULAR, AI_MATKEY_COLOR_SPECULAR)) ++numTextures; if (ReadMaterialSurface(material.emissive, mat, aiTextureType_EMISSIVE, AI_MATKEY_COLOR_EMISSIVE)) ++numTextures; if (ReadMaterialSurface(material.reflective, mat, aiTextureType_REFLECTION, AI_MATKEY_COLOR_REFLECTIVE)) ++numTextures; if (ReadMaterialSurface(material.transparent, mat, aiTextureType_OPACITY, AI_MATKEY_COLOR_TRANSPARENT)) ++numTextures; if (ReadMaterialSurface(material.normal, mat, aiTextureType_NORMALS, nullptr, 0, 0)) ++numTextures; material.shininess.exist = mat.Get(AI_MATKEY_SHININESS, material.shininess.value) == aiReturn_SUCCESS; material.transparency.exist = mat.Get(AI_MATKEY_OPACITY, material.transparency.value) == aiReturn_SUCCESS; material.index_refraction.exist = mat.Get(AI_MATKEY_REFRACTI, material.index_refraction.value) == aiReturn_SUCCESS; } // output textures if present if (numTextures > 0) { mOutput << startstr << "<library_images>" << endstr; PushTag(); for (const Material &mat : materials) { WriteImageEntry(mat.ambient, mat.id + "-ambient-image"); WriteImageEntry(mat.diffuse, mat.id + "-diffuse-image"); WriteImageEntry(mat.specular, mat.id + "-specular-image"); WriteImageEntry(mat.emissive, mat.id + "-emission-image"); WriteImageEntry(mat.reflective, mat.id + "-reflective-image"); WriteImageEntry(mat.transparent, mat.id + "-transparent-image"); WriteImageEntry(mat.normal, mat.id + "-normal-image"); } PopTag(); mOutput << startstr << "</library_images>" << endstr; } // output effects - those are the actual carriers of information if (!materials.empty()) { mOutput << startstr << "<library_effects>" << endstr; PushTag(); for (const Material &mat : materials) { // this is so ridiculous it must be right mOutput << startstr << "<effect id=\"" << mat.id << "-fx\" name=\"" << mat.name << "\">" << endstr; PushTag(); mOutput << startstr << "<profile_COMMON>" << endstr; PushTag(); // write sampler- and surface params for the texture entries WriteTextureParamEntry(mat.emissive, "emission", mat.id); WriteTextureParamEntry(mat.ambient, "ambient", mat.id); WriteTextureParamEntry(mat.diffuse, "diffuse", mat.id); WriteTextureParamEntry(mat.specular, "specular", mat.id); WriteTextureParamEntry(mat.reflective, "reflective", mat.id); WriteTextureParamEntry(mat.transparent, "transparent", mat.id); WriteTextureParamEntry(mat.normal, "normal", mat.id); mOutput << startstr << "<technique sid=\"standard\">" << endstr; PushTag(); mOutput << startstr << "<" << mat.shading_model << ">" << endstr; PushTag(); WriteTextureColorEntry(mat.emissive, "emission", mat.id + "-emission-sampler"); WriteTextureColorEntry(mat.ambient, "ambient", mat.id + "-ambient-sampler"); WriteTextureColorEntry(mat.diffuse, "diffuse", mat.id + "-diffuse-sampler"); WriteTextureColorEntry(mat.specular, "specular", mat.id + "-specular-sampler"); WriteFloatEntry(mat.shininess, "shininess"); WriteTextureColorEntry(mat.reflective, "reflective", mat.id + "-reflective-sampler"); WriteTextureColorEntry(mat.transparent, "transparent", mat.id + "-transparent-sampler"); WriteFloatEntry(mat.transparency, "transparency"); WriteFloatEntry(mat.index_refraction, "index_of_refraction"); if (!mat.normal.texture.empty()) { WriteTextureColorEntry(mat.normal, "bump", mat.id + "-normal-sampler"); } PopTag(); mOutput << startstr << "</" << mat.shading_model << ">" << endstr; PopTag(); mOutput << startstr << "</technique>" << endstr; PopTag(); mOutput << startstr << "</profile_COMMON>" << endstr; PopTag(); mOutput << startstr << "</effect>" << endstr; } PopTag(); mOutput << startstr << "</library_effects>" << endstr; // write materials - they're just effect references mOutput << startstr << "<library_materials>" << endstr; PushTag(); for (std::vector<Material>::const_iterator it = materials.begin(); it != materials.end(); ++it) { const Material &mat = *it; mOutput << startstr << "<material id=\"" << mat.id << "\" name=\"" << mat.name << "\">" << endstr; PushTag(); mOutput << startstr << "<instance_effect url=\"#" << mat.id << "-fx\"/>" << endstr; PopTag(); mOutput << startstr << "</material>" << endstr; } PopTag(); mOutput << startstr << "</library_materials>" << endstr; } } // ------------------------------------------------------------------------------------------------ // Writes the controller library void ColladaExporter::WriteControllerLibrary() { mOutput << startstr << "<library_controllers>" << endstr; PushTag(); for (size_t a = 0; a < mScene->mNumMeshes; ++a) { WriteController(a); } PopTag(); mOutput << startstr << "</library_controllers>" << endstr; } // ------------------------------------------------------------------------------------------------ // Writes a skin controller of the given mesh void ColladaExporter::WriteController(size_t pIndex) { const aiMesh *mesh = mScene->mMeshes[pIndex]; // Is there a skin controller? if (mesh->mNumBones == 0 || mesh->mNumFaces == 0 || mesh->mNumVertices == 0) return; const std::string idstr = GetObjectUniqueId(AiObjectType::Mesh, pIndex); const std::string namestr = GetObjectName(AiObjectType::Mesh, pIndex); mOutput << startstr << "<controller id=\"" << idstr << "-skin\" "; mOutput << "name=\"skinCluster" << pIndex << "\">" << endstr; PushTag(); mOutput << startstr << "<skin source=\"#" << idstr << "\">" << endstr; PushTag(); // bind pose matrix mOutput << startstr << "<bind_shape_matrix>" << endstr; PushTag(); // I think it is identity in general cases. aiMatrix4x4 mat; mOutput << startstr << mat.a1 << " " << mat.a2 << " " << mat.a3 << " " << mat.a4 << endstr; mOutput << startstr << mat.b1 << " " << mat.b2 << " " << mat.b3 << " " << mat.b4 << endstr; mOutput << startstr << mat.c1 << " " << mat.c2 << " " << mat.c3 << " " << mat.c4 << endstr; mOutput << startstr << mat.d1 << " " << mat.d2 << " " << mat.d3 << " " << mat.d4 << endstr; PopTag(); mOutput << startstr << "</bind_shape_matrix>" << endstr; mOutput << startstr << "<source id=\"" << idstr << "-skin-joints\" name=\"" << namestr << "-skin-joints\">" << endstr; PushTag(); mOutput << startstr << "<Name_array id=\"" << idstr << "-skin-joints-array\" count=\"" << mesh->mNumBones << "\">"; for (size_t i = 0; i < mesh->mNumBones; ++i) mOutput << GetBoneUniqueId(mesh->mBones[i]) << ' '; mOutput << "</Name_array>" << endstr; mOutput << startstr << "<technique_common>" << endstr; PushTag(); mOutput << startstr << "<accessor source=\"#" << idstr << "-skin-joints-array\" count=\"" << mesh->mNumBones << "\" stride=\"" << 1 << "\">" << endstr; PushTag(); mOutput << startstr << "<param name=\"JOINT\" type=\"Name\"></param>" << endstr; PopTag(); mOutput << startstr << "</accessor>" << endstr; PopTag(); mOutput << startstr << "</technique_common>" << endstr; PopTag(); mOutput << startstr << "</source>" << endstr; std::vector<ai_real> bind_poses; bind_poses.reserve(mesh->mNumBones * 16); for (unsigned int i = 0; i < mesh->mNumBones; ++i) for (unsigned int j = 0; j < 4; ++j) bind_poses.insert(bind_poses.end(), mesh->mBones[i]->mOffsetMatrix[j], mesh->mBones[i]->mOffsetMatrix[j] + 4); WriteFloatArray(idstr + "-skin-bind_poses", FloatType_Mat4x4, (const ai_real *)bind_poses.data(), bind_poses.size() / 16); bind_poses.clear(); std::vector<ai_real> skin_weights; skin_weights.reserve(mesh->mNumVertices * mesh->mNumBones); for (size_t i = 0; i < mesh->mNumBones; ++i) for (size_t j = 0; j < mesh->mBones[i]->mNumWeights; ++j) skin_weights.push_back(mesh->mBones[i]->mWeights[j].mWeight); WriteFloatArray(idstr + "-skin-weights", FloatType_Weight, (const ai_real *)skin_weights.data(), skin_weights.size()); skin_weights.clear(); mOutput << startstr << "<joints>" << endstr; PushTag(); mOutput << startstr << "<input semantic=\"JOINT\" source=\"#" << idstr << "-skin-joints\"></input>" << endstr; mOutput << startstr << "<input semantic=\"INV_BIND_MATRIX\" source=\"#" << idstr << "-skin-bind_poses\"></input>" << endstr; PopTag(); mOutput << startstr << "</joints>" << endstr; mOutput << startstr << "<vertex_weights count=\"" << mesh->mNumVertices << "\">" << endstr; PushTag(); mOutput << startstr << "<input semantic=\"JOINT\" source=\"#" << idstr << "-skin-joints\" offset=\"0\"></input>" << endstr; mOutput << startstr << "<input semantic=\"WEIGHT\" source=\"#" << idstr << "-skin-weights\" offset=\"1\"></input>" << endstr; mOutput << startstr << "<vcount>"; std::vector<ai_uint> num_influences(mesh->mNumVertices, (ai_uint)0); for (size_t i = 0; i < mesh->mNumBones; ++i) for (size_t j = 0; j < mesh->mBones[i]->mNumWeights; ++j) ++num_influences[mesh->mBones[i]->mWeights[j].mVertexId]; for (size_t i = 0; i < mesh->mNumVertices; ++i) mOutput << num_influences[i] << " "; mOutput << "</vcount>" << endstr; mOutput << startstr << "<v>"; ai_uint joint_weight_indices_length = 0; std::vector<ai_uint> accum_influences; accum_influences.reserve(num_influences.size()); for (size_t i = 0; i < num_influences.size(); ++i) { accum_influences.push_back(joint_weight_indices_length); joint_weight_indices_length += num_influences[i]; } ai_uint weight_index = 0; std::vector<ai_int> joint_weight_indices(2 * joint_weight_indices_length, (ai_int)-1); for (unsigned int i = 0; i < mesh->mNumBones; ++i) for (unsigned j = 0; j < mesh->mBones[i]->mNumWeights; ++j) { unsigned int vId = mesh->mBones[i]->mWeights[j].mVertexId; for (ai_uint k = 0; k < num_influences[vId]; ++k) { if (joint_weight_indices[2 * (accum_influences[vId] + k)] == -1) { joint_weight_indices[2 * (accum_influences[vId] + k)] = i; joint_weight_indices[2 * (accum_influences[vId] + k) + 1] = weight_index; break; } } ++weight_index; } for (size_t i = 0; i < joint_weight_indices.size(); ++i) mOutput << joint_weight_indices[i] << " "; num_influences.clear(); accum_influences.clear(); joint_weight_indices.clear(); mOutput << "</v>" << endstr; PopTag(); mOutput << startstr << "</vertex_weights>" << endstr; PopTag(); mOutput << startstr << "</skin>" << endstr; PopTag(); mOutput << startstr << "</controller>" << endstr; } // ------------------------------------------------------------------------------------------------ // Writes the geometry library void ColladaExporter::WriteGeometryLibrary() { mOutput << startstr << "<library_geometries>" << endstr; PushTag(); for (size_t a = 0; a < mScene->mNumMeshes; ++a) WriteGeometry(a); PopTag(); mOutput << startstr << "</library_geometries>" << endstr; } // ------------------------------------------------------------------------------------------------ // Writes the given mesh void ColladaExporter::WriteGeometry(size_t pIndex) { const aiMesh *mesh = mScene->mMeshes[pIndex]; const std::string geometryId = GetObjectUniqueId(AiObjectType::Mesh, pIndex); const std::string geometryName = GetObjectName(AiObjectType::Mesh, pIndex); if (mesh->mNumFaces == 0 || mesh->mNumVertices == 0) return; // opening tag mOutput << startstr << "<geometry id=\"" << geometryId << "\" name=\"" << geometryName << "\" >" << endstr; PushTag(); mOutput << startstr << "<mesh>" << endstr; PushTag(); // Positions WriteFloatArray(geometryId + "-positions", FloatType_Vector, (ai_real *)mesh->mVertices, mesh->mNumVertices); // Normals, if any if (mesh->HasNormals()) WriteFloatArray(geometryId + "-normals", FloatType_Vector, (ai_real *)mesh->mNormals, mesh->mNumVertices); // texture coords for (size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) { if (mesh->HasTextureCoords(static_cast<unsigned int>(a))) { WriteFloatArray(geometryId + "-tex" + to_string(a), mesh->mNumUVComponents[a] == 3 ? FloatType_TexCoord3 : FloatType_TexCoord2, (ai_real *)mesh->mTextureCoords[a], mesh->mNumVertices); } } // vertex colors for (size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) { if (mesh->HasVertexColors(static_cast<unsigned int>(a))) WriteFloatArray(geometryId + "-color" + to_string(a), FloatType_Color, (ai_real *)mesh->mColors[a], mesh->mNumVertices); } // assemble vertex structure // Only write input for POSITION since we will write other as shared inputs in polygon definition mOutput << startstr << "<vertices id=\"" << geometryId << "-vertices" << "\">" << endstr; PushTag(); mOutput << startstr << "<input semantic=\"POSITION\" source=\"#" << geometryId << "-positions\" />" << endstr; PopTag(); mOutput << startstr << "</vertices>" << endstr; // count the number of lines, triangles and polygon meshes int countLines = 0; int countPoly = 0; for (size_t a = 0; a < mesh->mNumFaces; ++a) { if (mesh->mFaces[a].mNumIndices == 2) countLines++; else if (mesh->mFaces[a].mNumIndices >= 3) countPoly++; } // lines if (countLines) { mOutput << startstr << "<lines count=\"" << countLines << "\" material=\"defaultMaterial\">" << endstr; PushTag(); mOutput << startstr << "<input offset=\"0\" semantic=\"VERTEX\" source=\"#" << geometryId << "-vertices\" />" << endstr; if (mesh->HasNormals()) mOutput << startstr << "<input semantic=\"NORMAL\" source=\"#" << geometryId << "-normals\" />" << endstr; for (size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) { if (mesh->HasTextureCoords(static_cast<unsigned int>(a))) mOutput << startstr << "<input semantic=\"TEXCOORD\" source=\"#" << geometryId << "-tex" << a << "\" " << "set=\"" << a << "\"" << " />" << endstr; } for (size_t a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a) { if (mesh->HasVertexColors(static_cast<unsigned int>(a))) mOutput << startstr << "<input semantic=\"COLOR\" source=\"#" << geometryId << "-color" << a << "\" " << "set=\"" << a << "\"" << " />" << endstr; } mOutput << startstr << "<p>"; for (size_t a = 0; a < mesh->mNumFaces; ++a) { const aiFace &face = mesh->mFaces[a]; if (face.mNumIndices != 2) continue; for (size_t b = 0; b < face.mNumIndices; ++b) mOutput << face.mIndices[b] << " "; } mOutput << "</p>" << endstr; PopTag(); mOutput << startstr << "</lines>" << endstr; } // triangle - don't use it, because compatibility problems // polygons if (countPoly) { mOutput << startstr << "<polylist count=\"" << countPoly << "\" material=\"defaultMaterial\">" << endstr; PushTag(); mOutput << startstr << "<input offset=\"0\" semantic=\"VERTEX\" source=\"#" << geometryId << "-vertices\" />" << endstr; if (mesh->HasNormals()) mOutput << startstr << "<input offset=\"0\" semantic=\"NORMAL\" source=\"#" << geometryId << "-normals\" />" << endstr; for (size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) { if (mesh->HasTextureCoords(static_cast<unsigned int>(a))) mOutput << startstr << "<input offset=\"0\" semantic=\"TEXCOORD\" source=\"#" << geometryId << "-tex" << a << "\" " << "set=\"" << a << "\"" << " />" << endstr; } for (size_t a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a) { if (mesh->HasVertexColors(static_cast<unsigned int>(a))) mOutput << startstr << "<input offset=\"0\" semantic=\"COLOR\" source=\"#" << geometryId << "-color" << a << "\" " << "set=\"" << a << "\"" << " />" << endstr; } mOutput << startstr << "<vcount>"; for (size_t a = 0; a < mesh->mNumFaces; ++a) { if (mesh->mFaces[a].mNumIndices < 3) continue; mOutput << mesh->mFaces[a].mNumIndices << " "; } mOutput << "</vcount>" << endstr; mOutput << startstr << "<p>"; for (size_t a = 0; a < mesh->mNumFaces; ++a) { const aiFace &face = mesh->mFaces[a]; if (face.mNumIndices < 3) continue; for (size_t b = 0; b < face.mNumIndices; ++b) mOutput << face.mIndices[b] << " "; } mOutput << "</p>" << endstr; PopTag(); mOutput << startstr << "</polylist>" << endstr; } // closing tags PopTag(); mOutput << startstr << "</mesh>" << endstr; PopTag(); mOutput << startstr << "</geometry>" << endstr; } // ------------------------------------------------------------------------------------------------ // Writes a float array of the given type void ColladaExporter::WriteFloatArray(const std::string &pIdString, FloatDataType pType, const ai_real *pData, size_t pElementCount) { size_t floatsPerElement = 0; switch (pType) { case FloatType_Vector: floatsPerElement = 3; break; case FloatType_TexCoord2: floatsPerElement = 2; break; case FloatType_TexCoord3: floatsPerElement = 3; break; case FloatType_Color: floatsPerElement = 3; break; case FloatType_Mat4x4: floatsPerElement = 16; break; case FloatType_Weight: floatsPerElement = 1; break; case FloatType_Time: floatsPerElement = 1; break; default: return; } std::string arrayId = XMLIDEncode(pIdString) + "-array"; mOutput << startstr << "<source id=\"" << XMLIDEncode(pIdString) << "\" name=\"" << XMLEscape(pIdString) << "\">" << endstr; PushTag(); // source array mOutput << startstr << "<float_array id=\"" << arrayId << "\" count=\"" << pElementCount * floatsPerElement << "\"> "; PushTag(); if (pType == FloatType_TexCoord2) { for (size_t a = 0; a < pElementCount; ++a) { mOutput << pData[a * 3 + 0] << " "; mOutput << pData[a * 3 + 1] << " "; } } else if (pType == FloatType_Color) { for (size_t a = 0; a < pElementCount; ++a) { mOutput << pData[a * 4 + 0] << " "; mOutput << pData[a * 4 + 1] << " "; mOutput << pData[a * 4 + 2] << " "; } } else { for (size_t a = 0; a < pElementCount * floatsPerElement; ++a) mOutput << pData[a] << " "; } mOutput << "</float_array>" << endstr; PopTag(); // the usual Collada fun. Let's bloat it even more! mOutput << startstr << "<technique_common>" << endstr; PushTag(); mOutput << startstr << "<accessor count=\"" << pElementCount << "\" offset=\"0\" source=\"#" << arrayId << "\" stride=\"" << floatsPerElement << "\">" << endstr; PushTag(); switch (pType) { case FloatType_Vector: mOutput << startstr << "<param name=\"X\" type=\"float\" />" << endstr; mOutput << startstr << "<param name=\"Y\" type=\"float\" />" << endstr; mOutput << startstr << "<param name=\"Z\" type=\"float\" />" << endstr; break; case FloatType_TexCoord2: mOutput << startstr << "<param name=\"S\" type=\"float\" />" << endstr; mOutput << startstr << "<param name=\"T\" type=\"float\" />" << endstr; break; case FloatType_TexCoord3: mOutput << startstr << "<param name=\"S\" type=\"float\" />" << endstr; mOutput << startstr << "<param name=\"T\" type=\"float\" />" << endstr; mOutput << startstr << "<param name=\"P\" type=\"float\" />" << endstr; break; case FloatType_Color: mOutput << startstr << "<param name=\"R\" type=\"float\" />" << endstr; mOutput << startstr << "<param