/* Open Asset Import Library (ASSIMP) ---------------------------------------------------------------------- Copyright (c) 2006-2010, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------- */ /** @file IFCProfile.cpp * @brief Read profile and curves entities from IFC files */ #include "AssimpPCH.h" #ifndef ASSIMP_BUILD_NO_IFC_IMPORTER #include "IFCUtil.h" namespace Assimp { namespace IFC { namespace { // -------------------------------------------------------------------------------- // Conic is the base class for Circle and Ellipse // -------------------------------------------------------------------------------- class Conic : public Curve { public: // -------------------------------------------------- Conic(const IfcConic& entity, ConversionData& conv) : Curve(entity,conv) { aiMatrix4x4 trafo; ConvertAxisPlacement(trafo,*entity.Position,conv); // for convenience, extract the matrix rows location = aiVector3D(trafo.a4,trafo.b4,trafo.c4); p[0] = aiVector3D(trafo.a1,trafo.b1,trafo.c1); p[1] = aiVector3D(trafo.a2,trafo.b2,trafo.c2); p[2] = aiVector3D(trafo.a3,trafo.b3,trafo.c3); } public: // -------------------------------------------------- bool IsClosed() const { return true; } // -------------------------------------------------- size_t EstimateSampleCount(float a, float b) const { ai_assert(InRange(a) && InRange(b)); a = fmod(a,360.f); b = fmod(b,360.f); return static_cast( fabs(ceil(( b-a)) / conv.settings.conicSamplingAngle) ); } // -------------------------------------------------- ParamRange GetParametricRange() const { return std::make_pair(0.f,360.f); } protected: aiVector3D location, p[3]; }; // -------------------------------------------------------------------------------- // Circle // -------------------------------------------------------------------------------- class Circle : public Conic { public: // -------------------------------------------------- Circle(const IfcCircle& entity, ConversionData& conv) : Conic(entity,conv) , entity(entity) { } public: // -------------------------------------------------- aiVector3D Eval(float u) const { u = -conv.angle_scale * u; return location + entity.Radius*(::cos(u)*p[0] + ::sin(u)*p[1]); } private: const IfcCircle& entity; }; // -------------------------------------------------------------------------------- // Ellipse // -------------------------------------------------------------------------------- class Ellipse : public Conic { public: // -------------------------------------------------- Ellipse(const IfcEllipse& entity, ConversionData& conv) : Conic(entity,conv) , entity(entity) { } public: // -------------------------------------------------- aiVector3D Eval(float u) const { u = -conv.angle_scale * u; return location + entity.SemiAxis1*::cos(u)*p[0] + entity.SemiAxis2*::sin(u)*p[1]; } private: const IfcEllipse& entity; }; // -------------------------------------------------------------------------------- // Line // -------------------------------------------------------------------------------- class Line : public Curve { public: // -------------------------------------------------- Line(const IfcLine& entity, ConversionData& conv) : Curve(entity,conv) , entity(entity) { ConvertCartesianPoint(p,entity.Pnt); ConvertVector(v,entity.Dir); } public: // -------------------------------------------------- bool IsClosed() const { return false; } // -------------------------------------------------- aiVector3D Eval(float u) const { return p + u*v; } // -------------------------------------------------- size_t EstimateSampleCount(float a, float b) const { ai_assert(InRange(a) && InRange(b)); // two points are always sufficient for a line segment return a==b ? 