/* Open Asset Import Library (assimp) ---------------------------------------------------------------------- Copyright (c) 2006-2017, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------- */ #ifndef ASSIMP_BUILD_NO_EXPORT #ifndef ASSIMP_BUILD_NO_GLTF_EXPORTER #include "glTFExporter.h" #include "Exceptional.h" #include "StringComparison.h" #include "ByteSwapper.h" #include "SplitLargeMeshes.h" #include #include #include #include #include #include // Header files, standart library. #include #include #include "glTFAssetWriter.h" #ifdef ASSIMP_IMPORTER_GLTF_USE_OPEN3DGC // Header files, Open3DGC. # include #endif using namespace rapidjson; using namespace Assimp; using namespace glTF; namespace Assimp { // ------------------------------------------------------------------------------------------------ // Worker function for exporting a scene to GLTF. Prototyped and registered in Exporter.cpp void ExportSceneGLTF(const char* pFile, IOSystem* pIOSystem, const aiScene* pScene, const ExportProperties* pProperties) { // invoke the exporter glTFExporter exporter(pFile, pIOSystem, pScene, pProperties, false); } // ------------------------------------------------------------------------------------------------ // Worker function for exporting a scene to GLB. Prototyped and registered in Exporter.cpp void ExportSceneGLB(const char* pFile, IOSystem* pIOSystem, const aiScene* pScene, const ExportProperties* pProperties) { // invoke the exporter glTFExporter exporter(pFile, pIOSystem, pScene, pProperties, true); } } // end of namespace Assimp glTFExporter::glTFExporter(const char* filename, IOSystem* pIOSystem, const aiScene* pScene, const ExportProperties* pProperties, bool isBinary) : mFilename(filename) , mIOSystem(pIOSystem) , mProperties(pProperties) { aiScene* sceneCopy_tmp; SceneCombiner::CopyScene(&sceneCopy_tmp, pScene); std::unique_ptr sceneCopy(sceneCopy_tmp); SplitLargeMeshesProcess_Triangle tri_splitter; tri_splitter.SetLimit(0xffff); tri_splitter.Execute(sceneCopy.get()); SplitLargeMeshesProcess_Vertex vert_splitter; vert_splitter.SetLimit(0xffff); vert_splitter.Execute(sceneCopy.get()); mScene = sceneCopy.get(); mAsset.reset( new glTF::Asset( pIOSystem ) ); if (isBinary) { mAsset->SetAsBinary(); } ExportMetadata(); //for (unsigned int i = 0; i < pScene->mNumCameras; ++i) {} //for (unsigned int i = 0; i < pScene->mNumLights; ++i) {} ExportMaterials(); if (mScene->mRootNode) { ExportNodeHierarchy(mScene->mRootNode); } ExportMeshes(); //for (unsigned int i = 0; i < pScene->mNumTextures; ++i) {} ExportScene(); ExportAnimations(); glTF::AssetWriter writer(*mAsset); if (isBinary) { writer.WriteGLBFile(filename); } else { writer.WriteFile(filename); } } /* * Copy a 4x4 matrix from struct aiMatrix to typedef mat4. * Also converts from row-major to column-major storage. */ static void CopyValue(const aiMatrix4x4& v, glTF::mat4& o) { o[ 0] = v.a1; o[ 1] = v.b1; o[ 2] = v.c1; o[ 3] = v.d1; o[ 4] = v.a2; o[ 5] = v.b2; o[ 6] = v.c2; o[ 7] = v.d2; o[ 8] = v.a3; o[ 9] = v.b3; o[10] = v.c3; o[11] = v.d3; o[12] = v.a4; o[13] = v.b4; o[14] = v.c4; o[15] = v.d4; } static void CopyValue(const aiMatrix4x4& v, aiMatrix4x4& o) { o.a1 = v.a1; o.a2 = v.a2; o.a3 = v.a3; o.a4 = v.a4; o.b1 = v.b1; o.b2 = v.b2; o.b3 = v.b3; o.b4 = v.b4; o.c1 = v.c1; o.c2 = v.c2; o.c3 = v.c3; o.c4 = v.c4; o.d1 = v.d1; o.d2 = v.d2; o.d3 = v.d3; o.d4 = v.d4; } static void IdentityMatrix4(glTF::mat4& o) { o[ 