name=\"G\" type=\"float\" />" << endstr; mOutput << startstr << "<param name=\"B\" type=\"float\" />" << endstr; break; case FloatType_Mat4x4: mOutput << startstr << "<param name=\"TRANSFORM\" type=\"float4x4\" />" << endstr; break; case FloatType_Weight: mOutput << startstr << "<param name=\"WEIGHT\" type=\"float\" />" << endstr; break; // customized, add animation related case FloatType_Time: mOutput << startstr << "<param name=\"TIME\" type=\"float\" />" << endstr; break; } PopTag(); mOutput << startstr << "</accessor>" << endstr; PopTag(); mOutput << startstr << "</technique_common>" << endstr; PopTag(); mOutput << startstr << "</source>" << endstr; } // ------------------------------------------------------------------------------------------------ // Writes the scene library void ColladaExporter::WriteSceneLibrary() { // Determine if we are using the aiScene root or our own std::string sceneName("Scene"); if (mAdd_root_node) { mSceneId = MakeUniqueId(mUniqueIds, sceneName, std::string()); mUniqueIds.insert(mSceneId); } else { mSceneId = GetNodeUniqueId(mScene->mRootNode); sceneName = GetNodeName(mScene->mRootNode); } mOutput << startstr << "<library_visual_scenes>" << endstr; PushTag(); mOutput << startstr << "<visual_scene id=\"" + mSceneId + "\" name=\"" + sceneName + "\">" << endstr; PushTag(); if (mAdd_root_node) { // Export the root node WriteNode(mScene->mRootNode); } else { // Have already exported the root node for (size_t a = 0; a < mScene->mRootNode->mNumChildren; ++a) WriteNode(mScene->mRootNode->mChildren[a]); } PopTag(); mOutput << startstr << "</visual_scene>" << endstr; PopTag(); mOutput << startstr << "</library_visual_scenes>" << endstr; } // ------------------------------------------------------------------------------------------------ void ColladaExporter::WriteAnimationLibrary(size_t pIndex) { const aiAnimation *anim = mScene->mAnimations[pIndex]; if (anim->mNumChannels == 0 && anim->mNumMeshChannels == 0 && anim->mNumMorphMeshChannels == 0) return; const std::string animationNameEscaped = GetObjectName(AiObjectType::Animation, pIndex); const std::string idstrEscaped = GetObjectUniqueId(AiObjectType::Animation, pIndex); mOutput << startstr << "<animation id=\"" + idstrEscaped + "\" name=\"" + animationNameEscaped + "\">" << endstr; PushTag(); std::string cur_node_idstr; for (size_t a = 0; a < anim->mNumChannels; ++a) { const aiNodeAnim *nodeAnim = anim->mChannels[a]; // sanity check if (nodeAnim->mNumPositionKeys != nodeAnim->mNumScalingKeys || nodeAnim->mNumPositionKeys != nodeAnim->mNumRotationKeys) { continue; } { cur_node_idstr.clear(); cur_node_idstr += nodeAnim->mNodeName.data; cur_node_idstr += std::string("_matrix-input"); std::vector<ai_real> frames; for (size_t i = 0; i < nodeAnim->mNumPositionKeys; ++i) { frames.push_back(static_cast<ai_real>(nodeAnim->mPositionKeys[i].mTime)); } WriteFloatArray(cur_node_idstr, FloatType_Time, (const ai_real *)frames.data(), frames.size()); frames.clear(); } { cur_node_idstr.clear(); cur_node_idstr += nodeAnim->mNodeName.data; cur_node_idstr += std::string("_matrix-output"); std::vector<ai_real> keyframes; keyframes.reserve(nodeAnim->mNumPositionKeys * 16); for (size_t i = 0; i < nodeAnim->mNumPositionKeys; ++i) { aiVector3D Scaling = nodeAnim->mScalingKeys[i].mValue; aiMatrix4x4 ScalingM; // identity ScalingM[0][0] = Scaling.x; ScalingM[1][1] = Scaling.y; ScalingM[2][2] = Scaling.z; aiQuaternion RotationQ = nodeAnim->mRotationKeys[i].mValue; aiMatrix4x4 s = aiMatrix4x4(RotationQ.GetMatrix()); aiMatrix4x4 RotationM(s.a1, s.a2, s.a3, 0, s.b1, s.b2, s.b3, 0, s.c1, s.c2, s.c3, 0, 0, 0, 0, 1); aiVector3D Translation = nodeAnim->mPositionKeys[i].mValue; aiMatrix4x4 TranslationM; // identity TranslationM[0][3] = Translation.x; TranslationM[1][3] = Translation.y; TranslationM[2][3] = Translation.z; // Combine the above transformations aiMatrix4x4 mat = TranslationM * RotationM * ScalingM; for (unsigned int j = 0; j < 4; ++j) { keyframes.insert(keyframes.end(), mat[j], mat[j] + 4); } } WriteFloatArray(cur_node_idstr, FloatType_Mat4x4, (const ai_real *)keyframes.data(), keyframes.size() / 16); } { std::vector<std::string> names; for (size_t i = 0; i < nodeAnim->mNumPositionKeys; ++i) { if (nodeAnim->mPreState == aiAnimBehaviour_DEFAULT || nodeAnim->mPreState == aiAnimBehaviour_LINEAR || nodeAnim->mPreState == aiAnimBehaviour_REPEAT) { names.push_back("LINEAR"); } else if (nodeAnim->mPostState == aiAnimBehaviour_CONSTANT) { names.push_back("STEP"); } } const std::string cur_node_idstr2 = nodeAnim->mNodeName.data + std::string("_matrix-interpolation"); std::string arrayId = XMLIDEncode(cur_node_idstr2) + "-array"; mOutput << startstr << "<source id=\"" << XMLIDEncode(cur_node_idstr2) << "\">" << endstr; PushTag(); // source array mOutput << startstr << "<Name_array id=\"" << arrayId << "\" count=\"" << names.size() << "\"> "; for (size_t aa = 0; aa < names.size(); ++aa) { mOutput << names[aa] << " "; } mOutput << "</Name_array>" << endstr; mOutput << startstr << "<technique_common>" << endstr; PushTag(); mOutput << startstr << "<accessor source=\"#" << arrayId << "\" count=\"" << names.size() << "\" stride=\"" << 1 << "\">" << endstr; PushTag(); mOutput << startstr << "<param name=\"INTERPOLATION\" type=\"name\"></param>" << endstr; PopTag(); mOutput << startstr << "</accessor>" << endstr; PopTag(); mOutput << startstr << "</technique_common>" << endstr; PopTag(); mOutput << startstr << "</source>" << endstr; } } for (size_t a = 0; a < anim->mNumChannels; ++a) { const aiNodeAnim *nodeAnim = anim->mChannels[a]; { // samplers const std::string node_idstr = nodeAnim->mNodeName.data + std::string("_matrix-sampler"); mOutput << startstr << "<sampler id=\"" << XMLIDEncode(node_idstr) << "\">" << endstr; PushTag(); mOutput << startstr << "<input semantic=\"INPUT\" source=\"#" << XMLIDEncode(nodeAnim->mNodeName.data + std::string("_matrix-input")) << "\"/>" << endstr; mOutput << startstr << "<input semantic=\"OUTPUT\" source=\"#" << XMLIDEncode(nodeAnim->mNodeName.data + std::string("_matrix-output")) << "\"/>" << endstr; mOutput << startstr << "<input semantic=\"INTERPOLATION\" source=\"#" << XMLIDEncode(nodeAnim->mNodeName.data + std::string("_matrix-interpolation")) << "\"/>" << endstr; PopTag(); mOutput << startstr << "</sampler>" << endstr; } } for (size_t a = 0; a < anim->mNumChannels; ++a) { const aiNodeAnim *nodeAnim = anim->mChannels[a]; { // channels mOutput << startstr << "<channel source=\"#" << XMLIDEncode(nodeAnim->mNodeName.data + std::string("_matrix-sampler")) << "\" target=\"" << XMLIDEncode(nodeAnim->mNodeName.data) << "/matrix\"/>" << endstr; } } PopTag(); mOutput << startstr << "</animation>" << endstr; } // ------------------------------------------------------------------------------------------------ void ColladaExporter::WriteAnimationsLibrary() { if (mScene->mNumAnimations > 0) { mOutput << startstr << "<library_animations>" << endstr; PushTag(); // start recursive write at the root node for (size_t a = 0; a < mScene->mNumAnimations; ++a) WriteAnimationLibrary(a); PopTag(); mOutput << startstr << "</library_animations>" << endstr; } } // ------------------------------------------------------------------------------------------------ // Helper to find a bone by name in the scene aiBone *findBone(const aiScene *scene, const aiString &name) { for (size_t m = 0; m < scene->mNumMeshes; m++) { aiMesh *mesh = scene->mMeshes[m]; for (size_t b = 0; b < mesh->mNumBones; b++) { aiBone *bone = mesh->mBones[b]; if (name == bone->mName) { return bone; } } } return nullptr; } // ------------------------------------------------------------------------------------------------ // Helper to find the node associated with a bone in the scene const aiNode *findBoneNode(const aiNode *aNode, const aiBone *bone) { if (aNode && bone && aNode->mName == bone->mName) { return aNode; } if (aNode && bone) { for (unsigned int i = 0; i < aNode->mNumChildren; ++i) { aiNode *aChild = aNode->mChildren[i]; const aiNode *foundFromChild = nullptr; if (aChild) { foundFromChild = findBoneNode(aChild, bone); if (foundFromChild) { return foundFromChild; } } } } return nullptr; } const aiNode *findSkeletonRootNode(const aiScene *scene, const aiMesh *mesh) { std::set<const aiNode *> topParentBoneNodes; if (mesh && mesh->mNumBones > 0) { for (unsigned int i = 0; i < mesh->mNumBones; ++i) { aiBone *bone = mesh->mBones[i]; const aiNode *node = findBoneNode(scene->mRootNode, bone); if (node) { while (node->mParent && findBone(scene, node->mParent->mName) != nullptr) { node = node->mParent; } topParentBoneNodes.insert(node); } } } if (!topParentBoneNodes.empty()) { const aiNode *parentBoneNode = *topParentBoneNodes.begin(); if (topParentBoneNodes.size() == 1) { return parentBoneNode; } else { for (auto it : topParentBoneNodes) { if (it->mParent) return it->mParent; } return parentBoneNode; } } return nullptr; } // ------------------------------------------------------------------------------------------------ // Recursively writes the given node void