/* --------------------------------------------------------------------------- Open Asset Import Library (ASSIMP) --------------------------------------------------------------------------- Copyright (c) 2006-2008, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file Implementation of the material oart of the LWO importer class */ #include "AssimpPCH.h" // internal headers #include "LWOLoader.h" #include "MaterialSystem.h" #include "ByteSwap.h" using namespace Assimp; // ------------------------------------------------------------------------------------------------ template T lerp(const T& one, const T& two, float val) { return one + (two-one)*val; } // ------------------------------------------------------------------------------------------------ // Convert a lightwave mapping mode to our's inline aiTextureMapMode GetMapMode(LWO::Texture::Wrap in) { switch (in) { case LWO::Texture::REPEAT: return aiTextureMapMode_Wrap; case LWO::Texture::MIRROR: return aiTextureMapMode_Mirror; case LWO::Texture::RESET: DefaultLogger::get()->warn("LWO2: Unsupported texture map mode: RESET"); // fall though here case LWO::Texture::EDGE: return aiTextureMapMode_Clamp; } return (aiTextureMapMode)0; } // ------------------------------------------------------------------------------------------------ bool LWOImporter::HandleTextures(MaterialHelper* pcMat, const TextureList& in, aiTextureType type) { ai_assert(NULL != pcMat); unsigned int cur = 0, temp = 0; aiString s; bool ret = false; for (TextureList::const_iterator it = in.begin(), end = in.end(); it != end;++it) { if (!(*it).enabled || !(*it).bCanUse)continue; ret = true; // Convert lightwave's mapping modes to ours. We let them // as they are, the GenUVcoords step will compute UV // channels if they're not there. aiTextureMapping mapping; switch ((*it).mapMode) { case LWO::Texture::Planar: mapping = aiTextureMapping_PLANE; break; case LWO::Texture::Cylindrical: mapping = aiTextureMapping_CYLINDER; break; case LWO::Texture::Spherical: mapping = aiTextureMapping_SPHERE; break; case LWO::Texture::Cubic: mapping = aiTextureMapping_BOX; break; case LWO::Texture::FrontProjection: DefaultLogger::get()->error("LWO2: Unsupported texture mapping: FrontProjection"); mapping = aiTextureMapping_OTHER; break; case LWO::Texture::UV: { if( 0xffffffff == (*it).mRealUVIndex ) { // We have no UV index for this texture, so we can't display it continue; } // add the UV source index temp = (*it).mRealUVIndex; pcMat->AddProperty((int*)&temp,1,AI_MATKEY_UVWSRC(type,cur)); mapping = aiTextureMapping_UV; } break; }; if (mapping != aiTextureMapping_UV) { // Setup the main axis (the enum values map one to one) ai_assert(aiAxis_X == Texture::AXIS_X); pcMat->AddProperty((int*)&(*it).majorAxis,1,AI_MATKEY_TEXMAP_AXIS(type,cur)); // Setup UV scalings for cylindric and spherical projections if (mapping == aiTextureMapping_CYLINDER || mapping == aiTextureMapping_SPHERE) { aiUVTransform trafo; trafo.mScaling.x = (*it).wrapAmountW; trafo.mScaling.y = (*it).wrapAmountH; } DefaultLogger::get()->debug("LWO2: Setting up non-UV mapping"); } // The older LWOB format does not use indirect references to clips. // The file name of a texture is directly specified in the tex chunk. if (mIsLWO2) { // find the corresponding clip ClipList::iterator clip = mClips.begin(); temp = (*it).mClipIdx; for (ClipList::iterator end = mClips.end(); clip != end; ++clip) { if ((*clip).idx == temp) { break; } } if (mClips.end() == clip) { DefaultLogger::get()->error("LWO2: Clip index is out of bounds"); temp = 0; } if (Clip::UNSUPPORTED == (*clip).type) { DefaultLogger::get()->error("LWO2: Clip type is not supported"); continue; } AdjustTexturePath((*clip).path); s.Set((*clip).path); } else { std::string ss = (*it).mFileName; if (!ss.length()) { DefaultLogger::get()->error("LWOB: Empty file name"); continue; } AdjustTexturePath(ss); s.Set(ss); } pcMat->AddProperty(&s,AI_MATKEY_TEXTURE(type,cur)); // add the blend factor pcMat->AddProperty(&(*it).mStrength,1,AI_MATKEY_TEXBLEND(type,cur)); // add the blend operation switch ((*it).blendType) { case LWO::Texture::Normal: case LWO::Texture::Multiply: temp = (unsigned int)aiTextureOp_Multiply; break; case LWO::Texture::Subtractive: case LWO::Texture::Difference: temp = (unsigned int)aiTextureOp_Subtract; break; case LWO::Texture::Divide: temp = (unsigned int)aiTextureOp_Divide; break; case LWO::Texture::Additive: temp = (unsigned int)aiTextureOp_Add; break; default: temp = (unsigned int)aiTextureOp_Multiply; DefaultLogger::get()->warn("LWO2: Unsupported texture blend mode: alpha or displacement"); } pcMat->AddProperty((int*)&temp,1,AI_MATKEY_TEXOP(type,cur)); // setup the mapping mode pcMat->AddProperty((int*)&mapping,1,AI_MATKEY_MAPPING(type,cur)); // add the u-wrapping temp = (unsigned int)GetMapMode((*it).wrapModeWidth); pcMat->AddProperty((int*)&temp,1,AI_MATKEY_MAPPINGMODE_U(type,cur)); // add the v-wrapping temp = (unsigned int)GetMapMode((*it).wrapModeHeight); pcMat->AddProperty((int*)&temp,1,AI_MATKEY_MAPPINGMODE_V(type,cur)); ++cur; } return ret; } // ------------------------------------------------------------------------------------------------ void LWOImporter::ConvertMaterial(const LWO::Surface& surf,MaterialHelper* pcMat) { // copy the name of the surface aiString st; st.Set(surf.mName); pcMat->AddProperty(&st,AI_MATKEY_NAME); int i = surf.bDoubleSided ? 1 : 0; pcMat->AddProperty(&i,1,AI_MATKEY_TWOSIDED); // add the refraction index and the bump intensity pcMat->AddProperty(&surf.mIOR,1,AI_MATKEY_REFRACTI); pcMat->AddProperty(&surf.mBumpIntensity,1,AI_MATKEY_BUMPSCALING); aiShadingMode m; if (surf.mSpecularValue && surf.mGlossiness) { float fGloss; if (mIsLWO2) { fGloss = pow( surf.mGlossiness*10.0f+2.0f, 2.0f); } else { if (16.0f >= surf.mGlossiness)fGloss = 6.0f; else if (64.0f >= surf.mGlossiness)fGloss = 20.0f; else if (256.0f >= surf.mGlossiness)fGloss = 50.0f; else fGloss = 80.0f; } pcMat->AddProperty(&surf.mSpecularValue,1,AI_MATKEY_SHININESS_STRENGTH); pcMat->AddProperty(&fGloss,1,AI_MATKEY_SHININESS); m = aiShadingMode_Phong; } else m = aiShadingMode_Gouraud; // specular color aiColor3D clr = lerp( aiColor3D(1.f,1.f,1.f), surf.mColor, surf.mColorHighlights ); pcMat->AddProperty(&clr,1,AI_MATKEY_COLOR_SPECULAR); pcMat->AddProperty(&surf.mSpecularValue,1,AI_MATKEY_SHININESS_STRENGTH); // emissive color // (luminosity is not really the same but it affects the surface in // a similar way. However, some scalings seems to be necessary) clr.g = clr.b = clr.r = surf.mLuminosity*0.8f; pcMat->AddProperty(&clr,1,AI_MATKEY_COLOR_EMISSIVE); // opacity if (10e10f != surf.mTransparency) { float f = 1.0f-surf.mTransparency; pcMat->AddProperty(&f,1,AI_MATKEY_OPACITY); } // ADD TEXTURES to the material // TODO: find out how we can handle COLOR textures correctly... bool b = HandleTextures(pcMat,surf.mColorTextures,aiTextureType_DIFFUSE); b = (b || HandleTextures(pcMat,surf.mDiffuseTextures,aiTextureType_DIFFUSE)); HandleTextures(pcMat,surf.mSpecularTextures,aiTextureType_SPECULAR); HandleTextures(pcMat,surf.mGlossinessTextures,aiTextureType_SHININESS); HandleTextures(pcMat,surf.mBumpTextures,aiTextureType_HEIGHT); HandleTextures(pcMat,surf.mOpacityTextures,aiTextureType_OPACITY); // now we need to know which shader we must use // iterate through the shader list of the surface and // search for a name we know for (ShaderList::const_iterator it = surf.mShaders.begin(), end = surf.mShaders.end(); it != end;++it) { //if (!(*it).enabled)continue; if ((*it).functionName == "LW_SuperCelShader" || (*it).functionName == "AH_CelShader") { DefaultLogger::get()->info("Mapping LW_SuperCelShader/AH_CelShader " "to aiShadingMode_Toon"); m = aiShadingMode_Toon; break; } else if ((*it).functionName == "LW_RealFresnel" || (*it).functionName == "LW_FastFresnel") { DefaultLogger::get()->info("Mapping LW_RealFresnel/LW_FastFresnel " "to aiShadingMode_Fresnel"); m = aiShadingMode_Fresnel; break; } else { DefaultLogger::get()->warn("LWO2: Unknown surface shader: " + (*it).functionName); } } if (surf.mMaximumSmoothAngle <= 0.0f)m = aiShadingMode_Flat; pcMat->AddProperty((int*)&m,1,AI_MATKEY_SHADING_MODEL); // (the diffuse value is just a scaling factor) // If a diffuse texture is set, we set this value to 1.0 clr = (b ? aiColor3D(1.f,1.f,1.f) : surf.mColor); clr.r *= surf.mDiffuseValue; clr.g *= surf.mDiffuseValue; clr.b *= surf.mDiffuseValue; pcMat->AddProperty(&clr,1,AI_MATKEY_COLOR_DIFFUSE); } // ------------------------------------------------------------------------------------------------ void LWOImporter::FindUVChannels(LWO::TextureList& list, LWO::Layer& layer, unsigned int out[AI_MAX_NUMBER_OF_TEXTURECOORDS], unsigned int& next) { for (TextureList::iterator it = list.begin(), end = list.end(); it != end;++it) { // Ignore textures with non-UV mappings for the moment. if (!(*it).enabled || !(*it).bCanUse || 0xffffffff != (*it).mRealUVIndex || (*it).mapMode != LWO::Texture::UV) { continue; } for (unsigned int i = 0; i < layer.mUVChannels.size();++i) { if ((*it).mUVChannelIndex == layer.mUVChannels[i].name) { // check whether we have this channel already for (unsigned int m = 0; m < next;++m) { if (i == out[m]) { (*it).mRealUVIndex = m; } } if (0xffffffff == (*it).mRealUVIndex) { (*it).mRealUVIndex = next; out[next++] = i; if (AI_MAX_NUMBER_OF_TEXTURECOORDS != next) out[next] = 0xffffffff; break; } } } if (0xffffffff == (*it).mRealUVIndex) DefaultLogger::get()->error("LWO2: Unable to find matching UV channel for a texture"); } } // ------------------------------------------------------------------------------------------------ void LWOImporter::FindUVChannels(LWO::Surface& surf, LWO::Layer& layer, unsigned int out[AI_MAX_NUMBER_OF_TEXTURECOORDS]) { out[0] = 0xffffffff; unsigned int next = 0; FindUVChannels(surf.mColorTextures,layer,out,next); FindUVChannels(surf.mDiffuseTextures,layer,out,next); FindUVChannels(surf.mSpecularTextures,layer,out,next); FindUVChannels(surf.mGlossinessTextures,layer,out,next); FindUVChannels(surf.mOpacityTextures,layer,out,next); FindUVChannels(surf.mBumpTextures,layer,out,next); } // ------------------------------------------------------------------------------------------------ void