0] = 1; o[ 1] = 0; o[ 2] = 0; o[ 3] = 0; o[ 4] = 0; o[ 5] = 1; o[ 6] = 0; o[ 7] = 0; o[ 8] = 0; o[ 9] = 0; o[10] = 1; o[11] = 0; o[12] = 0; o[13] = 0; o[14] = 0; o[15] = 1; } inline Ref ExportData(Asset& a, std::string& meshName, Ref& buffer, unsigned int count, void* data, AttribType::Value typeIn, AttribType::Value typeOut, ComponentType compType, bool isIndices = false) { if (!count || !data) return Ref(); unsigned int numCompsIn = AttribType::GetNumComponents(typeIn); unsigned int numCompsOut = AttribType::GetNumComponents(typeOut); unsigned int bytesPerComp = ComponentTypeSize(compType); size_t offset = buffer->byteLength; // make sure offset is correctly byte-aligned, as required by spec size_t padding = offset % bytesPerComp; offset += padding; size_t length = count * numCompsOut * bytesPerComp; buffer->Grow(length + padding); // bufferView Ref bv = a.bufferViews.Create(a.FindUniqueID(meshName, "view")); bv->buffer = buffer; bv->byteOffset = unsigned(offset); bv->byteLength = length; //! The target that the WebGL buffer should be bound to. bv->target = isIndices ? BufferViewTarget_ELEMENT_ARRAY_BUFFER : BufferViewTarget_ARRAY_BUFFER; // accessor Ref acc = a.accessors.Create(a.FindUniqueID(meshName, "accessor")); acc->bufferView = bv; acc->byteOffset = 0; acc->byteStride = 0; acc->componentType = compType; acc->count = count; acc->type = typeOut; // calculate min and max values { // Allocate and initialize with large values. float float_MAX = 10000000000000.0f; for (unsigned int i = 0 ; i < numCompsOut ; i++) { acc->min.push_back( float_MAX); acc->max.push_back(-float_MAX); } // Search and set extreme values. float valueTmp; for (unsigned int i = 0 ; i < count ; i++) { for (unsigned int j = 0 ; j < numCompsOut ; j++) { if (numCompsOut == 1) { valueTmp = static_cast(data)[i]; } else { valueTmp = static_cast(data)[i][j]; } if (valueTmp < acc->min[j]) { acc->min[j] = valueTmp; } if (valueTmp > acc->max[j]) { acc->max[j] = valueTmp; } } } } // copy the data acc->WriteData(count, data, numCompsIn*bytesPerComp); return acc; } namespace { void GetMatScalar(const aiMaterial* mat, float& val, const char* propName, int type, int idx) { if (mat->Get(propName, type, idx, val) == AI_SUCCESS) {} } } void glTFExporter::GetTexSampler(const aiMaterial* mat, glTF::TexProperty& prop) { std::string samplerId = mAsset->FindUniqueID("", "sampler"); prop.texture->sampler = mAsset->samplers.Create(samplerId); aiTextureMapMode mapU, mapV; aiGetMaterialInteger(mat,AI_MATKEY_MAPPINGMODE_U_DIFFUSE(0),(int*)&mapU); aiGetMaterialInteger(mat,AI_MATKEY_MAPPINGMODE_V_DIFFUSE(0),(int*)&mapV); switch (mapU) { case aiTextureMapMode_Wrap: prop.texture->sampler->wrapS = SamplerWrap_Repeat; break; case aiTextureMapMode_Clamp: prop.texture->sampler->wrapS = SamplerWrap_Clamp_To_Edge; break; case aiTextureMapMode_Mirror: prop.texture->sampler->wrapS = SamplerWrap_Mirrored_Repeat; break; case aiTextureMapMode_Decal: default: prop.texture->sampler->wrapS = SamplerWrap_Repeat; break; }; switch (mapV) { case aiTextureMapMode_Wrap: prop.texture->sampler->wrapT = SamplerWrap_Repeat; break; case aiTextureMapMode_Clamp: prop.texture->sampler->wrapT = SamplerWrap_Clamp_To_Edge; break; case aiTextureMapMode_Mirror: prop.texture->sampler->wrapT = SamplerWrap_Mirrored_Repeat; break; case aiTextureMapMode_Decal: default: prop.texture->sampler->wrapT = SamplerWrap_Repeat; break; }; // Hard