ColladaExporter::WriteNode(const aiNode *pNode) { // If the node is associated with a bone, it is a joint node (JOINT) // otherwise it is a normal node (NODE) // Assimp-specific: nodes with no name cannot be associated with bones const char *node_type; bool is_joint, is_skeleton_root = false; if (pNode->mName.length == 0 || nullptr == findBone(mScene, pNode->mName)) { node_type = "NODE"; is_joint = false; } else { node_type = "JOINT"; is_joint = true; if (!pNode->mParent || nullptr == findBone(mScene, pNode->mParent->mName)) { is_skeleton_root = true; } } const std::string node_id = GetNodeUniqueId(pNode); const std::string node_name = GetNodeName(pNode); mOutput << startstr << "<node "; if (is_skeleton_root) { mFoundSkeletonRootNodeID = node_id; // For now, only support one skeleton in a scene. } mOutput << "id=\"" << node_id << "\" " << (is_joint ? "sid=\"" + node_id + "\" " : ""); mOutput << "name=\"" << node_name << "\" type=\"" << node_type << "\">" << endstr; PushTag(); // write transformation - we can directly put the matrix there // TODO: (thom) decompose into scale - rot - quad to allow addressing it by animations afterwards aiMatrix4x4 mat = pNode->mTransformation; // If this node is a Camera node, the camera coordinate system needs to be multiplied in. // When importing from Collada, the mLookAt is set to 0, 0, -1, and the node transform is unchanged. // When importing from a different format, mLookAt is set to 0, 0, 1. Therefore, the local camera // coordinate system must be changed to matche the Collada specification. for (size_t i = 0; i < mScene->mNumCameras; i++) { if (mScene->mCameras[i]->mName == pNode->mName) { aiMatrix4x4 sourceView; mScene->mCameras[i]->GetCameraMatrix(sourceView); aiMatrix4x4 colladaView; colladaView.a1 = colladaView.c3 = -1; // move into -z space. mat *= (sourceView * colladaView); break; } } // customized, sid should be 'matrix' to match with loader code. //mOutput << startstr << "<matrix sid=\"transform\">"; mOutput << startstr << "<matrix sid=\"matrix\">"; mOutput << mat.a1 << " " << mat.a2 << " " << mat.a3 << " " << mat.a4 << " "; mOutput << mat.b1 << " " << mat.b2 << " " << mat.b3 << " " << mat.b4 << " "; mOutput << mat.c1 << " " << mat.c2 << " " << mat.c3 << " " << mat.c4 << " "; mOutput << mat.d1 << " " << mat.d2 << " " << mat.d3 << " " << mat.d4; mOutput << "</matrix>" << endstr; if (pNode->mNumMeshes == 0) { //check if it is a camera node for (size_t i = 0; i < mScene->mNumCameras; i++) { if (mScene->mCameras[i]->mName == pNode->mName) { mOutput << startstr << "<instance_camera url=\"#" << GetObjectUniqueId(AiObjectType::Camera, i) << "\"/>" << endstr; break; } } //check if it is a light node for (size_t i = 0; i < mScene->mNumLights; i++) { if (mScene->mLights[i]->mName == pNode->mName) { mOutput << startstr << "<instance_light url=\"#" << GetObjectUniqueId(AiObjectType::Light, i) << "\"/>" << endstr; break; } } } else // instance every geometry for (size_t a = 0; a < pNode->mNumMeshes; ++a) { const aiMesh *mesh = mScene->mMeshes[pNode->mMeshes[a]]; // do not instantiate mesh if empty. I wonder how this could happen if (mesh->mNumFaces == 0 || mesh->mNumVertices == 0) continue; const std::string meshId = GetObjectUniqueId(AiObjectType::Mesh, pNode->mMeshes[a]); if (mesh->mNumBones == 0) { mOutput << startstr << "<instance_geometry url=\"#" << meshId << "\">" << endstr; PushTag(); } else { mOutput << startstr << "<instance_controller url=\"#" << meshId << "-skin\">" << endstr; PushTag(); // note! this mFoundSkeletonRootNodeID some how affects animation, it makes the mesh attaches to armature skeleton root node. // use the first bone to find skeleton root const aiNode *skeletonRootBoneNode = findSkeletonRootNode(mScene, mesh); if (skeletonRootBoneNode) { mFoundSkeletonRootNodeID = GetNodeUniqueId(skeletonRootBoneNode); } mOutput << startstr << "<skeleton>#" << mFoundSkeletonRootNodeID << "</skeleton>" << endstr; } mOutput << startstr << "<bind_material>" << endstr; PushTag(); mOutput << startstr << "<technique_common>" << endstr; PushTag(); mOutput << startstr << "<instance_material symbol=\"defaultMaterial\" target=\"#" << GetObjectUniqueId(AiObjectType::Material, mesh->mMaterialIndex) << "\">" << endstr; PushTag(); for (size_t aa = 0; aa < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++aa) { if (mesh->HasTextureCoords(static_cast<unsigned int>(aa))) // semantic as in <texture texcoord=...> // input_semantic as in <input semantic=...> // input_set as in <input set=...