/* --------------------------------------------------------------------------- Open Asset Import Library (assimp) --------------------------------------------------------------------------- Copyright (c) 2006-2020, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file ColladaParser.cpp * @brief Implementation of the Collada parser helper */ #ifndef ASSIMP_BUILD_NO_COLLADA_IMPORTER #include "ColladaParser.h" #include #include #include #include #include #include #include #include #include #include #include #include using namespace Assimp; using namespace Assimp::Collada; using namespace Assimp::Formatter; // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer ColladaParser::ColladaParser(IOSystem *pIOHandler, const std::string &pFile) : mFileName(pFile), mXmlParser(), mDataLibrary(), mAccessorLibrary(), mMeshLibrary(), mNodeLibrary(), mImageLibrary(), mEffectLibrary(), mMaterialLibrary(), mLightLibrary(), mCameraLibrary(), mControllerLibrary(), mRootNode(nullptr), mAnims(), mUnitSize(1.0f), mUpDirection(UP_Y), mFormat(FV_1_5_n) { if (nullptr == pIOHandler) { throw DeadlyImportError("IOSystem is nullptr."); } std::unique_ptr daefile; std::unique_ptr zip_archive; // Determine type std::string extension = BaseImporter::GetExtension(pFile); if (extension != "dae") { zip_archive.reset(new ZipArchiveIOSystem(pIOHandler, pFile)); } if (zip_archive && zip_archive->isOpen()) { std::string dae_filename = ReadZaeManifest(*zip_archive); if (dae_filename.empty()) { throw DeadlyImportError("Invalid ZAE"); } daefile.reset(zip_archive->Open(dae_filename.c_str())); if (daefile == nullptr) { throw DeadlyImportError("Invalid ZAE manifest: '", dae_filename, "' is missing"); } } else { // attempt to open the file directly daefile.reset(pIOHandler->Open(pFile)); if (daefile.get() == nullptr) { throw DeadlyImportError("Failed to open file '", pFile, "'."); } } // generate a XML reader for it if (!mXmlParser.parse(daefile.get())) { throw DeadlyImportError("Unable to read file, malformed XML"); } // start reading XmlNode node = mXmlParser.getRootNode(); XmlNode colladaNode = node.child("COLLADA"); if (colladaNode.empty()) { return; } ReadContents(colladaNode); // read embedded textures if (zip_archive && zip_archive->isOpen()) { ReadEmbeddedTextures(*zip_archive); } } // ------------------------------------------------------------------------------------------------ // Destructor, private as well ColladaParser::~ColladaParser() { for (NodeLibrary::iterator it = mNodeLibrary.begin(); it != mNodeLibrary.end(); ++it) delete it->second; for (MeshLibrary::iterator it = mMeshLibrary.begin(); it != mMeshLibrary.end(); ++it) delete it->second; } // ------------------------------------------------------------------------------------------------ // Read a ZAE manifest and return the filename to attempt to open std::string ColladaParser::ReadZaeManifest(ZipArchiveIOSystem &zip_archive) { // Open the manifest std::unique_ptr manifestfile(zip_archive.Open("manifest.xml")); if (manifestfile == nullptr) { // No manifest, hope there is only one .DAE inside std::vector file_list; zip_archive.getFileListExtension(file_list, "dae"); if (file_list.empty()) { return std::string(); } return file_list.front(); } XmlParser manifestParser; if (!manifestParser.parse(manifestfile.get())) { return std::string(); } XmlNode root = manifestParser.getRootNode(); const std::string &name = root.name(); if (name != "dae_root") { root = *manifestParser.findNode("dae_root"); if (nullptr == root) { return std::string(); } std::string v; XmlParser::getValueAsString(root, v); aiString ai_str(v); UriDecodePath(ai_str); return std::string(ai_str.C_Str()); } return std::string(); } // ------------------------------------------------------------------------------------------------ // Convert a path read from a collada file to the usual representation void ColladaParser::UriDecodePath(aiString &ss) { // TODO: collada spec, p 22. Handle URI correctly. // For the moment we're just stripping the file:// away to make it work. // Windows doesn't seem to be able to find stuff like // 'file://..\LWO\LWO2\MappingModes\earthSpherical.jpg' if (0 == strncmp(ss.data, "file://", 7)) { ss.length -= 7; memmove(ss.data, ss.data + 7, ss.length); ss.data[ss.length] = '\0'; } // Maxon Cinema Collada Export writes "file:///C:\andsoon" with three slashes... // I need to filter it without destroying linux paths starting with "/somewhere" #if defined(_MSC_VER) if (ss.data[0] == '/' && isalpha((unsigned char)ss.data[1]) && ss.data[2] == ':') { #else if (ss.data[0] == '/' && isalpha(ss.data[1]) && ss.data[2] == ':') { #endif --ss.length; ::memmove(ss.data, ss.data + 1, ss.length); ss.data[ss.length] = 0; } // find and convert all %xy special chars char *out = ss.data; for (const char *it = ss.data; it != ss.data + ss.length; /**/) { if (*it == '%' && (it + 3) < ss.data + ss.length) { // separate the number to avoid dragging in chars from behind into the parsing char mychar[3] = { it[1], it[2], 0 }; size_t nbr = strtoul16(mychar); it += 3; *out++ = (char)(nbr & 0xFF); } else { *out++ = *it++; } } // adjust length and terminator of the shortened string *out = 0; ai_assert(out > ss.data); ss.length = static_cast(out - ss.data); } // ------------------------------------------------------------------------------------------------ // Reads the contents of the file void ColladaParser::ReadContents(XmlNode &node) { const std::string name = node.name(); if (name == "COLLADA") { std::string version; if (XmlParser::getStdStrAttribute(node, "version", version)) { aiString v; v.Set(version.c_str()); mAssetMetaData.emplace(AI_METADATA_SOURCE_FORMAT_VERSION, v); if (!::strncmp(version.c_str(), "1.5", 3)) { mFormat = FV_1_5_n; ASSIMP_LOG_DEBUG("Collada schema version is 1.5.n"); } else if (!::strncmp(version.c_str(), "1.4", 3)) { mFormat = FV_1_4_n; ASSIMP_LOG_DEBUG("Collada schema version is 1.4.n"); } else if (!::strncmp(version.c_str(), "1.3", 3)) { mFormat = FV_1_3_n; ASSIMP_LOG_DEBUG("Collada schema version is 1.3.n"); } } ReadStructure(node); } } // ------------------------------------------------------------------------------------------------ // Reads the structure of the file void ColladaParser::ReadStructure(XmlNode &node) { for (XmlNode currentNode = node.first_child(); currentNode; currentNode = currentNode.next_sibling()) { const std::string name = std::string(currentNode.name()); ASSIMP_LOG_DEBUG("last name" + name); if (name == "asset") ReadAssetInfo(currentNode); else if (name == "library_animations") ReadAnimationLibrary(currentNode); else if (name == "library_animation_clips") ReadAnimationClipLibrary(currentNode); else if (name == "library_controllers") ReadControllerLibrary(currentNode); else if (name == "library_images") ReadImageLibrary(currentNode); else if (name == "library_materials") ReadMaterialLibrary(currentNode); else if (name == "library_effects") ReadEffectLibrary(currentNode); else if (name == "library_geometries") ReadGeometryLibrary(currentNode); else if (name == "library_visual_scenes") ReadSceneLibrary(currentNode); else if (name == "library_lights") ReadLightLibrary(currentNode); else if (name == "library_cameras") ReadCameraLibrary(currentNode); else if (name == "library_nodes") ReadSceneNode(currentNode, nullptr); /* some hacking to reuse this piece of code */ else if (name == "scene") ReadScene(currentNode); } PostProcessRootAnimations(); PostProcessControllers(); } // ------------------------------------------------------------------------------------------------ // Reads asset information such as coordinate system information and legal blah void ColladaParser::ReadAssetInfo(XmlNode &node) { if (node.empty()) { return; } for (XmlNode currentNode = node.first_child(); currentNode; currentNode = currentNode.next_sibling()) { const std::string name = currentNode.name(); if (name == "unit") { pugi::xml_attribute attr = currentNode.attribute("meter"); mUnitSize = 1.f; if (attr) { mUnitSize = static_cast(attr.as_double()); } } else if (name == "up_axis") { std::string v; XmlParser::getValueAsString(currentNode, v); if (v == "X_UP") { mUpDirection = UP_X; } else if (v == "Z_UP") { mUpDirection = UP_Z; } else { mUpDirection = UP_Y; } } else if (name == "contributor") { for (XmlNode currentChldNode : currentNode.children()) { ReadMetaDataItem(currentChldNode, mAssetMetaData); } } else { ReadMetaDataItem(currentNode, mAssetMetaData); } } } static bool FindCommonKey(const std::string &collada_key, const MetaKeyPairVector &key_renaming, size_t &found_index) { for (size_t i = 0; i < key_renaming.size(); ++i) { if (key_renaming[i].first == collada_key) { found_index = i; return true; } } found_index = std::numeric_limits::max(); return false; } // ------------------------------------------------------------------------------------------------ // Reads a single string metadata item void ColladaParser::ReadMetaDataItem(XmlNode &node, StringMetaData &metadata) { const Collada::MetaKeyPairVector &key_renaming = GetColladaAssimpMetaKeysCamelCase(); const std::string name = node.name(); if (name.empty()) { return; } std::string v; if (XmlParser::getValueAsString(node, v)) { trim(v); aiString aistr; aistr.Set(v); std::string camel_key_str(name); ToCamelCase(camel_key_str); size_t found_index; if (FindCommonKey(camel_key_str, key_renaming, found_index)) { metadata.emplace(key_renaming[found_index].second, aistr); } else { metadata.emplace(camel_key_str, aistr); } } } // ------------------------------------------------------------------------------------------------ // Reads the animation clips void ColladaParser::ReadAnimationClipLibrary(XmlNode &node) { if (node.empty()) { return; } std::string animName; pugi::xml_attribute nameAttr = node.attribute("name"); if (nameAttr) { animName = nameAttr.as_string(); } else { pugi::xml_attribute idAttr = node.attribute("id"); if (idAttr) { animName = idAttr.as_string(); } else { animName = std::string("animation_") + to_string(mAnimationClipLibrary.size()); } } std::pair> clip; clip.first = animName; for (XmlNode currentNode = node.first_child(); currentNode; currentNode = currentNode.next_sibling()) { const std::string currentName = currentNode.name(); if (currentName == "instance_animation") { pugi::xml_attribute url = currentNode.attribute("url"); if (url) { const std::string urlName = url.as_string(); if (urlName[0] != '#') { throw DeadlyImportError("Unknown reference format"); } clip.second.push_back(url.as_string()); } } if (clip.second.size() > 0) { mAnimationClipLibrary.push_back(clip); } } } void ColladaParser::PostProcessControllers() { std::string meshId; for (ControllerLibrary::iterator it = mControllerLibrary.begin(); it != mControllerLibrary.end(); ++it) { meshId = it->second.mMeshId; if (meshId.empty()) { continue; } ControllerLibrary::iterator findItr = mControllerLibrary.find(meshId); while (findItr != mControllerLibrary.end()) { meshId = findItr->second.mMeshId; findItr = mControllerLibrary.find(meshId); } it->second.mMeshId = meshId; } } // ------------------------------------------------------------------------------------------------ // Re-build animations from animation clip library, if present, otherwise combine single-channel animations void ColladaParser::PostProcessRootAnimations() { if (mAnimationClipLibrary.empty()) { mAnims.CombineSingleChannelAnimations(); return; } Animation temp; for (AnimationClipLibrary::iterator it = mAnimationClipLibrary.begin(); it != mAnimationClipLibrary.end(); ++it) { std::string clipName = it->first; Animation *clip = new Animation(); clip->mName = clipName; temp.mSubAnims.push_back(clip); for (std::vector::iterator a = it->second.begin(); a != it->second.end(); ++a) { std::string animationID = *a; AnimationLibrary::iterator animation = mAnimationLibrary.find(animationID); if (animation != mAnimationLibrary.end()) { Animation *pSourceAnimation = animation->second; pSourceAnimation->CollectChannelsRecursively(clip->mChannels); } } } mAnims = temp; // Ensure no double deletes. temp.mSubAnims.clear(); } // ------------------------------------------------------------------------------------------------ // Reads the animation library void ColladaParser::ReadAnimationLibrary(XmlNode &node) { if (node.empty()) { return; } for (XmlNode currentNode = node.first_child(); currentNode; currentNode = currentNode.next_sibling()) { const std::string currentName = currentNode.name(); if (currentName == "animation") { ReadAnimation(currentNode, &mAnims); } } } // ------------------------------------------------------------------------------------------------ // Reads an animation into the given parent structure void ColladaParser::ReadAnimation(XmlNode &node, Collada::Animation *pParent) { if (node.empty()) { return; } // an element may be a container for grouping sub-elements or an animation channel // this is the channel collection by ID, in case it has channels typedef std::map ChannelMap; ChannelMap channels; // this is the anim container in case we're a container Animation *anim = nullptr; // optional name given as an attribute std::string animName; pugi::xml_attribute nameAttr = node.attribute("name"); if (nameAttr) { animName = nameAttr.as_string(); } else { animName = "animation"; } std::string animID; pugi::xml_attribute idAttr = node.attribute("id"); if (idAttr) { animID = idAttr.as_string(); } for (XmlNode currentNode = node.first_child(); currentNode; currentNode = currentNode.next_sibling()) { const std::string currentName = currentNode.name(); if (currentName == "animation") { if (!anim) { anim = new Animation; anim->mName = animName; pParent->mSubAnims.push_back(anim); } // recurse into the sub-element ReadAnimation(currentNode, anim); } else if (currentName == "source") { ReadSource(currentNode); } else if (currentName == "sampler") { pugi::xml_attribute sampler_id = currentNode.attribute("id"); if (sampler_id) { std::string id = sampler_id.as_string(); ChannelMap::iterator newChannel = channels.insert(std::make_pair(id, AnimationChannel())).first; // have it read into a channel ReadAnimationSampler(currentNode, newChannel->second); } else if (currentName == "channel") { pugi::xml_attribute target = currentNode.attribute("target"); pugi::xml_attribute source = currentNode.attribute("source"); std::string source_name = source.as_string(); if (source_name[0] == '#') { source_name = source_name.substr(1, source_name.size() - 1); } ChannelMap::iterator cit = channels.find(source_name); if (cit != channels.end()) { cit->second.mTarget = target.as_string(); } } } } // it turned out to have channels - add them if (!channels.empty()) { if (nullptr == anim) { anim = new Animation; anim->mName = animName; pParent->mSubAnims.push_back(anim); } for (ChannelMap::const_iterator it = channels.begin(); it != channels.end(); ++it) { anim->mChannels.push_back(it->second); } if (idAttr >= 0) { mAnimationLibrary[animID] = anim; } } } // ------------------------------------------------------------------------------------------------ // Reads an animation sampler into the given anim channel void ColladaParser::ReadAnimationSampler(XmlNode &node, Collada::AnimationChannel &pChannel) { for (XmlNode currentNode = node.first_child(); currentNode; currentNode = currentNode.next_sibling()) { const std::string currentName = currentNode.name(); if (currentName == "input") { if (XmlParser::hasAttribute(currentNode, "semantic")) { std::string semantic, sourceAttr; XmlParser::getStdStrAttribute(currentNode, "semantic", semantic); if (XmlParser::hasAttribute(currentNode, "source")) { XmlParser::getStdStrAttribute(currentNode, "source", sourceAttr); const char *source = sourceAttr.c_str(); if (source[0] != '#') { throw DeadlyImportError("Unsupported URL format"); } source++; if (semantic == "INPUT") pChannel.mSourceTimes = source; else if (semantic == "OUTPUT") pChannel.mSourceValues = source; else if (semantic == "IN_TANGENT") pChannel.mInTanValues = source; else if (semantic == "OUT_TANGENT") pChannel.mOutTanValues = source; else if (semantic == "INTERPOLATION") pChannel.mInterpolationValues = source; } } } } } // ------------------------------------------------------------------------------------------------ // Reads the skeleton controller library void ColladaParser::ReadControllerLibrary(XmlNode &node) { if (node.empty()) { return; } for (XmlNode ¤tNode : node.children()) { const std::string ¤tName = currentNode.name(); if (currentName != "controller") { continue; ; } std::string id = node.attribute("id").as_string(); mControllerLibrary[id] = Controller(); ReadController(node, mControllerLibrary[id]); } } // ------------------------------------------------------------------------------------------------ // Reads a controller into the given mesh structure void ColladaParser::ReadController(XmlNode &node, Collada::Controller &pController) { // initial values pController.mType = Skin; pController.mMethod = Normalized; for (XmlNode currentNode = node.first_child(); currentNode; currentNode = currentNode.next_sibling()) { const std::string ¤tName = currentNode.name(); if (currentName == "morph") { pController.mType = Morph; pController.mMeshId = currentNode.attribute("source").as_string(); int methodIndex = currentNode.attribute("method").as_int(); if (methodIndex > 0) { std::string method; XmlParser::getValueAsString(currentNode, method); if (method == "RELATIVE") { pController.mMethod = Relative; } } } else if (currentName == "skin") { pController.mMeshId = currentNode.attribute("source").as_string(); } else if (currentName == "bind_shape_matrix") { std::string v; XmlParser::getValueAsString(currentNode, v); const char *content = v.c_str(); for (unsigned int a = 0; a < 16; a++) { // read a number content = fast_atoreal_move(content, pController.mBindShapeMatrix[a]); // skip whitespace after it SkipSpacesAndLineEnd(&content); } } else if (currentName == "source") { ReadSource(currentNode); } else if (currentName == "joints") { ReadControllerJoints(currentNode, pController); } else if (currentName == "vertex_weights") { ReadControllerWeights(currentNode, pController); } else if (currentName == "targets") { for (XmlNode currentChildNode = node.first_child(); currentNode; currentNode = currentNode.next_sibling()) { const std::string ¤tChildName = currentChildNode.name(); if (currentChildName == "input") { const char *semantics = currentChildNode.attribute("semantic").as_string(); const char *source = currentChildNode.attribute("source").as_string(); if (strcmp(semantics, "MORPH_TARGET") == 0) { pController.mMorphTarget = source + 1; } else if (strcmp(semantics, "MORPH_WEIGHT") == 0) { pController.mMorphWeight = source + 1; } } } } } } // ------------------------------------------------------------------------------------------------ // Reads the joint definitions for the given controller void ColladaParser::ReadControllerJoints(XmlNode &node, Collada::Controller &pController) { for (XmlNode currentNode = node.first_child(); currentNode; currentNode = currentNode.next_sibling()) { const std::string currentName = currentNode.name(); if (currentName == "input") { const char *attrSemantic = currentNode.attribute("semantic").as_string(); const char *attrSource = currentNode.attribute("source").as_string(); if (attrSource[0] != '#') { throw DeadlyImportError("Unsupported URL format in \"", attrSource, "\" in source attribute of data element"); } ++attrSource; // parse source URL to corresponding source if (strcmp(attrSemantic, "JOINT") == 0) { pController.mJointNameSource = attrSource; } else if (strcmp(attrSemantic, "INV_BIND_MATRIX") == 0) { pController.mJointOffsetMatrixSource = attrSource; } else { throw DeadlyImportError("Unknown semantic \"" , attrSemantic , "\" in data element"); } } } } // ------------------------------------------------------------------------------------------------ // Reads the joint weights for the given controller void ColladaParser::ReadControllerWeights(XmlNode &node, Collada::Controller &pController) { // Read vertex count from attributes and resize the array accordingly int vertexCount; XmlParser::getIntAttribute(node, "count", vertexCount); for (XmlNode currentNode = node.first_child(); currentNode; currentNode = currentNode.next_sibling()) { std::string currentName = currentNode.name(); if (currentName == "input") { InputChannel channel; const char *attrSemantic = currentNode.attribute("semantic").as_string(); const char *attrSource = currentNode.attribute("source").as_string(); channel.mOffset = currentNode.attribute("offset").as_int(); // local URLS always start with a '#'. We don't support global URLs if (attrSource[0] != '#') { throw DeadlyImportError( "Unsupported URL format in \"", attrSource, "\" in source attribute of data element"); } channel.mAccessor = attrSource + 1; // parse source URL to corresponding source if (strcmp(attrSemantic, "JOINT") == 0) { pController.mWeightInputJoints = channel; } else if (strcmp(attrSemantic, "WEIGHT") == 0) { pController.mWeightInputWeights = channel; } else { throw DeadlyImportError("Unknown semantic \"", attrSemantic, "\" in data element"); } } else if (currentName == "vcount" && vertexCount > 0) { const char *text = currentNode.value(); size_t numWeights = 0; for (std::vector::iterator it = pController.mWeightCounts.begin(); it != pController.mWeightCounts.end(); ++it) { if (*text == 0) { throw DeadlyImportError("Out of data while reading "); } *it = strtoul10(text, &text); numWeights += *it; SkipSpacesAndLineEnd(&text); } // reserve weight count pController.mWeights.resize(numWeights); } else if (currentName == "v" && vertexCount > 0) { // read JointIndex - WeightIndex pairs std::string stdText; XmlParser::getValueAsString(currentNode, stdText); const char *text = stdText.c_str(); for (std::vector>::iterator it = pController.mWeights.begin(); it != pController.mWeights.end(); ++it) { if (text == 0) { throw DeadlyImportError("Out of data while reading "); } it->first = strtoul10(text, &text); SkipSpacesAndLineEnd(&text); if (*text == 0) { throw DeadlyImportError("Out of data while reading "); } it->second = strtoul10(text, &text); SkipSpacesAndLineEnd(&text); } } } } // ------------------------------------------------------------------------------------------------ // Reads the image library contents void ColladaParser::ReadImageLibrary(XmlNode &node) { if (node.empty()) { return; } for (XmlNode currentNode = node.first_child(); currentNode; currentNode = currentNode.next_sibling()) { const std::string name = currentNode.name(); if (name == "image") { std::string id = currentNode.attribute("id").as_string(); mImageLibrary[id] = Image(); // read on from there ReadImage(currentNode, mImageLibrary[id]); } } } // ------------------------------------------------------------------------------------------------ // Reads an image entry into the given image void ColladaParser::ReadImage(XmlNode &node, Collada::Image &pImage) { for (XmlNode currentNode = node.first_child(); currentNode; currentNode = currentNode.next_sibling()) { const std::string currentName = currentNode.name(); if (currentName == "image") { // Ignore continue; } else if (currentName == "init_from") { if (mFormat == FV_1_4_n) { // FIX: C4D exporter writes empty tags if (!currentNode.empty()) { // element content is filename - hopefully const char *sz = currentNode.text().as_string(); if (sz) { aiString filepath(sz); UriDecodePath(filepath); pImage.mFileName = filepath.C_Str(); } } if (!pImage.mFileName.length()) { pImage.mFileName = "unknown_texture"; } } else if (mFormat == FV_1_5_n) { // make sure we skip over mip and array initializations, which // we don't support, but which could confuse the loader if // they're not skipped. int v = currentNode.attribute("ref").as_int(); /* if (v y) { ASSIMP_LOG_WARN("Collada: Ignoring texture array index"); continue; }*/ v = currentNode.attribute("mip_index").as_int(); /*if (attrib != -1 && v > 0) { ASSIMP_LOG_WARN("Collada: Ignoring MIP map layer"); continue; }*/ // TODO: correctly jump over cube and volume maps? } } else if (mFormat == FV_1_5_n) { std::string value; XmlNode refChild = currentNode.child("ref"); XmlNode hexChild = currentNode.child("hex"); if (refChild) { // element content is filename - hopefully if (XmlParser::getValueAsString(refChild, value)) { aiString filepath(value); UriDecodePath(filepath); pImage.mFileName = filepath.C_Str(); } } else if (hexChild && !pImage.mFileName.length()) { // embedded image. get format pImage.mEmbeddedFormat = hexChild.attribute("format").as_string(); if (pImage.mEmbeddedFormat.empty()) { ASSIMP_LOG_WARN("Collada: Unknown image file format"); } XmlParser::getValueAsString(hexChild, value); const char *data = value.c_str(); // hexadecimal-encoded binary octets. First of all, find the // required buffer size to reserve enough storage. const char *cur = data; while (!IsSpaceOrNewLine(*cur)) { ++cur; } const unsigned int size = (unsigned int)(cur - data) * 2; pImage.mImageData.resize(size); for (unsigned int i = 0; i < size; ++i) { pImage.mImageData[i] = HexOctetToDecimal(data + (i << 1)); } } } } } // ------------------------------------------------------------------------------------------------ // Reads the material library void ColladaParser::ReadMaterialLibrary(XmlNode &node) { if (node.empty()) { return; } std::map names; for (XmlNode currentNode = node.first_child(); currentNode; currentNode = currentNode.next_sibling()) { const std::string currentName = currentNode.name(); std::string id = currentNode.attribute("id").as_string(); std::string name = currentNode.attribute("name").as_string(); mMaterialLibrary[id] = Material(); if (!name.empty()) { std::map::iterator it = names.find(name); if (it != names.end()) { std::ostringstream strStream; strStream << ++it->second; name.append(" " + strStream.str()); } else { names[name] = 0; } mMaterialLibrary[id].mName = name; } ReadMaterial(currentNode, mMaterialLibrary[id]); } } // ------------------------------------------------------------------------------------------------ // Reads the light library void ColladaParser::ReadLightLibrary(XmlNode &node) { if (node.empty()) { return; } for (XmlNode currentNode = node.first_child(); currentNode; currentNode = currentNode.next_sibling()) { const std::string ¤tName = currentNode.name(); if (currentName == "light") { std::string id = currentNode.attribute("id").as_string(); ReadLight(currentNode, mLightLibrary[id] = Light()); } } } // ------------------------------------------------------------------------------------------------ // Reads the camera library void ColladaParser::ReadCameraLibrary(XmlNode &node) { if (node.empty()) { return; } for (XmlNode currentNode = node.first_child(); currentNode; currentNode = currentNode.next_sibling()) { const std::string ¤tName = currentNode.name(); if (currentName == "camera") { std::string id = currentNode.attribute("id").as_string(); // create an entry and store it in the library under its ID Camera &cam = mCameraLibrary[id]; std::string name = currentNode.attribute("name").as_string(); if (!name.empty()) { cam.mName = name; } ReadCamera(currentNode, cam); } } } // ------------------------------------------------------------------------------------------------ // Reads a material entry into the given material void ColladaParser::ReadMaterial(XmlNode &node, Collada::Material &pMaterial) { for (XmlNode currentNode : node.children()) { const std::string ¤tName = currentNode.name(); if (currentName == "instance_effect") { const char *url = currentNode.attribute("url").as_string(); if (url[0] != '#') { throw DeadlyImportError("Unknown reference format"); } pMaterial.mEffect = url + 1; } } } // ------------------------------------------------------------------------------------------------ // Reads a light entry into the given light void ColladaParser::ReadLight(XmlNode &node, Collada::Light &pLight) { XmlNodeIterator xmlIt(node); xmlIt.collectChildrenPreOrder(node); XmlNode currentNode; while (xmlIt.getNext(currentNode)) { const std::string ¤tName = currentNode.name(); if (currentName == "spot") { pLight.mType = aiLightSource_SPOT; } else if (currentName == "ambient") { pLight.mType = aiLightSource_AMBIENT; } else if (currentName == "directional") { pLight.mType = aiLightSource_DIRECTIONAL; } else if (currentName == "point") { pLight.mType = aiLightSource_POINT; } else if (currentName == "color") { // text content contains 3 floats std::string v; XmlParser::getValueAsString(currentNode, v); const char *content = v.c_str(); content = fast_atoreal_move(content, (ai_real &)pLight.mColor.r); SkipSpacesAndLineEnd(&content); content = fast_atoreal_move(content, (ai_real &)pLight.mColor.g); SkipSpacesAndLineEnd(&content); content = fast_atoreal_move(content, (ai_real &)pLight.mColor.b); SkipSpacesAndLineEnd(&content); } else if (currentName == "constant_attenuation") { XmlParser::getFloatAttribute(currentNode, "constant_attenuation", pLight.mAttConstant); } else if (currentName == "linear_attenuation") { XmlParser::getFloatAttribute(currentNode, "linear_attenuation", pLight.mAttLinear); } else if (currentName == "quadratic_attenuation") { XmlParser::getFloatAttribute(currentNode, "quadratic_attenuation", pLight.mAttQuadratic); } else if (currentName == "falloff_angle") { XmlParser::getFloatAttribute(currentNode, "falloff_angle", pLight.mFalloffAngle); } else if (currentName == "falloff_exponent") { XmlParser::getFloatAttribute(currentNode, "falloff_exponent", pLight.mFalloffExponent); } // FCOLLADA extensions // ------------------------------------------------------- else if (currentName == "outer_cone") { XmlParser::getFloatAttribute(currentNode, "outer_cone", pLight.mOuterAngle); } else if (currentName == "penumbra_angle") { // ... and this one is even deprecated XmlParser::getFloatAttribute(currentNode, "penumbra_angle", pLight.mPenumbraAngle); } else if (currentName == "intensity") { XmlParser::getFloatAttribute(currentNode, "intensity", pLight.mIntensity); } else if (currentName == "falloff") { XmlParser::getFloatAttribute(currentNode, "falloff", pLight.mOuterAngle); } else if (currentName == "hotspot_beam") { XmlParser::getFloatAttribute(currentNode, "hotspot_beam", pLight.mFalloffAngle); } // OpenCOLLADA extensions // ------------------------------------------------------- else if (currentName == "decay_falloff") { XmlParser::getFloatAttribute(currentNode, "decay_falloff", pLight.mOuterAngle); } } } // ------------------------------------------------------------------------------------------------ // Reads a camera entry into the given light void ColladaParser::ReadCamera(XmlNode &node, Collada::Camera &camera) { XmlNodeIterator