LWOImporter::FindVCChannels(const LWO::Surface& surf, const LWO::Layer& layer, unsigned int out[AI_MAX_NUMBER_OF_COLOR_SETS]) { out[0] = 0xffffffff; if (surf.mVCMap.length()) { for (unsigned int i = 0; i < layer.mVColorChannels.size();++i) { if (surf.mVCMap == layer.mVColorChannels[i].name) { out[0] = i; out[1] = 0xffffffff; return; } } DefaultLogger::get()->warn("LWO2: Unable to find vertex color channel: " + surf.mVCMap); } } // ------------------------------------------------------------------------------------------------ void LWOImporter::LoadLWO2ImageMap(unsigned int size, LWO::Texture& tex ) { LE_NCONST uint8_t* const end = mFileBuffer + size; while (true) { if (mFileBuffer + 6 >= end)break; LE_NCONST IFF::SubChunkHeader* const head = IFF::LoadSubChunk(mFileBuffer); if (mFileBuffer + head->length > end) throw new ImportErrorException("LWO2: Invalid SURF.BLOCK chunk length"); uint8_t* const next = mFileBuffer+head->length; switch (head->type) { case AI_LWO_PROJ: tex.mapMode = (Texture::MappingMode)GetU2(); break; case AI_LWO_WRAP: tex.wrapModeWidth = (Texture::Wrap)GetU2(); tex.wrapModeHeight = (Texture::Wrap)GetU2(); break; case AI_LWO_AXIS: tex.majorAxis = (Texture::Axes)GetU2(); break; case AI_LWO_IMAG: tex.mClipIdx = GetU2(); break; case AI_LWO_VMAP: GetS0(tex.mUVChannelIndex,head->length); break; case AI_LWO_WRPH: tex.wrapAmountH = GetF4(); break; case AI_LWO_WRPW: tex.wrapAmountW = GetF4(); break; } mFileBuffer = next; } } // ------------------------------------------------------------------------------------------------ void LWOImporter::LoadLWO2Procedural(unsigned int size, LWO::Texture& tex ) { // --- not supported at the moment DefaultLogger::get()->error("LWO2: Found procedural texture, this is not supported"); tex.bCanUse = false; } // ------------------------------------------------------------------------------------------------ void LWOImporter::LoadLWO2Gradient(unsigned int size, LWO::Texture& tex ) { // --- not supported at the moment DefaultLogger::get()->error("LWO2: Found gradient texture, this is not supported"); tex.bCanUse = false; } // ------------------------------------------------------------------------------------------------ void LWOImporter::LoadLWO2TextureHeader(unsigned int size, LWO::Texture& tex ) { LE_NCONST uint8_t* const end = mFileBuffer + size; // get the ordinal string GetS0( tex.ordinal, size); // we could crash later if this is an empty string ... if (!tex.ordinal.length()) { DefaultLogger::get()->error("LWO2: Ill-formed SURF.BLOK ordinal string"); tex.ordinal = "\x00"; } while (true) { if (mFileBuffer + 6 >= end)break; LE_NCONST IFF::SubChunkHeader* const head = IFF::LoadSubChunk(mFileBuffer); if (mFileBuffer + head->length > end) throw new ImportErrorException("LWO2: Invalid texture header chunk length"); uint8_t* const next = mFileBuffer+head->length; switch (head->type) { case AI_LWO_CHAN: tex.type = GetU4(); break; case AI_LWO_ENAB: tex.enabled = GetU2() ? true : false; break; case AI_LWO_OPAC: tex.blendType = (Texture::BlendType)GetU2(); tex.mStrength = GetF4(); break; } mFileBuffer = next; } } // ------------------------------------------------------------------------------------------------ void LWOImporter::LoadLWO2TextureBlock(LE_NCONST IFF::SubChunkHeader* head, unsigned int size ) { ai_assert(!mSurfaces->empty()); LWO::Surface& surf = mSurfaces->back(); LWO::Texture tex; // load the texture header LoadLWO2TextureHeader(head->length,tex); size -= head->length + 6; // now get the exact type of the texture switch (head->type) { case AI_LWO_PROC: LoadLWO2Procedural(size,tex); break; case AI_LWO_GRAD: LoadLWO2Gradient(size,tex); break; case AI_LWO_IMAP: LoadLWO2ImageMap(size,tex); } // get the destination channel TextureList* listRef = NULL; switch (tex.type) { case AI_LWO_COLR: listRef = &surf.mColorTextures;break; case AI_LWO_DIFF: listRef = &surf.mDiffuseTextures;break; case AI_LWO_SPEC: listRef = &surf.mSpecularTextures;break; case AI_LWO_GLOS: listRef = &surf.mGlossinessTextures;break; case AI_LWO_BUMP: listRef = &surf.mBumpTextures;break; case AI_LWO_TRAN: listRef = &surf.mOpacityTextures;break; default: DefaultLogger::get()->warn("LWO2: Encountered unknown texture type"); return; } // now attach the texture to the parent surface - sort by ordinal string for (TextureList::iterator it = listRef->begin(); it != listRef->end(); ++it) { if (::strcmp(tex.ordinal.c_str(),(*it).ordinal.c_str()) < 0) { listRef->insert(it,tex); return; } } listRef->push_back(tex); } // ------------------------------------------------------------------------------------------------ void LWOImporter::LoadLWO2ShaderBlock(LE_NCONST IFF::SubChunkHeader* head, unsigned int size ) { LE_NCONST uint8_t* const end = mFileBuffer + size; ai_assert(!mSurfaces->empty()); LWO::Surface& surf = mSurfaces->back(); LWO::Shader shader; // get the ordinal string GetS0( shader.ordinal, size); // we could crash later if this is an empty string ... if (!shader.ordinal.length()) { DefaultLogger::get()->error("LWO2: Ill-formed SURF.BLOK ordinal string"); shader.ordinal = "\x00"; } // read the header while (true) { if (mFileBuffer + 6 >= end)break; LE_NCONST IFF::SubChunkHeader* const head = IFF::LoadSubChunk(mFileBuffer); if (mFileBuffer + head->length > end) throw new ImportErrorException("LWO2: Invalid shader header chunk length"); uint8_t* const next = mFileBuffer+head->length; switch (head->type) { case AI_LWO_ENAB: shader.enabled = GetU2() ? true : false; break; case AI_LWO_FUNC: GetS0( shader.functionName, head->length ); } mFileBuffer = next; } // now attach the shader to the parent surface - sort by ordinal string for (ShaderList::iterator it = surf.mShaders.begin(); it != surf.mShaders.end(); ++it) { if (::strcmp(shader.ordinal.c_str(),(*it).ordinal.c_str()) < 0) { surf.mShaders.insert(it,shader); return; } } surf.mShaders.push_back(shader); } // ------------------------------------------------------------------------------------------------ void LWOImporter::LoadLWO2Surface(unsigned int size) { LE_NCONST uint8_t* const end = mFileBuffer + size; mSurfaces->push_back( LWO::Surface () ); LWO::Surface& surf = mSurfaces->back(); GetS0(surf.mName,size); // check whether this surface was derived from any other surface std::string derived; GetS0(derived,(unsigned int)(end - mFileBuffer)); if (derived.length()) { // yes, find this surface for (SurfaceList::iterator it = mSurfaces->begin(), end = mSurfaces->end()-1; it != end; ++it) { if ((*it).mName == derived) { // we have it ... surf = *it; derived.clear(); } } if (!derived.size()) DefaultLogger::get()->warn("LWO2: Unable to find source surface: " + derived); } while (true) { if (mFileBuffer + 6 >= end)break; LE_NCONST IFF::SubChunkHeader* const head = IFF::LoadSubChunk(mFileBuffer); if (mFileBuffer + head->length > end) throw new ImportErrorException("LWO2: Invalid surface chunk length"); uint8_t* const next = mFileBuffer+head->length; switch (head->type) { // diffuse color case AI_LWO_COLR: { AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,COLR,12); surf.mColor.r = GetF4(); surf.mColor.g = GetF4(); surf.mColor.b = GetF4(); break; } // diffuse strength ... hopefully case AI_LWO_DIFF: { AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,DIFF,4); surf.mDiffuseValue = GetF4(); break; } // specular strength ... hopefully case AI_LWO_SPEC: { AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,SPEC,4); surf.mSpecularValue = GetF4(); break; } // transparency case AI_LWO_TRAN: { if (surf.mTransparency == 10e10f)break; AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,TRAN,4); surf.mTransparency = GetF4(); break; } // transparency mode case AI_LWO_ALPH: { AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,ALPH,6); uint16_t mode = GetU2(); switch (mode) { // The surface has no effect on the alpha channel when rendered case 0: surf.mTransparency = 10e10f; break; // The alpha channel will be written with the constant value // following the mode in the subchunk. case 1: surf.mTransparency = GetF4(); break; // The alpha value comes from the shadow density case 3: DefaultLogger::get()->error("LWO2: Unsupported alpha mode: shadow_density"); surf.mTransparency = 10e10f; } break; } // wireframe mode case AI_LWO_LINE: { AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,LINE,2); if (GetU2() & 0x1) surf.mWireframe = true; break; } // glossiness case AI_LWO_GLOS: { AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,GLOS,4); surf.mGlossiness = GetF4(); break; } // bump intensity case AI_LWO_BUMP: { AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,BUMP,4); surf.mBumpIntensity = GetF4(); break; } // color highlights case AI_LWO_CLRH: { AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,CLRH,4); surf.mColorHighlights = GetF4(); break; } // index of refraction case AI_LWO_RIND: { AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,RIND,4); surf.mIOR = GetF4(); break; } // polygon sidedness case AI_LWO_SIDE: { AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,SIDE,2); surf.bDoubleSided = (3 == GetU2()); break; } // maximum smoothing angle case AI_LWO_SMAN: { AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,SMAN,4); surf.mMaximumSmoothAngle = GetF4(); break; } // vertex color channel to be applied to the surface case AI_LWO_VCOL: { AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,VCOL,12); surf.mDiffuseValue *= GetF4(); // strength ReadVSizedIntLWO2(mFileBuffer); // skip envelope surf.mVCMapType = GetU4(); // type of the channel // name of the channel GetS0(surf.mVCMap, (unsigned int) (next - mFileBuffer )); break; } // surface bock entry case AI_LWO_BLOK: { AI_LWO_VALIDATE_CHUNK_LENGTH(head->length,BLOK,4); LE_NCONST IFF::SubChunkHeader* head2 = IFF::LoadSubChunk(mFileBuffer); switch (head2->type) { case AI_LWO_PROC: case AI_LWO_GRAD: case AI_LWO_IMAP: LoadLWO2TextureBlock(head2, head->length); break; case AI_LWO_SHDR: LoadLWO2ShaderBlock(head2, head->length); break; default: DefaultLogger::get()->warn("LWO2: Found an unsupported surface BLOK"); }; break; } } mFileBuffer = next; } }