1 : 2; } // -------------------------------------------------- void SampleDiscrete(TempMesh& out,float a, float b) const { ai_assert(InRange(a) && InRange(b)); if (a == b) { out.verts.push_back(Eval(a)); return; } out.verts.reserve(out.verts.size()+2); out.verts.push_back(Eval(a)); out.verts.push_back(Eval(b)); } // -------------------------------------------------- ParamRange GetParametricRange() const { const float inf = std::numeric_limits::infinity(); return std::make_pair(-inf,+inf); } private: const IfcLine& entity; aiVector3D p,v; }; // -------------------------------------------------------------------------------- // CompositeCurve joins multiple smaller, bounded curves // -------------------------------------------------------------------------------- class CompositeCurve : public BoundedCurve { typedef std::pair< boost::shared_ptr< BoundedCurve >, bool > CurveEntry; public: // -------------------------------------------------- CompositeCurve(const IfcCompositeCurve& entity, ConversionData& conv) : BoundedCurve(entity,conv) , entity(entity) , total() { curves.reserve(entity.Segments.size()); BOOST_FOREACH(const IfcCompositeCurveSegment& curveSegment,entity.Segments) { // according to the specification, this must be a bounded curve boost::shared_ptr< Curve > cv(Curve::Convert(curveSegment.ParentCurve,conv)); boost::shared_ptr< BoundedCurve > bc = boost::dynamic_pointer_cast(cv); if (!bc) { IFCImporter::LogError("expected segment of composite curve to be a bounded curve"); continue; } if ( (std::string)curveSegment.Transition != "CONTINUOUS" ) { IFCImporter::LogDebug("ignoring transition code on composite curve segment, only continuous transitions are supported"); } curves.push_back( CurveEntry(bc,IsTrue(curveSegment.SameSense)) ); total += bc->GetParametricRangeDelta(); } if (curves.empty()) { throw CurveError("empty composite curve"); } } public: // -------------------------------------------------- aiVector3D Eval(float u) const { if (curves.empty()) { return aiVector3D(); } float acc = 0; BOOST_FOREACH(const CurveEntry& entry, curves) { const ParamRange& range = entry.first->GetParametricRange(); const float delta = range.second-range.first; if (u < acc+delta) { return entry.first->Eval( entry.second ? (u-acc) + range.first : range.second-(u-acc)); } acc += delta; } // clamp to end return curves.back().first->Eval(curves.back().first->GetParametricRange().second); } // -------------------------------------------------- size_t EstimateSampleCount(float a, float b) const { ai_assert(InRange(a) && InRange(b)); size_t cnt = 0; float acc = 0; BOOST_FOREACH(const CurveEntry& entry, curves) { const ParamRange& range = entry.first->GetParametricRange(); const float delta = range.second-range.first; if (a <= acc+delta && b >= acc) { const float at = std::max(0.f,a-acc), bt = std::min(delta,b-acc); cnt += entry.first->EstimateSampleCount( entry.second ? at + range.first : range.second - bt, entry.second ? bt + range.first : range.second - at ); } acc += delta; } return cnt; } // -------------------------------------------------- void SampleDiscrete(TempMesh& out,float a, float b) const { ai_assert(InRange(a) && InRange(b)); const size_t cnt = EstimateSampleCount(a,b); out.verts.reserve(out.verts.size() + cnt); BOOST_FOREACH(const CurveEntry& entry, curves) { const size_t cnt = out.verts.size(); entry.first->SampleDiscrete(out); if (!entry.second && cnt != out.verts.size()) { std::reverse(out.verts.begin()+cnt,out.verts.end()); } } } // -------------------------------------------------- ParamRange GetParametricRange() const { return std::make_pair(0.f,total); } private: const IfcCompositeCurve& entity; std::vector< CurveEntry > curves; float total; }; // -------------------------------------------------------------------------------- // TrimmedCurve can be used to trim an unbounded curve to a bounded range // -------------------------------------------------------------------------------- class TrimmedCurve : public BoundedCurve { public: // -------------------------------------------------- TrimmedCurve(const IfcTrimmedCurve& entity, ConversionData& conv) : BoundedCurve(entity,conv) , entity(entity) , ok() { base = boost::shared_ptr(Curve::Convert(entity.BasisCurve,conv)); typedef boost::shared_ptr Entry; // for some reason, trimmed curves can either specify a parametric value // or a point on the curve, or both. And they can even specify which of the // two representations they prefer, even though an information invariant // claims that they must be identical if both are present. // oh well. bool have_param = false, have_point = false; aiVector3D point; BOOST_FOREACH(const Entry