xmlIt(node); xmlIt.collectChildrenPreOrder(node); XmlNode currentNode; while (xmlIt.getNext(currentNode)) { const std::string ¤tName = currentNode.name(); if (currentName == "orthographic") { camera.mOrtho = true; } else if (currentName == "xfov" || currentName == "xmag") { XmlParser::getValueAsFloat(currentNode, camera.mHorFov); } else if (currentName == "yfov" || currentName == "ymag") { XmlParser::getValueAsFloat(currentNode, camera.mVerFov); } else if (currentName == "aspect_ratio") { XmlParser::getValueAsFloat(currentNode, camera.mAspect); } else if (currentName == "znear") { XmlParser::getValueAsFloat(currentNode, camera.mZNear); } else if (currentName == "zfar") { XmlParser::getValueAsFloat(currentNode, camera.mZFar); } } } // ------------------------------------------------------------------------------------------------ // Reads the effect library void ColladaParser::ReadEffectLibrary(XmlNode &node) { if (node.empty()) { return; } for (XmlNode currentNode = node.first_child(); currentNode; currentNode = currentNode.next_sibling()) { const std::string ¤tName = currentNode.name(); if (currentName == "effect") { // read ID. Do I have to repeat my ranting about "optional" attributes? std::string id; XmlParser::getStdStrAttribute(currentNode, "id", id); // create an entry and store it in the library under its ID mEffectLibrary[id] = Effect(); // read on from there ReadEffect(currentNode, mEffectLibrary[id]); } } } // ------------------------------------------------------------------------------------------------ // Reads an effect entry into the given effect void ColladaParser::ReadEffect(XmlNode &node, Collada::Effect &pEffect) { for (XmlNode currentNode = node.first_child(); currentNode; currentNode = currentNode.next_sibling()) { const std::string ¤tName = currentNode.name(); if (currentName == "profile_COMMON") { ReadEffectProfileCommon(currentNode, pEffect); } } } // ------------------------------------------------------------------------------------------------ // Reads an COMMON effect profile void ColladaParser::ReadEffectProfileCommon(XmlNode &node, Collada::Effect &pEffect) { XmlNodeIterator xmlIt(node); xmlIt.collectChildrenPreOrder(node); XmlNode currentNode; while (xmlIt.getNext(currentNode)) { const std::string ¤tName = currentNode.name(); if (currentName == "newparam") { // save ID std::string sid = currentNode.attribute("sid").as_string(); pEffect.mParams[sid] = EffectParam(); ReadEffectParam(currentNode, pEffect.mParams[sid]); } else if (currentName == "technique" || currentName == "extra") { // just syntactic sugar } else if (mFormat == FV_1_4_n && currentName == "image") { // read ID. Another entry which is "optional" by design but obligatory in reality std::string id = currentNode.attribute("id").as_string(); // create an entry and store it in the library under its ID mImageLibrary[id] = Image(); // read on from there ReadImage(currentNode, mImageLibrary[id]); } else if (currentName == "phong") pEffect.mShadeType = Shade_Phong; else if (currentName == "constant") pEffect.mShadeType = Shade_Constant; else if (currentName == "lambert") pEffect.mShadeType = Shade_Lambert; else if (currentName == "blinn") pEffect.mShadeType = Shade_Blinn; /* Color + texture properties */ else if (currentName == "emission") ReadEffectColor(currentNode, pEffect.mEmissive, pEffect.mTexEmissive); else if (currentName == "ambient") ReadEffectColor(currentNode, pEffect.mAmbient, pEffect.mTexAmbient); else if (currentName == "diffuse") ReadEffectColor(currentNode, pEffect.mDiffuse, pEffect.mTexDiffuse); else if (currentName == "specular") ReadEffectColor(currentNode, pEffect.mSpecular, pEffect.mTexSpecular); else if (currentName == "reflective") { ReadEffectColor(currentNode, pEffect.mReflective, pEffect.mTexReflective); } else if (currentName == "transparent") { pEffect.mHasTransparency = true; const char *opaque = currentNode.attribute("opaque").as_string(); //const char *opaque = mReader->getAttributeValueSafe("opaque"); if (::strcmp(opaque, "RGB_ZERO") == 0 || ::strcmp(opaque, "RGB_ONE") == 0) { pEffect.mRGBTransparency = true; } // In RGB_ZERO mode, the transparency is interpreted in reverse, go figure... if (::strcmp(opaque, "RGB_ZERO") == 0 || ::strcmp(opaque, "A_ZERO") == 0) { pEffect.mInvertTransparency = true; } ReadEffectColor(currentNode, pEffect.mTransparent, pEffect.mTexTransparent); } else if (currentName == "shininess") ReadEffectFloat(currentNode, pEffect.mShininess); else if (currentName == "reflectivity") ReadEffectFloat(currentNode, pEffect.mReflectivity); /* Single scalar properties */ else if (currentName == "transparency") ReadEffectFloat(currentNode, pEffect.mTransparency); else if (currentName == "index_of_refraction") ReadEffectFloat(currentNode, pEffect.mRefractIndex); // GOOGLEEARTH/OKINO extensions // ------------------------------------------------------- else if (currentName == "double_sided") XmlParser::getBoolAttribute(currentNode, currentName.c_str(), pEffect.mDoubleSided); // FCOLLADA extensions // ------------------------------------------------------- else if (currentName == "bump") { aiColor4D dummy; ReadEffectColor(currentNode, dummy, pEffect.mTexBump); } // MAX3D extensions // ------------------------------------------------------- else if (currentName == "wireframe") { XmlParser::getBoolAttribute(currentNode, currentName.c_str(), pEffect.mWireframe); } else if (currentName == "faceted") { XmlParser::getBoolAttribute(currentNode, currentName.c_str(), pEffect.mFaceted); } } } // ------------------------------------------------------------------------------------------------ // Read texture wrapping + UV transform settings from a profile==Maya chunk void ColladaParser::ReadSamplerProperties(XmlNode &node, Sampler &out) { if (node.empty()) { return; } XmlNodeIterator xmlIt(node); xmlIt.collectChildrenPreOrder(node); XmlNode currentNode; while (xmlIt.getNext(currentNode)) { const std::string ¤tName = currentNode.name(); // MAYA extensions // ------------------------------------------------------- if (currentName == "wrapU") { XmlParser::getBoolAttribute(currentNode, currentName.c_str(), out.mWrapU); } else if (currentName == "wrapV") { XmlParser::getBoolAttribute(currentNode, currentName.c_str(), out.mWrapV); } else if (currentName == "mirrorU") { XmlParser::getBoolAttribute(currentNode, currentName.c_str(), out.mMirrorU); } else if (currentName == "mirrorV") { XmlParser::getBoolAttribute(currentNode, currentName.c_str(), out.mMirrorV); } else if (currentName == "repeatU") { XmlParser::getFloatAttribute(currentNode, currentName.c_str(), out.mTransform.mScaling.x); } else if (currentName == "repeatV") { XmlParser::getFloatAttribute(currentNode, currentName.c_str(), out.mTransform.mScaling.y); } else if (currentName == "offsetU") { XmlParser::getFloatAttribute(currentNode, currentName.c_str(), out.mTransform.mTranslation.x); } else if (currentName == "offsetV") { XmlParser::getFloatAttribute(currentNode, currentName.c_str(), out.mTransform.mTranslation.y); } else if (currentName == "rotateUV") { XmlParser::getFloatAttribute(currentNode, currentName.c_str(), out.mTransform.mRotation); } else if (currentName == "blend_mode") { std::string v; XmlParser::getValueAsString(currentNode, v); const char *sz = v.c_str(); // http://www.feelingsoftware.com/content/view/55/72/lang,en/ // NONE, OVER, IN, OUT, ADD, SUBTRACT, MULTIPLY, DIFFERENCE, LIGHTEN, DARKEN, SATURATE, DESATURATE and ILLUMINATE if (0 == ASSIMP_strincmp(sz, "ADD", 3)) out.mOp = aiTextureOp_Add; else if (0 == ASSIMP_strincmp(sz, "SUBTRACT", 8)) out.mOp = aiTextureOp_Subtract; else if (0 == ASSIMP_strincmp(sz, "MULTIPLY", 8)) out.mOp = aiTextureOp_Multiply; else { ASSIMP_LOG_WARN("Collada: Unsupported MAYA texture blend mode"); } } // OKINO extensions // ------------------------------------------------------- else if (currentName == "weighting") { XmlParser::getFloatAttribute(currentNode, currentName.c_str(), out.mWeighting); } else if (currentName == "mix_with_previous_layer") { XmlParser::getFloatAttribute(currentNode, currentName.c_str(), out.mMixWithPrevious); } // MAX3D extensions // ------------------------------------------------------- else if (currentName == "amount") { XmlParser::getFloatAttribute(currentNode, currentName.c_str(), out.mWeighting); } } } // ------------------------------------------------------------------------------------------------ // Reads an effect entry containing a color or a texture defining that color void ColladaParser::ReadEffectColor(XmlNode &node, aiColor4D &pColor, Sampler &pSampler) { if (node.empty()) { return; } XmlNodeIterator xmlIt(node); xmlIt.collectChildrenPreOrder(node); XmlNode currentNode; while (xmlIt.getNext(currentNode)) { const std::string ¤tName = currentNode.name(); if (currentName == "color") { // text content contains 4 floats std::string v; XmlParser::getValueAsString(currentNode, v); const char *content = v.c_str(); content = fast_atoreal_move(content, (ai_real &)pColor.r); SkipSpacesAndLineEnd(&content); content = fast_atoreal_move(content, (ai_real &)pColor.g); SkipSpacesAndLineEnd(&content); content = fast_atoreal_move(content, (ai_real &)pColor.b); SkipSpacesAndLineEnd(&content); content = fast_atoreal_move(content, (ai_real &)pColor.a); SkipSpacesAndLineEnd(&content); } else if (currentName == "texture") { // get name of source texture/sampler XmlParser::getStdStrAttribute(currentNode, "texture", pSampler.mName); // get name of UV source channel. Specification demands it to be there, but some exporters // don't write it. It will be the default UV channel in case it's missing. XmlParser::getStdStrAttribute(currentNode, "texcoord", pSampler.mUVChannel); // as we've read texture, the color needs to be 1,1,1,1 pColor = aiColor4D(1.f, 1.f, 1.f, 1.f); } else if (currentName == "technique") { std::string profile; XmlParser::getStdStrAttribute(currentNode, "profile", profile); //const int _profile = GetAttribute("profile"); //const char *profile = mReader->getAttributeValue(_profile); // Some extensions are quite useful ... ReadSamplerProperties processes // several extensions in MAYA, OKINO and MAX3D profiles. if (!::strcmp(profile.c_str(), "MAYA") || !::strcmp(profile.c_str(), "MAX3D") || !::strcmp(profile.c_str(), "OKINO")) { // get more information on this sampler ReadSamplerProperties(currentNode, pSampler); } } } } // ------------------------------------------------------------------------------------------------ // Reads an effect entry containing a float void ColladaParser::ReadEffectFloat(XmlNode &node, ai_real &pFloat) { pFloat = 0.f; XmlNode floatNode = node.child("float"); if (floatNode.empty()) { return; } XmlParser::getValueAsFloat(floatNode, pFloat); } // ------------------------------------------------------------------------------------------------ // Reads an effect parameter specification of any kind void ColladaParser::ReadEffectParam(XmlNode &node, Collada::EffectParam &pParam) { if (node.empty()) { return; } XmlNodeIterator xmlIt(node); xmlIt.collectChildrenPreOrder(node); XmlNode currentNode; while (xmlIt.getNext(currentNode)) { const std::string ¤tName = currentNode.name(); if (currentName == "surface") { // image ID given inside tags XmlNode initNode = currentNode.child("init_from"); if (initNode) { std::string v; XmlParser::getValueAsString(initNode, v); pParam.mType = Param_Surface; pParam.mReference = v.c_str(); } } else if (currentName == "sampler2D" && (FV_1_4_n == mFormat || FV_1_3_n == mFormat)) { // surface ID is given inside tags const char *content = currentNode.value(); pParam.mType = Param_Sampler; pParam.mReference = content; } else if (currentName == "sampler2D") { // surface ID is given inside tags std::string url; XmlParser::getStdStrAttribute(currentNode, "url", url); if (url[0] != '#') { throw DeadlyImportError("Unsupported URL format in instance_image"); } pParam.mType = Param_Sampler; pParam.mReference = url.c_str() + 1; } } } // ------------------------------------------------------------------------------------------------ // Reads the geometry library contents void ColladaParser::ReadGeometryLibrary(XmlNode &node) { if (node.empty()) { return; } for (XmlNode currentNode = node.first_child(); currentNode; currentNode = currentNode.next_sibling()) { const std::string ¤tName = currentNode.name(); if (currentName == "geometry") { // read ID. Another entry which is "optional" by design but obligatory in reality std::string id; XmlParser::getStdStrAttribute(currentNode, "id", id); // create a mesh and store it in the library under its (resolved) ID // Skip and warn if ID is not unique if (mMeshLibrary.find(id) == mMeshLibrary.cend()) { std::unique_ptr mesh(new Mesh(id)); XmlParser::getStdStrAttribute(currentNode, "name", mesh->mName); // read on from there ReadGeometry(currentNode, *mesh); // Read successfully, add to library mMeshLibrary.insert({ id, mesh.release() }); } } } } // ------------------------------------------------------------------------------------------------ // Reads a geometry from the geometry library. void ColladaParser::ReadGeometry(XmlNode &node, Collada::Mesh &pMesh) { if (node.empty()) { return; } for (XmlNode currentNode = node.first_child(); currentNode; currentNode = currentNode.next_sibling()) { const std::string ¤tName = currentNode.name(); if (currentName == "mesh") { ReadMesh(currentNode, pMesh); } } } // ------------------------------------------------------------------------------------------------ // Reads a mesh from the geometry library void ColladaParser::ReadMesh(XmlNode &node, Mesh &pMesh) { if (node.empty()) { return; } XmlNodeIterator xmlIt(node); xmlIt.collectChildrenPreOrder(node); XmlNode currentNode; while (xmlIt.getNext(currentNode)) { const std::string ¤tName = currentNode.name(); if (currentName == "source") { ReadSource(currentNode); } else if (currentName == "vertices") { ReadVertexData(currentNode, pMesh); } else if (currentName == "triangles" || currentName == "lines" || currentName == "linestrips" || currentName == "polygons" || currentName == "polylist" || currentName == "trifans" || currentName == "tristrips") { ReadIndexData(currentNode, pMesh); } } } // ------------------------------------------------------------------------------------------------ // Reads a source element void ColladaParser::ReadSource(XmlNode &node) { if (node.empty()) { return; } std::string sourceID; XmlParser::getStdStrAttribute(node, "id", sourceID); XmlNodeIterator xmlIt(node); xmlIt.collectChildrenPreOrder(node); XmlNode currentNode; while (xmlIt.getNext(currentNode)) { const std::string ¤tName = currentNode.name(); if (currentName == "float_array" || currentName == "IDREF_array" || currentName == "Name_array") { ReadDataArray(currentNode); } else if (currentName == "technique_common") { XmlNode technique = currentNode.child("accessor"); if (!technique.empty()) { ReadAccessor(technique, sourceID); } } } } // ------------------------------------------------------------------------------------------------ // Reads a data array holding a number of floats, and stores it in the global library void ColladaParser::ReadDataArray(XmlNode &node) { std::string name = node.name(); bool isStringArray = (name == "IDREF_array" || name == "Name_array"); // read attributes std::string id; XmlParser::getStdStrAttribute(node, "id", id); unsigned int count; XmlParser::getUIntAttribute(node, "count", count); std::string v; XmlParser::getValueAsString(node, v); trim(v); const char *content = v.c_str(); // read values and store inside an array in the data library mDataLibrary[id] = Data(); Data &data = mDataLibrary[id]; data.mIsStringArray = isStringArray; // some exporters write empty data arrays, but we need to conserve them anyways because others might reference them if (content) { if (isStringArray) { data.mStrings.reserve(count); std::string s; for (unsigned int a = 0; a < count; a++) { if (*content == 0) { throw DeadlyImportError("Expected more values while reading IDREF_array contents."); } s.clear(); while (!IsSpaceOrNewLine(*content)) s += *content++; data.mStrings.push_back(s); SkipSpacesAndLineEnd(&content); } } else { data.mValues.reserve(count); for (unsigned int a = 0; a < count; a++) { if (*content == 0) { throw DeadlyImportError("Expected more values while reading float_array contents."); } ai_real value; // read a number //SkipSpacesAndLineEnd(&content); content = fast_atoreal_move(content, value); data.mValues.push_back(value); // skip whitespace after it SkipSpacesAndLineEnd(&content); } } } } // ------------------------------------------------------------------------------------------------ // Reads an accessor and stores it in the global library void ColladaParser::ReadAccessor(XmlNode &node, const std::string &pID) { // read accessor attributes std::string source; XmlParser::getStdStrAttribute(node, "source", source); if (source[0] != '#') { throw DeadlyImportError("Unknown reference format in url \"", source, "\" in source attribute of element."); } int count = 0; XmlParser::getIntAttribute(node, "count", count); unsigned int offset = 0; if (XmlParser::hasAttribute(node, "offset")) { XmlParser::getUIntAttribute(node, "offset", offset); } unsigned int stride = 1; if (XmlParser::hasAttribute(node, "stride")) { XmlParser::getUIntAttribute(node, "stride", stride); } // store in the library under the given ID mAccessorLibrary[pID] = Accessor(); Accessor &acc = mAccessorLibrary[pID]; acc.mCount = count; acc.mOffset = offset; acc.mStride = stride; acc.mSource = source.c_str() + 1; // ignore the leading '#' acc.mSize = 0; // gets incremented with every param XmlNodeIterator xmlIt(node); xmlIt.collectChildrenPreOrder(node); XmlNode currentNode; while (xmlIt.getNext(currentNode)) { const std::string ¤tName = currentNode.name(); if (currentName == "param") { // read data param std::string name; if (XmlParser::hasAttribute(currentNode, "name")) { XmlParser::getStdStrAttribute(currentNode, "name", name); //name = mReader->getAttributeValue(attrName); // analyse for common type components and store it's sub-offset in the corresponding field /* Cartesian coordinates */ if (name == "X") acc.mSubOffset[0] = acc.mParams.size(); else if (name == "Y") acc.mSubOffset[1] = acc.mParams.size(); else if (name == "Z") acc.mSubOffset[2] = acc.mParams.size(); /* RGBA colors */ else if (name == "R") acc.mSubOffset[0] = acc.mParams.size(); else if (name == "G") acc.mSubOffset[1] = acc.mParams.size(); else if (name == "B") acc.mSubOffset[2] = acc.mParams.size(); else if (name == "A") acc.mSubOffset[3] = acc.mParams.size(); /* UVWQ (STPQ) texture coordinates */ else if (name == "S") acc.mSubOffset[0] = acc.mParams.size(); else if (name == "T") acc.mSubOffset[1] = acc.mParams.size(); else if (name == "P") acc.mSubOffset[2] = acc.mParams.size(); // else if( name == "Q") acc.mSubOffset[3] = acc.mParams.size(); /* 4D uv coordinates are not supported in Assimp */ /* Generic extra data, interpreted as UV data, too*/ else if (name == "U") acc.mSubOffset[0] = acc.mParams.size(); else if (name == "V") acc.mSubOffset[1] = acc.mParams.size(); //else // DefaultLogger::get()->warn( format() << "Unknown accessor parameter \"" << name << "\". Ignoring data channel." ); } if (XmlParser::hasAttribute(currentNode, "type")) { // read data type // TODO: (thom) I don't have a spec here at work. Check if there are other multi-value types // which should be tested for here. std::string type; XmlParser::getStdStrAttribute(currentNode, "type", type); if (type == "float4x4") acc.mSize += 16; else acc.mSize += 1; } acc.mParams.push_back(name); } } } // ------------------------------------------------------------------------------------------------ // Reads input declarations of per-vertex mesh data into the given mesh void ColladaParser::ReadVertexData(XmlNode &node, Mesh &pMesh) { // extract the ID of the element. Not that we care, but to catch strange referencing schemes we should warn about XmlParser::getStdStrAttribute(node, "id", pMesh.mVertexID); for (XmlNode currentNode = node.first_child(); currentNode; currentNode = currentNode.next_sibling()) { const std::string ¤tName = currentNode.name(); if (currentName == "input") { ReadInputChannel(currentNode, pMesh.mPerVertexData); } else { throw DeadlyImportError("Unexpected sub element <", currentName, "> in tag "); } } } // ------------------------------------------------------------------------------------------------ // Reads input declarations of per-index mesh data into the given mesh void ColladaParser::ReadIndexData(XmlNode &node, Mesh &pMesh) { std::vector vcount; std::vector perIndexData; unsigned int numPrimitives; XmlParser::getUIntAttribute(node, "count", (unsigned int)numPrimitives); // read primitive count from the attribute //int attrCount = GetAttribute("count"); //size_t numPrimitives = (size_t)mReader->getAttributeValueAsInt(attrCount); // some mesh types (e.g. tristrips) don't specify primitive count upfront, // so we need to sum up the actual number of primitives while we read the