> mOutput << startstr << "<bind_vertex_input semantic=\"CHANNEL" << aa << "\" input_semantic=\"TEXCOORD\" input_set=\"" << aa << "\"/>" << endstr; } PopTag(); mOutput << startstr << "</instance_material>" << endstr; PopTag(); mOutput << startstr << "</technique_common>" << endstr; PopTag(); mOutput << startstr << "</bind_material>" << endstr; PopTag(); if (mesh->mNumBones == 0) mOutput << startstr << "</instance_geometry>" << endstr; else mOutput << startstr << "</instance_controller>" << endstr; } // recurse into subnodes for (size_t a = 0; a < pNode->mNumChildren; ++a) WriteNode(pNode->mChildren[a]); PopTag(); mOutput << startstr << "</node>" << endstr; } void ColladaExporter::CreateNodeIds(const aiNode *node) { GetNodeUniqueId(node); for (size_t a = 0; a < node->mNumChildren; ++a) CreateNodeIds(node->mChildren[a]); } std::string ColladaExporter::GetNodeUniqueId(const aiNode *node) { // Use the pointer as the key. This is safe because the scene is immutable. auto idIt = mNodeIdMap.find(node); if (idIt != mNodeIdMap.cend()) return idIt->second; // Prefer the requested Collada Id if extant std::string idStr; aiString origId; if (node->mMetaData && node->mMetaData->Get(AI_METADATA_COLLADA_ID, origId)) { idStr = origId.C_Str(); } else { idStr = node->mName.C_Str(); } // Make sure the requested id is valid if (idStr.empty()) idStr = "node"; else idStr = XMLIDEncode(idStr); // Ensure it's unique idStr = MakeUniqueId(mUniqueIds, idStr, std::string()); mUniqueIds.insert(idStr); mNodeIdMap.insert(std::make_pair(node, idStr)); return idStr; } std::string ColladaExporter::GetNodeName(const aiNode *node) { return XMLEscape(node->mName.C_Str()); } std::string ColladaExporter::GetBoneUniqueId(const aiBone *bone) { // Find the Node that is this Bone const aiNode *boneNode = findBoneNode(mScene->mRootNode, bone); if (boneNode == nullptr) return std::string(); return GetNodeUniqueId(boneNode); } std::string ColladaExporter::GetObjectUniqueId(AiObjectType type, size_t pIndex) { auto idIt = GetObjectIdMap(type).find(pIndex); if (idIt != GetObjectIdMap(type).cend()) return idIt->second; // Not seen this object before, create and add NameIdPair result = AddObjectIndexToMaps(type, pIndex); return result.second; } std::string ColladaExporter::GetObjectName(AiObjectType type, size_t pIndex) { auto objectName = GetObjectNameMap(type).find(pIndex); if (objectName != GetObjectNameMap(type).cend()) return objectName->second; // Not seen this object before, create and add NameIdPair result = AddObjectIndexToMaps(type, pIndex); return result.first; } // Determine unique id and add the name and id to the maps // @param type object type // @param index object index // @param name in/out. Caller to set the original name if known. // @param idStr in/out. Caller to set the preferred id if known. ColladaExporter::NameIdPair ColladaExporter::AddObjectIndexToMaps(AiObjectType type, size_t index) { std::string name; std::string idStr; std::string idPostfix; // Get the name and id postfix switch (type) { case AiObjectType::Mesh: name = mScene->mMeshes[index]->mName.C_Str(); break; case AiObjectType::Material: name = mScene->mMaterials[index]->GetName().C_Str(); break; case AiObjectType::Animation: name = mScene->mAnimations[index]->mName.C_Str(); break; case AiObjectType::Light: name = mScene->mLights[index]->mName.C_Str(); idPostfix = "-light"; break; case AiObjectType::Camera: name = mScene->mCameras[index]->mName.C_Str(); idPostfix = "-camera"; break; case AiObjectType::Count: throw std::logic_error("ColladaExporter::AiObjectType::Count is not an object type"); } if (name.empty()) { // Default ids if empty name switch (type) { case AiObjectType::Mesh: idStr = std::string("mesh_"); break; case AiObjectType::Material: idStr = std::string("material_"); break; // This one should never happen case AiObjectType::Animation: idStr = std::string("animation_"); break; case AiObjectType::Light: idStr = std::string("light_"); break; case AiObjectType::Camera: idStr = std::string("camera_"); break; case AiObjectType::Count: throw std::logic_error("ColladaExporter::AiObjectType::Count is not an object type"); } idStr.append(to_string(index)); } else { idStr = XMLIDEncode(name); } if (!name.empty()) name = XMLEscape(name); idStr = MakeUniqueId(mUniqueIds, idStr, idPostfix); // Add to maps mUniqueIds.insert(idStr); GetObjectIdMap(type).insert(std::make_pair(index, idStr)); GetObjectNameMap(type).insert(std::make_pair(index, name)); return std::make_pair(name, idStr); } } // end of namespace Assimp #endif #endif