sel,entity.Trim1) { if (const EXPRESS::REAL* const r = sel->ToPtr()) { range.first = *r; have_param = true; break; } else if (const IfcCartesianPoint* const r = sel->ResolveSelectPtr(conv.db)) { ConvertCartesianPoint(point,*r); have_point = true; } } if (!have_param) { if (!have_point || !base->ReverseEval(point,range.first)) { throw CurveError("IfcTrimmedCurve: failed to read first trim parameter, ignoring curve"); } } have_param = false, have_point = false; BOOST_FOREACH(const Entry sel,entity.Trim2) { if (const EXPRESS::REAL* const r = sel->ToPtr()) { range.second = *r; have_param = true; break; } else if (const IfcCartesianPoint* const r = sel->ResolveSelectPtr(conv.db)) { ConvertCartesianPoint(point,*r); have_point = true; } } if (!have_param) { if (!have_point || !base->ReverseEval(point,range.second)) { throw CurveError("IfcTrimmedCurve: failed to read second trim parameter, ignoring curve"); } } agree_sense = IsTrue(entity.SenseAgreement); if( !agree_sense ) { std::swap(range.first,range.second); } // "NOTE In case of a closed curve, it may be necessary to increment t1 or t2 // by the parametric length for consistency with the sense flag." if (base->IsClosed()) { if( range.first > range.second ) { range.second += base->GetParametricRangeDelta(); } } maxval = range.second-range.first; ai_assert(maxval >= 0); } public: // -------------------------------------------------- aiVector3D Eval(float p) const { ai_assert(InRange(p)); return base->Eval( TrimParam(p) ); } // -------------------------------------------------- size_t EstimateSampleCount(float a, float b) const { ai_assert(InRange(a) && InRange(b)); return base->EstimateSampleCount(TrimParam(a),TrimParam(b)); } // -------------------------------------------------- ParamRange GetParametricRange() const { return std::make_pair(0.f,maxval); } private: // -------------------------------------------------- float TrimParam(float f) const { return agree_sense ? f + range.first : range.second - f; } private: const IfcTrimmedCurve& entity; ParamRange range; float maxval; bool agree_sense; bool ok; boost::shared_ptr base; }; // -------------------------------------------------------------------------------- // PolyLine is a 'curve' defined by linear interpolation over a set of discrete points // -------------------------------------------------------------------------------- class PolyLine : public BoundedCurve { public: // -------------------------------------------------- PolyLine(const IfcPolyline& entity, ConversionData& conv) : BoundedCurve(entity,conv) , entity(entity) { points.reserve(entity.Points.size()); aiVector3D t; BOOST_FOREACH(const IfcCartesianPoint& cp, entity.Points) { ConvertCartesianPoint(t,cp); points.push_back(t); } } public: // -------------------------------------------------- aiVector3D Eval(float p) const { ai_assert(InRange(p)); const size_t b = static_cast(floor(p)); if (b == points.size()-1) { return points.back(); } const float d = p-static_cast(b); return points[b+1] * d + points[b] * (1.f-d); } // -------------------------------------------------- size_t EstimateSampleCount(float a, float b) const { ai_assert(InRange(a) && InRange(b)); return static_cast( ceil(b) - floor(a) ); } // -------------------------------------------------- ParamRange GetParametricRange() const { return std::make_pair(0.f,static_cast(points.size()-1)); } private: const IfcPolyline& entity; std::vector points; }; } // anon // ------------------------------------------------------------------------------------------------ Curve* Curve :: Convert(const IFC::IfcCurve& curve,ConversionData& conv) { if(curve.ToPtr()) { if(const IfcPolyline* c = curve.ToPtr()) { return new PolyLine(*c,conv); } if(const IfcTrimmedCurve* c = curve.ToPtr()) { return new TrimmedCurve(*c,conv); } if(const IfcCompositeCurve* c = curve.ToPtr()) { return new CompositeCurve(*c,conv); } //if(const IfcBSplineCurve* c = curve.ToPtr()) { // return new BSplineCurve(*c,conv); //} } if(curve.ToPtr()) { if(const IfcCircle* c = curve.ToPtr()) { return new Circle(*c,conv); } if(const IfcEllipse* c = curve.ToPtr()) { return new Ellipse(*c,conv); } } if(const IfcLine* c = curve.ToPtr()) { return new