-tags size_t actualPrimitives = 0; SubMesh subgroup; if (XmlParser::hasAttribute(node, "material")) { XmlParser::getStdStrAttribute(node, "material", subgroup.mMaterial); } // material subgroup // int attrMaterial = TestAttribute("material"); //if (attrMaterial > -1) // subgroup.mMaterial = mReader->getAttributeValue(attrMaterial); // distinguish between polys and triangles std::string elementName = node.name(); PrimitiveType primType = Prim_Invalid; if (elementName == "lines") primType = Prim_Lines; else if (elementName == "linestrips") primType = Prim_LineStrip; else if (elementName == "polygons") primType = Prim_Polygon; else if (elementName == "polylist") primType = Prim_Polylist; else if (elementName == "triangles") primType = Prim_Triangles; else if (elementName == "trifans") primType = Prim_TriFans; else if (elementName == "tristrips") primType = Prim_TriStrips; ai_assert(primType != Prim_Invalid); // also a number of elements, but in addition a

primitive collection and probably index counts for all primitives XmlNodeIterator xmlIt(node); xmlIt.collectChildrenPreOrder(node); XmlNode currentNode; while (xmlIt.getNext(currentNode)) { const std::string ¤tName = currentNode.name(); if (currentName == "input") { ReadInputChannel(currentNode, perIndexData); } else if (currentName == "vcount") { if (!currentNode.empty()) { if (numPrimitives) // It is possible to define a mesh without any primitives { // case - specifies the number of indices for each polygon std::string v; XmlParser::getValueAsString(currentNode, v); const char *content = v.c_str(); vcount.reserve(numPrimitives); for (unsigned int a = 0; a < numPrimitives; a++) { if (*content == 0) { throw DeadlyImportError("Expected more values while reading contents."); } // read a number vcount.push_back((size_t)strtoul10(content, &content)); // skip whitespace after it SkipSpacesAndLineEnd(&content); } } } } else if (currentName == "p") { if (!currentNode.empty()) { // now here the actual fun starts - these are the indices to construct the mesh data from actualPrimitives += ReadPrimitives(currentNode, pMesh, perIndexData, numPrimitives, vcount, primType); } } else if (currentName == "extra") { // skip } else if (currentName == "ph") { // skip } else { throw DeadlyImportError("Unexpected sub element <", currentName, "> in tag <", elementName, ">"); } } #ifdef ASSIMP_BUILD_DEBUG if (primType != Prim_TriFans && primType != Prim_TriStrips && primType != Prim_LineStrip && primType != Prim_Lines) { // this is ONLY to workaround a bug in SketchUp 15.3.331 where it writes the wrong 'count' when it writes out the 'lines'. ai_assert(actualPrimitives == numPrimitives); } #endif // only when we're done reading all

tags (and thus know the final vertex count) can we commit the submesh subgroup.mNumFaces = actualPrimitives; pMesh.mSubMeshes.push_back(subgroup); } // ------------------------------------------------------------------------------------------------ // Reads a single input channel element and stores it in the given array, if valid void ColladaParser::ReadInputChannel(XmlNode &node, std::vector &poChannels) { InputChannel channel; // read semantic std::string semantic; XmlParser::getStdStrAttribute(node, "semantic", semantic); channel.mType = GetTypeForSemantic(semantic); // read source std::string source; XmlParser::getStdStrAttribute(node, "source", source); if (source[0] != '#') { throw DeadlyImportError("Unknown reference format in url \"", source, "\" in source attribute of element."); } channel.mAccessor = source.c_str() + 1; // skipping the leading #, hopefully the remaining text is the accessor ID only // read index offset, if per-index if (XmlParser::hasAttribute(node, "offset")) { XmlParser::getUIntAttribute(node, "offset", (unsigned int &)channel.mOffset); } // read set if texture coordinates if (channel.mType == IT_Texcoord || channel.mType == IT_Color) { int attrSet = -1; if (XmlParser::hasAttribute(node, "set")) { XmlParser::getIntAttribute(node, "set", attrSet); } channel.mIndex = attrSet; } // store, if valid type if (channel.mType != IT_Invalid) poChannels.push_back(channel); } // ------------------------------------------------------------------------------------------------ // Reads a

primitive index list and assembles the mesh data into the given mesh size_t ColladaParser::ReadPrimitives(XmlNode &node, Mesh &pMesh, std::vector &pPerIndexChannels, size_t pNumPrimitives, const std::vector &pVCount, PrimitiveType pPrimType) { // determine number of indices coming per vertex // find the offset index for all per-vertex channels size_t numOffsets = 1; size_t perVertexOffset = SIZE_MAX; // invalid value for (const InputChannel &channel : pPerIndexChannels) { numOffsets = std::max(numOffsets, channel.mOffset + 1); if (channel.mType == IT_Vertex) perVertexOffset = channel.mOffset; } // determine the expected number of indices size_t expectedPointCount = 0; switch (pPrimType) { case Prim_Polylist: { for (size_t i : pVCount) expectedPointCount += i; break; } case Prim_Lines: expectedPointCount = 2 * pNumPrimitives; break; case Prim_Triangles: expectedPointCount = 3 * pNumPrimitives; break; default: // other primitive types don't state the index count upfront... we need to guess break; } // and read all indices into a temporary array std::vector indices; if (expectedPointCount > 0) indices.reserve(expectedPointCount * numOffsets); if (pNumPrimitives > 0) // It is possible to not contain any indices { std::string v; XmlParser::getValueAsString(node, v); const char *content = v.c_str(); while (*content != 0) { // read a value. // Hack: (thom) Some exporters put negative indices sometimes. We just try to carry on anyways. int value = std::max(0, strtol10(content, &content)); indices.push_back(size_t(value)); // skip whitespace after it SkipSpacesAndLineEnd(&content); } } // complain if the index count doesn't fit if (expectedPointCount > 0 && indices.size() != expectedPointCount * numOffsets) { if (pPrimType == Prim_Lines) { // HACK: We just fix this number since SketchUp 15.3.331 writes the wrong 'count' for 'lines' ReportWarning("Expected different index count in

element, %zu instead of %zu.", indices.size(), expectedPointCount * numOffsets); pNumPrimitives = (indices.size() / numOffsets) / 2; } else { throw DeadlyImportError("Expected different index count in

element."); } } else if (expectedPointCount == 0 && (indices.size() % numOffsets) != 0) { throw DeadlyImportError("Expected different index count in

element."); } // find the data for all sources for (std::vector::iterator it = pMesh.mPerVertexData.begin(); it != pMesh.mPerVertexData.end(); ++it) { InputChannel &input = *it; if (input.mResolved) continue; // find accessor input.mResolved = &ResolveLibraryReference(mAccessorLibrary, input.mAccessor); // resolve accessor's data pointer as well, if necessary const Accessor *acc = input.mResolved; if (!acc->mData) acc->mData = &ResolveLibraryReference(mDataLibrary, acc->mSource); } // and the same for the per-index channels for (std::vector::iterator it = pPerIndexChannels.begin(); it != pPerIndexChannels.end(); ++it) { InputChannel &input = *it; if (input.mResolved) continue; // ignore vertex pointer, it doesn't refer to an accessor if (input.mType == IT_Vertex) { // warn if the vertex channel does not refer to the element in the same mesh if (input.mAccessor != pMesh.mVertexID) { throw DeadlyImportError("Unsupported vertex referencing scheme."); } continue; } // find accessor input.mResolved = &ResolveLibraryReference(mAccessorLibrary, input.mAccessor); // resolve accessor's data pointer as well, if necessary const Accessor *acc = input.mResolved; if (!acc->mData) acc->mData = &ResolveLibraryReference(mDataLibrary, acc->mSource); } // For continued primitives, the given count does not come all in one

, but only one primitive per

size_t numPrimitives = pNumPrimitives; if (pPrimType == Prim_TriFans || pPrimType == Prim_Polygon) numPrimitives = 1; // For continued primitives, the given count is actually the number of

's inside the parent tag if (pPrimType == Prim_TriStrips) { size_t numberOfVertices = indices.size() / numOffsets; numPrimitives = numberOfVertices - 2; } if (pPrimType == Prim_LineStrip) { size_t numberOfVertices = indices.size() / numOffsets; numPrimitives = numberOfVertices - 1; } pMesh.mFaceSize.reserve(numPrimitives); pMesh.mFacePosIndices.reserve(indices.size() / numOffsets); size_t polylistStartVertex = 0; for (size_t currentPrimitive = 0; currentPrimitive < numPrimitives; currentPrimitive++) { // determine number of points for this primitive size_t numPoints = 0; switch (pPrimType) { case Prim_Lines: numPoints = 2; for (size_t currentVertex = 0; currentVertex < numPoints; currentVertex++) CopyVertex(currentVertex, numOffsets, numPoints, perVertexOffset, pMesh, pPerIndexChannels, currentPrimitive, indices); break; case Prim_LineStrip: numPoints = 2; for (size_t currentVertex = 0; currentVertex < numPoints; currentVertex++) CopyVertex(currentVertex, numOffsets, 1, perVertexOffset, pMesh, pPerIndexChannels, currentPrimitive, indices); break; case Prim_Triangles: numPoints = 3; for (size_t currentVertex = 0; currentVertex < numPoints; currentVertex++) CopyVertex(currentVertex, numOffsets, numPoints, perVertexOffset, pMesh, pPerIndexChannels, currentPrimitive, indices); break; case Prim_TriStrips: numPoints = 3; ReadPrimTriStrips(numOffsets, perVertexOffset, pMesh, pPerIndexChannels, currentPrimitive, indices); break; case Prim_Polylist: numPoints = pVCount[currentPrimitive]; for (size_t currentVertex = 0; currentVertex < numPoints; currentVertex++) CopyVertex(polylistStartVertex + currentVertex, numOffsets, 1, perVertexOffset, pMesh, pPerIndexChannels, 0, indices); polylistStartVertex += numPoints; break; case Prim_TriFans: case Prim_Polygon: numPoints = indices.size() / numOffsets; for (size_t currentVertex = 0; currentVertex < numPoints; currentVertex++) CopyVertex(currentVertex, numOffsets, numPoints, perVertexOffset, pMesh, pPerIndexChannels, currentPrimitive, indices); break; default: // LineStrip is not supported due to expected index unmangling throw DeadlyImportError("Unsupported primitive type."); break; } // store the face size to later reconstruct the face from pMesh.mFaceSize.push_back(numPoints); } // if I ever get my hands on that guy who invented this steaming pile of indirection... return numPrimitives; } ///@note This function won't work correctly if both PerIndex and PerVertex channels have same channels. ///For example if TEXCOORD present in both and tags this function will create wrong uv coordinates. ///It's not clear from COLLADA documentation is this allowed or not. For now only exporter fixed to avoid such behavior void ColladaParser::CopyVertex(size_t currentVertex, size_t numOffsets, size_t numPoints, size_t perVertexOffset, Mesh &pMesh, std::vector &pPerIndexChannels, size_t currentPrimitive, const std::vector &indices) { // calculate the base offset of the vertex whose attributes we ant to copy size_t baseOffset = currentPrimitive * numOffsets * numPoints + currentVertex * numOffsets; // don't overrun the boundaries of the index list ai_assert((baseOffset + numOffsets - 1) < indices.size()); // extract per-vertex channels using the global per-vertex offset for (std::vector::iterator it = pMesh.mPerVertexData.begin(); it != pMesh.mPerVertexData.end(); ++it) ExtractDataObjectFromChannel(*it, indices[baseOffset + perVertexOffset], pMesh); // and extract per-index channels using there specified offset for (std::vector::iterator it = pPerIndexChannels.begin(); it != pPerIndexChannels.end(); ++it) ExtractDataObjectFromChannel(*it, indices[baseOffset + it->mOffset], pMesh); // store the vertex-data index for later assignment of bone vertex weights pMesh.mFacePosIndices.push_back(indices[baseOffset + perVertexOffset]); } void ColladaParser::ReadPrimTriStrips(size_t numOffsets, size_t perVertexOffset, Mesh &pMesh, std::vector &pPerIndexChannels, size_t currentPrimitive, const std::vector &indices) { if (currentPrimitive % 2 != 0) { //odd tristrip triangles need their indices mangled, to preserve winding direction CopyVertex(1, numOffsets, 1, perVertexOffset, pMesh, pPerIndexChannels, currentPrimitive, indices); CopyVertex(0, numOffsets, 1, perVertexOffset, pMesh, pPerIndexChannels, currentPrimitive, indices); CopyVertex(2, numOffsets, 1, perVertexOffset, pMesh, pPerIndexChannels, currentPrimitive, indices); } else { //for non tristrips or even tristrip triangles CopyVertex(0, numOffsets, 1, perVertexOffset, pMesh, pPerIndexChannels, currentPrimitive, indices); CopyVertex(1, numOffsets, 1, perVertexOffset, pMesh, pPerIndexChannels, currentPrimitive, indices); CopyVertex(2, numOffsets, 1, perVertexOffset, pMesh, pPerIndexChannels, currentPrimitive, indices); } } // ------------------------------------------------------------------------------------------------ // Extracts a single object from an input channel and stores it in the appropriate mesh data array void ColladaParser::ExtractDataObjectFromChannel(const InputChannel &pInput, size_t pLocalIndex, Mesh &pMesh) { // ignore vertex referrer - we handle them that separate if (pInput.mType == IT_Vertex) return; const Accessor &acc = *pInput.mResolved; if (pLocalIndex >= acc.mCount) { throw DeadlyImportError("Invalid data index (", pLocalIndex, "/", acc.mCount, ") in primitive specification"); } // get a pointer to the start of the data object referred to by the accessor and the local index const ai_real *dataObject = &(acc.mData->mValues[0]) + acc.mOffset + pLocalIndex * acc.mStride; // assemble according to the accessors component sub-offset list. We don't care, yet, // what kind of object exactly we're extracting here ai_real obj[4]; for (size_t c = 0; c < 4; ++c) obj[c] = dataObject[acc.mSubOffset[c]]; // now we reinterpret it according to the type we're reading here switch (pInput.mType) { case IT_Position: // ignore all position streams except 0 - there can be only one position if (pInput.mIndex == 0) pMesh.mPositions.push_back(aiVector3D(obj[0], obj[1], obj[2])); else ASSIMP_LOG_ERROR("Collada: just one vertex position stream supported"); break; case IT_Normal: // pad to current vertex count if necessary if (pMesh.mNormals.size() < pMesh.mPositions.size() - 1) pMesh.mNormals.insert(pMesh.mNormals.end(), pMesh.mPositions.size() - pMesh.mNormals.size() - 1, aiVector3D(0, 1, 0)); // ignore all normal streams except 0 - there can be only one normal if (pInput.mIndex == 0) pMesh.mNormals.push_back(aiVector3D(obj[0], obj[1], obj[2])); else ASSIMP_LOG_ERROR("Collada: just one vertex normal stream supported"); break; case IT_Tangent: // pad to current vertex count if necessary if (pMesh.mTangents.size() < pMesh.mPositions.size() - 1) pMesh.mTangents.insert(pMesh.mTangents.end(), pMesh.mPositions.size() - pMesh.mTangents.size() - 1, aiVector3D(1, 0, 0)); // ignore all tangent streams except 0 - there can be only one tangent if (pInput.mIndex == 0) pMesh.mTangents.push_back(aiVector3D(obj[0], obj[1], obj[2])); else ASSIMP_LOG_ERROR("Collada: just one vertex tangent stream supported"); break; case IT_Bitangent: // pad to current vertex count if necessary if (pMesh.mBitangents.size() < pMesh.mPositions.size() - 1) pMesh.mBitangents.insert(pMesh.mBitangents.end(), pMesh.mPositions.size() - pMesh.mBitangents.size() - 1, aiVector3D(0, 0, 1)); // ignore all bitangent streams except 0 - there can be only one bitangent if (pInput.mIndex == 0) pMesh.mBitangents.push_back(aiVector3D(obj[0], obj[1], obj[2])); else ASSIMP_LOG_ERROR("Collada: just one vertex bitangent stream supported"); break; case IT_Texcoord: // up to 4 texture coord sets are fine, ignore the others if (pInput.mIndex < AI_MAX_NUMBER_OF_TEXTURECOORDS) { // pad to current vertex count if necessary if (pMesh.mTexCoords[pInput.mIndex].size() < pMesh.mPositions.size() - 1) pMesh.mTexCoords[pInput.mIndex].insert(pMesh.mTexCoords[pInput.mIndex].end(), pMesh.mPositions.size() - pMesh.mTexCoords[pInput.mIndex].size() - 1, aiVector3D(0, 0, 0)); pMesh.mTexCoords[pInput.mIndex].push_back(aiVector3D(obj[0], obj[1], obj[2])); if (0 != acc.mSubOffset[2] || 0 != acc.mSubOffset[3]) /* hack ... consider cleaner solution */ pMesh.mNumUVComponents[pInput.mIndex] = 3; } else { ASSIMP_LOG_ERROR("Collada: too many texture coordinate sets. Skipping."); } break; case IT_Color: // up to 4 color sets are fine, ignore the others if (pInput.mIndex < AI_MAX_NUMBER_OF_COLOR_SETS) { // pad to current vertex count if necessary if (pMesh.mColors[pInput.mIndex].size() < pMesh.mPositions.size() - 1) pMesh.mColors[pInput.mIndex].insert(pMesh.mColors[pInput.mIndex].end(), pMesh.mPositions.size() - pMesh.mColors[pInput.mIndex].size() - 1, aiColor4D(0, 0, 0, 1)); aiColor4D result(0, 0, 0, 1); for (size_t i = 0; i < pInput.mResolved->mSize; ++i) { result[static_cast(i)] = obj[pInput.mResolved->mSubOffset[i]]; } pMesh.mColors[pInput.mIndex].push_back(result); } else { ASSIMP_LOG_ERROR("Collada: too many vertex color sets. Skipping."); } break; default: // IT_Invalid and IT_Vertex ai_assert(false && "shouldn't ever get here"); } } // ------------------------------------------------------------------------------------------------ // Reads the library of node hierarchies and scene parts void ColladaParser::ReadSceneLibrary(XmlNode &node) { if (node.empty()) { return; } for (XmlNode currentNode : node.children()) { const std::string ¤tName = currentNode.name(); if (currentName == "visual_scene") { // read ID. Is optional according to the spec, but how on earth should a scene_instance refer to it then? std::string id; XmlParser::getStdStrAttribute(currentNode, "id", id); // read name if given. std::string attrName = "Scene"; if (XmlParser::hasAttribute(currentNode, "name")) { XmlParser::getStdStrAttribute(currentNode, "name", attrName); } // create a node and store it in the library under its ID Node *sceneNode = new Node; sceneNode->mID = id; sceneNode->mName = attrName; mNodeLibrary[sceneNode->mID] = sceneNode; ReadSceneNode(currentNode, sceneNode); } } } // ------------------------------------------------------------------------------------------------ // Reads a scene node's contents including children and stores it in the given node void ColladaParser::ReadSceneNode(XmlNode &node, Node *pNode) { // quit immediately on elements if (node.empty()) { return; } for (XmlNode ¤tNode : node.children()) { const std::string ¤tName = currentNode.name(); if (currentName == "node") { Node *child = new Node; if (XmlParser::hasAttribute(currentNode, "id")) { XmlParser::getStdStrAttribute(currentNode, "id", child->mID); } if (XmlParser::hasAttribute(currentNode, "sid")) { XmlParser::getStdStrAttribute(currentNode, "id", child->mSID); } if (XmlParser::hasAttribute(currentNode, "name")) { XmlParser::getStdStrAttribute(currentNode, "name", child->mName); } if (pNode) { pNode->mChildren.push_back(child); child->mParent = pNode; } else { // no parent node given, probably called from element. // create new node in node library mNodeLibrary[child->mID] = child; } // read on recursively from there ReadSceneNode(currentNode, child); continue; } else if (!pNode) { // For any further stuff we need a valid node to work on continue; } if (currentName == "lookat") { ReadNodeTransformation(currentNode, pNode, TF_LOOKAT); } else if (currentName == "matrix") { ReadNodeTransformation(currentNode, pNode, TF_MATRIX); } else if (currentName == "rotate") { ReadNodeTransformation(currentNode, pNode, TF_ROTATE); } else if (currentName == "scale") { ReadNodeTransformation(currentNode, pNode, TF_SCALE); } else if (currentName == "skew") { ReadNodeTransformation(currentNode, pNode, TF_SKEW); } else if (currentName == "translate") { ReadNodeTransformation(currentNode, pNode, TF_TRANSLATE); } else if (currentName == "render" && pNode->mParent == nullptr && 0 == pNode->mPrimaryCamera.length()) { // ... scene evaluation or, in other words, postprocessing pipeline, // or, again in other words, a turing-complete description how to // render a Collada scene. The only thing that is interesting for // us is the primary camera. if (XmlParser::hasAttribute(currentNode, "camera_node")) { std::string s; XmlParser::getStdStrAttribute(currentNode, "camera_node", s); if (s[0] != '#') { ASSIMP_LOG_ERROR("Collada: Unresolved reference format of camera"); } else { pNode->mPrimaryCamera = s.c_str() + 1; } } } else if (currentName == "instance_node") { // find the node in the library if (XmlParser::hasAttribute(currentNode, "url")) { std::string s; XmlParser::getStdStrAttribute(currentNode, "url", s); if (s[0] != '#') { ASSIMP_LOG_ERROR("Collada: Unresolved reference format of node"); } else { pNode->mNodeInstances.push_back(NodeInstance()); pNode->mNodeInstances.back().mNode = s.c_str() + 1; } } } else if (currentName == "instance_geometry" || currentName == "instance_controller") { // Reference to a mesh or controller, with possible material associations ReadNodeGeometry(currentNode, pNode); } else if (currentName == "instance_light") { // Reference to a light, name given in 'url' attribute if (XmlParser::hasAttribute(currentNode, "url")) { std::string url; XmlParser::getStdStrAttribute(currentNode, "url", url); if (url[0] != '#') { throw DeadlyImportError("Unknown reference format in element"); } pNode->mLights.push_back(LightInstance()); pNode->mLights.back().mLight = url.c_str() + 1; } } else if (currentName == "instance_camera") { // Reference to a camera, name given in 'url' attribute if (XmlParser::hasAttribute(currentNode, "url")) { std::string url; XmlParser::getStdStrAttribute(currentNode, "url", url); if (url[0] != '#') { throw DeadlyImportError("Unknown reference format in element"); } pNode->mCameras.push_back(CameraInstance()); pNode->mCameras.back().mCamera = url.c_str() + 1; } } } } // ------------------------------------------------------------------------------------------------ // Reads a node transformation entry of the given type and adds it to the given node's transformation list. void ColladaParser::ReadNodeTransformation(XmlNode &node, Node *pNode, TransformType pType) { if (node.empty()) { return; } std::string tagName = node.name(); Transform tf; tf.mType = pType; // read SID if (XmlParser::hasAttribute(node, "sid")) { XmlParser::getStdStrAttribute(node, "sid", tf.mID); } // how many parameters to read per transformation type static const unsigned int sNumParameters[] = { 9, 4, 3, 3, 7, 16 }; std::string value; XmlParser::getValueAsString(node, value); const char *content = value.c_str(); // read as many parameters and store in the transformation for (unsigned int a = 0; a < sNumParameters[pType]; a++) { // read a number content = fast_atoreal_move(content, tf.f[a]); // skip whitespace after it SkipSpacesAndLineEnd(&content); } // place the transformation at the queue of the node pNode->mTransforms.push_back(tf); } // ------------------------------------------------------------------------------------------------ // Processes bind_vertex_input and bind elements void ColladaParser::ReadMaterialVertexInputBinding(XmlNode &node, Collada::SemanticMappingTable &tbl) { //XmlNodeIterator xmlIt(node); //xmlIt.collectChildrenPreOrder(node); //XmlNode currentNode; std::string name = node.name(); for (XmlNode currentNode : node.children()) { const std::string ¤tName = currentNode.name(); if (currentName == "bind_vertex_input") { Collada::InputSemanticMapEntry vn; // effect semantic if (XmlParser::hasAttribute(currentNode, "semantic")) { std::string s; XmlParser::getStdStrAttribute(currentNode, "semantic", s); XmlParser::getUIntAttribute(currentNode, "input_semantic", (unsigned int &)vn.mType); } std::string s; XmlParser::getStdStrAttribute(currentNode, "semantic", s); // input semantic XmlParser::getUIntAttribute(currentNode, "input_semantic", (unsigned int &)vn.mType); // index of input set if (XmlParser::hasAttribute(currentNode, "input_set")) { XmlParser::getUIntAttribute(currentNode, "input_set", vn.mSet); } tbl.mMap[s] = vn; } else if (currentName == "bind") { ASSIMP_LOG_WARN("Collada: Found unsupported element"); } } } void ColladaParser::ReadEmbeddedTextures(ZipArchiveIOSystem &zip_archive) { // Attempt to load any undefined Collada::Image in ImageLibrary for (ImageLibrary::iterator it = mImageLibrary.begin(); it != mImageLibrary.end(); ++it) { Collada::Image &image = (*it).second; if (image.mImageData.empty()) { std::unique_ptr image_file(zip_archive.Open(image.mFileName.c_str())); if (image_file) { image.mImageData.resize(image_file->FileSize()); image_file->Read(image.mImageData.data(), image_file->FileSize(), 1); image.mEmbeddedFormat = BaseImporter::GetExtension(image.mFileName); if (image.mEmbeddedFormat == "jpeg") { image.mEmbeddedFormat = "jpg"; } } } } } // ------------------------------------------------------------------------------------------------ // Reads a mesh reference in a node and adds it to the node's mesh list void ColladaParser::ReadNodeGeometry(XmlNode &node, Node *pNode) { // referred mesh is given as an attribute of the element std::string url; XmlParser::getStdStrAttribute(node, "url", url); if (url[0] != '#') { throw DeadlyImportError("Unknown reference format"); } Collada::MeshInstance instance; instance.mMeshOrController = url.c_str() + 1; // skipping the leading # for (XmlNode currentNode = node.first_child(); currentNode; currentNode = currentNode.next_sibling()) { const std::string ¤tName = currentNode.name(); if (currentName == "bind_material") { XmlNode techNode = currentNode.child("technique_common"); if (techNode) { XmlNode instanceMatNode = techNode.child("instance_material"); // read ID of the geometry subgroup and the target material std::string group; XmlParser::getStdStrAttribute(instanceMatNode, "symbol", group); XmlParser::getStdStrAttribute(instanceMatNode, "target", url); const char *urlMat = url.c_str(); Collada::SemanticMappingTable s; if (urlMat[0] == '#') urlMat++; s.mMatName = urlMat; // store the association instance.mMaterials[group] = s; ReadMaterialVertexInputBinding(instanceMatNode, s); } } } // store it pNode->mMeshes.push_back(instance); } // ------------------------------------------------------------------------------------------------ // Reads the collada scene void ColladaParser::ReadScene(XmlNode &node) { if (node.empty()) { return; } for (XmlNode currentNode = node.first_child(); currentNode; currentNode = currentNode.next_sibling()) { const std::string currentName = currentNode.name(); if (currentName == "instance_visual_scene") { // should be the first and only occurrence if (mRootNode) { throw DeadlyImportError("Invalid scene containing multiple root nodes in element"); } // read the url of the scene to instance. Should be of format "#some_name" std::string url; XmlParser::getStdStrAttribute(currentNode, "url", url); if (url[0] != '#') { throw DeadlyImportError("Unknown reference format in element"); } // find the referred scene, skip the leading # NodeLibrary::const_iterator sit = mNodeLibrary.find(url.c_str() + 1); if (sit == mNodeLibrary.end()) { throw DeadlyImportError("Unable to resolve visual_scene reference \"", std::string(url), "\" in element."); } mRootNode = sit->second; } } } void ColladaParser::ReportWarning(const char *msg, ...) { ai_assert(nullptr != msg); va_list args; va_start(args, msg); char szBuffer[3000]; const int iLen = vsprintf(szBuffer, msg, args); ai_assert(iLen > 0); va_end(args); ASSIMP_LOG_WARN_F("Validation warning: ", std::string(szBuffer, iLen)); } // ------------------------------------------------------------------------------------------------ // Calculates the resulting transformation from all the given transform steps aiMatrix4x4 ColladaParser::CalculateResultTransform(const std::vector &pTransforms) const { aiMatrix4x4 res; for (std::vector::const_iterator it = pTransforms.begin(); it != pTransforms.end(); ++it) { const Transform &tf = *it; switch (tf.mType) { case TF_LOOKAT: { aiVector3D pos(tf.f[0], tf.f[1], tf.f[2]); aiVector3D dstPos(tf.f[3], tf.f[4], tf.f[5]); aiVector3D up = aiVector3D(tf.f[6], tf.f[7], tf.f[8]).Normalize(); aiVector3D dir = aiVector3D(dstPos - pos).Normalize(); aiVector3D right = (dir ^ up).Normalize(); res *= aiMatrix4x4( right.x, up.x, -dir.x, pos.x, right.y, up.y, -dir.y, pos.y, right.z, up.z, -dir.z, pos.z, 0, 0, 0, 1); break; } case TF_ROTATE: { aiMatrix4x4 rot; ai_real angle = tf.f[3] * ai_real(AI_MATH_PI) / ai_real(180.0); aiVector3D axis(tf.f[0], tf.f[1], tf.f[2]); aiMatrix4x4::Rotation(angle, axis, rot); res *= rot; break; } case TF_TRANSLATE: { aiMatrix4x4 trans; aiMatrix4x4::Translation(aiVector3D(tf.f[0], tf.f[1], tf.f[2]), trans); res *= trans; break; } case TF_SCALE: { aiMatrix4x4 scale(tf.f[0], 0.0f, 0.0f, 0.0f, 0.0f, tf.f[1], 0.0f, 0.0f, 0.0f, 0.0f, tf.f[2], 0.0f, 0.0f, 0.0f, 0.0f, 1.0f); res *= scale; break; } case TF_SKEW: // TODO: (thom) ai_assert(false); break; case TF_MATRIX: { aiMatrix4x4 mat(tf.f[0], tf.f[1], tf.f[2], tf.f[3], tf.f[4], tf.f[5], tf.f[6], tf.f[7], tf.f[8], tf.f[9], tf.f[10], tf.f[11], tf.f[12], tf.f[13], tf.f[14], tf.f[15]); res *= mat; break; } default: ai_assert(false); break; } } return res; } // ------------------------------------------------------------------------------------------------ // Determines the input data type for the given semantic string Collada::InputType ColladaParser::GetTypeForSemantic(const std::string &semantic) { if (semantic.empty()) { ASSIMP_LOG_WARN("Vertex input type is empty."); return IT_Invalid; } if (semantic == "POSITION") return IT_Position; else if (semantic == "TEXCOORD") return IT_Texcoord; else if (semantic == "NORMAL") return IT_Normal; else if (semantic == "COLOR") return IT_Color; else if (semantic == "VERTEX") return IT_Vertex; else if (semantic == "BINORMAL" || semantic == "TEXBINORMAL") return IT_Bitangent; else if (semantic == "TANGENT" || semantic == "TEXTANGENT") return IT_Tangent; ASSIMP_LOG_WARN_F("Unknown vertex input type \"", semantic, "\". Ignoring."); return IT_Invalid; } #endif // !! ASSIMP_BUILD_NO_DAE_IMPORTER