Line(*c,conv); } // XXX OffsetCurve2D, OffsetCurve3D not currently supported return NULL; } #ifdef _DEBUG // ------------------------------------------------------------------------------------------------ bool Curve :: InRange(float u) const { const ParamRange range = GetParametricRange(); if (IsClosed()) { ai_assert(range.first != std::numeric_limits::infinity() && range.second != std::numeric_limits::infinity()); u = range.first + fmod(u-range.first,range.second-range.first); } return u >= range.first && u <= range.second; } #endif // ------------------------------------------------------------------------------------------------ float Curve :: GetParametricRangeDelta() const { const ParamRange& range = GetParametricRange(); return range.second - range.first; } // ------------------------------------------------------------------------------------------------ size_t Curve :: EstimateSampleCount(float a, float b) const { ai_assert(InRange(a) && InRange(b)); // arbitrary default value, deriving classes should supply better suited values return 16; } // ------------------------------------------------------------------------------------------------ float RecursiveSearch(const Curve* cv, const aiVector3D& val, float a, float b, unsigned int samples, float treshold, unsigned int recurse = 0, unsigned int max_recurse = 15) { ai_assert(samples>1); const float delta = (b-a)/samples, inf = std::numeric_limits::infinity(); float min_point[2] = {a,b}, min_diff[2] = {inf,inf}; float runner = a; for (unsigned int i = 0; i < samples; ++i, runner += delta) { const float diff = (cv->Eval(runner)-val).SquareLength(); if (diff < min_diff[0]) { min_diff[1] = min_diff[0]; min_point[1] = min_point[0]; min_diff[0] = diff; min_point[0] = runner; } else if (diff < min_diff[1]) { min_diff[1] = diff; min_point[1] = runner; } } ai_assert(min_diff[0] != inf && min_diff[1] != inf); if ( fabs(a-min_point[0]) < treshold || recurse >= max_recurse) { return min_point[0]; } // fix for closed curves to take their wrap-over into account if (cv->IsClosed() && fabs(min_point[0]-min_point[1]) > cv->GetParametricRangeDelta()*0.5 ) { const Curve::ParamRange& range = cv->GetParametricRange(); const float wrapdiff = (cv->Eval(range.first)-val).SquareLength(); if (wrapdiff < min_diff[0]) { const float t = min_point[0]; min_point[0] = min_point[1] > min_point[0] ? range.first : range.second; min_point[1] = t; } } return RecursiveSearch(cv,val,min_point[0],min_point[1],samples,treshold,recurse+1,max_recurse); } // ------------------------------------------------------------------------------------------------ bool Curve :: ReverseEval(const aiVector3D& val, float& paramOut) const { // note: the following algorithm is not guaranteed to find the 'right' parameter value // in all possible cases, but it will always return at least some value so this function // will never fail in the default implementation. // XXX derive treshold from curve topology const float treshold = 1e-4; const unsigned int samples = 16; const ParamRange& range = GetParametricRange(); paramOut = RecursiveSearch(this,val,range.first,range.second,samples,treshold); return true; } // ------------------------------------------------------------------------------------------------ void Curve :: SampleDiscrete(TempMesh& out,float a, float b) const { ai_assert(InRange(a) && InRange(b)); const size_t cnt = std::max(static_cast(0),EstimateSampleCount(a,b)); out.verts.reserve( out.verts.size() + cnt ); float p = a, delta = (b-a)/cnt; for(size_t i = 0; i < cnt; ++i, p += delta) { out.verts.push_back(Eval(p)); } } // ------------------------------------------------------------------------------------------------ bool BoundedCurve :: IsClosed() const { return false; } // ------------------------------------------------------------------------------------------------ void BoundedCurve :: SampleDiscrete(TempMesh& out) const { const ParamRange& range = GetParametricRange(); ai_assert(range.first != std::numeric_limits::infinity() && range.second != std::numeric_limits::infinity()); return SampleDiscrete(out,range.first,range.second); } } // IFC } // Assimp #endif // ASSIMP_BUILD_NO_IFC_IMPORTER