coded Texture filtering options because I do not know where to find them in the aiMaterial. prop.texture->sampler->magFilter = SamplerMagFilter_Linear; prop.texture->sampler->minFilter = SamplerMinFilter_Linear; } void glTFExporter::GetMatColorOrTex(const aiMaterial* mat, glTF::TexProperty& prop, const char* propName, int type, int idx, aiTextureType tt) { aiString tex; aiColor4D col; if (mat->GetTextureCount(tt) > 0) { if (mat->Get(AI_MATKEY_TEXTURE(tt, 0), tex) == AI_SUCCESS) { std::string path = tex.C_Str(); if (path.size() > 0) { if (path[0] != '*') { std::map::iterator it = mTexturesByPath.find(path); if (it != mTexturesByPath.end()) { prop.texture = mAsset->textures.Get(it->second); } } if (!prop.texture) { std::string texId = mAsset->FindUniqueID("", "texture"); prop.texture = mAsset->textures.Create(texId); mTexturesByPath[path] = prop.texture.GetIndex(); std::string imgId = mAsset->FindUniqueID("", "image"); prop.texture->source = mAsset->images.Create(imgId); if (path[0] == '*') { // embedded aiTexture* tex = mScene->mTextures[atoi(&path[1])]; uint8_t* data = reinterpret_cast(tex->pcData); prop.texture->source->SetData(data, tex->mWidth, *mAsset); if (tex->achFormatHint[0]) { std::string mimeType = "image/"; mimeType += (memcmp(tex->achFormatHint, "jpg", 3) == 0) ? "jpeg" : tex->achFormatHint; prop.texture->source->mimeType = mimeType; } } else { prop.texture->source->uri = path; } GetTexSampler(mat, prop); } } } } if (mat->Get(propName, type, idx, col) == AI_SUCCESS) { prop.color[0] = col.r; prop.color[1] = col.g; prop.color[2] = col.b; prop.color[3] = col.a; } } void glTFExporter::ExportMaterials() { aiString aiName; for (unsigned int i = 0; i < mScene->mNumMaterials; ++i) { const aiMaterial* mat = mScene->mMaterials[i]; std::string name; if (mat->Get(AI_MATKEY_NAME, aiName) == AI_SUCCESS) { name = aiName.C_Str(); } name = mAsset->FindUniqueID(name, "material"); Ref m = mAsset->materials.Create(name); GetMatColorOrTex(mat, m->ambient, AI_MATKEY_COLOR_AMBIENT, aiTextureType_AMBIENT); GetMatColorOrTex(mat, m->diffuse, AI_MATKEY_COLOR_DIFFUSE, aiTextureType_DIFFUSE); GetMatColorOrTex(mat, m->specular, AI_MATKEY_COLOR_SPECULAR, aiTextureType_SPECULAR); GetMatColorOrTex(mat, m->emission, AI_MATKEY_COLOR_EMISSIVE, aiTextureType_EMISSIVE); m->transparent = mat->Get(AI_MATKEY_OPACITY, m->transparency) == aiReturn_SUCCESS && m->transparency != 1.0; GetMatScalar(mat, m->shininess, AI_MATKEY_SHININESS); } } /* * Search through node hierarchy and find the node containing the given meshID. * Returns true on success, and false otherwise. */ bool FindMeshNode(Ref& nodeIn, Ref& meshNode, std::string meshID) { for (unsigned int i = 0; i < nodeIn->meshes.size(); ++i) { if (meshID.compare(nodeIn->meshes[i]->id) == 0) { meshNode = nodeIn; return true; } } for (unsigned int i = 0; i < nodeIn->children.size(); ++i) { if(FindMeshNode(nodeIn->children[i], meshNode, meshID)) { return true; } } return false; } /* * Find the root joint of the skeleton. * Starts will any joint node and traces up the tree, * until a parent is found that does not have a jointName. * Returns the first parent Ref found that does not have a jointName. */ Ref FindSkeletonRootJoint(Ref& skinRef) { Ref startNodeRef; Ref parentNodeRef; // Arbitrarily use the first joint to start the search. startNodeRef = skinRef->jointNames[0]; parentNodeRef = skinRef->jointNames[0]; do { startNodeRef = parentNodeRef; parentNodeRef = startNodeRef->parent; } while (!parentNodeRef->jointName.empty()); return parentNodeRef; } void ExportSkin(Asset& mAsset, const aiMesh* aimesh, Ref& meshRef, Ref& bufferRef, Ref& skinRef, std::vector& inverseBindMatricesData) { if (aimesh->mNumBones < 1) { return; } // Store the vertex joint and weight data. const size_t NumVerts( aimesh->mNumVertices ); vec4* vertexJointData = new vec4[ NumVerts ]; vec4* vertexWeightData = new vec4[ NumVerts ]; int* jointsPerVertex = new int[ NumVerts ]; for (size_t i = 0; i < NumVerts; ++i) { jointsPerVertex[i] = 0; for (size_t j = 0; j < 4; ++j) { vertexJointData[i][j] = 0; vertexWeightData[i][j] = 0; } } for (unsigned int idx_bone = 0; idx_bone < aimesh->mNumBones; ++idx_bone) { const aiBone* aib = aimesh->mBones[idx_bone]; // aib->mName =====> skinRef->jointNames // Find the node with id = mName. Ref nodeRef = mAsset.nodes.Get(aib->mName.C_Str()); nodeRef->jointName = nodeRef->id; unsigned int jointNamesIndex = 0; bool addJointToJointNames = true; for ( unsigned int idx_joint = 0; idx_joint < skinRef->jointNames.size(); ++idx_joint) { if (skinRef->jointNames[idx_joint]->jointName.compare(nodeRef->jointName) == 0) { addJointToJointNames = false; jointNamesIndex = idx_joint; } } if (addJointToJointNames) { skinRef->jointNames.push_back(nodeRef); // aib->mOffsetMatrix =====> skinRef->inverseBindMatrices aiMatrix4x4 tmpMatrix4; CopyValue(aib->mOffsetMatrix, tmpMatrix4); inverseBindMatricesData.push_back(tmpMatrix4); jointNamesIndex = static_cast(inverseBindMatricesData.size() - 1); } // aib->mWeights =====> vertexWeightData for (unsigned int idx_weights = 0; idx_weights < aib->mNumWeights; ++idx_weights) { unsigned int vertexId = aib->mWeights[idx_weights].mVertexId; float vertWeight = aib->mWeights[idx_weights].mWeight; // A vertex can only have at most four joint weights. Ignore all others. if (jointsPerVertex[vertexId] > 3) { continue; } vertexJointData[vertexId][jointsPerVertex[vertexId]] = static_cast(jointNamesIndex); vertexWeightData[vertexId][jointsPerVertex[vertexId]] = vertWeight; jointsPerVertex[vertexId] += 1; } } // End: for-loop mNumMeshes Mesh::Primitive& p = meshRef->primitives.back(); Ref vertexJointAccessor = ExportData(mAsset, skinRef->id, bufferRef, aimesh->mNumVertices, vertexJointData, AttribType::VEC4, AttribType::VEC4, ComponentType_FLOAT); if ( vertexJointAccessor ) { p.attributes.joint.push_back( vertexJointAccessor ); } Ref vertexWeightAccessor = ExportData(mAsset, skinRef->id, bufferRef, aimesh->mNumVertices, vertexWeightData, AttribType::VEC4, AttribType::VEC4, ComponentType_FLOAT); if ( vertexWeightAccessor ) { p.attributes.weight.push_back( vertexWeightAccessor ); } delete[] jointsPerVertex; delete[] vertexWeightData; delete[] vertexJointData; } void glTFExporter::ExportMeshes() { // Not for // using IndicesType = decltype(aiFace::mNumIndices); // But yes for // using IndicesType = unsigned short; // because "ComponentType_UNSIGNED_SHORT" used for indices. And it's a maximal type according to glTF specification. typedef unsigned short IndicesType; // Variables needed for compression. BEGIN. // Indices, not pointers - because pointer to buffer is changing while writing to it. size_t idx_srcdata_begin = 0; // Index of buffer before writing mesh data. Also, index of begin of coordinates array in buffer. size_t idx_srcdata_normal = SIZE_MAX;// Index of begin of normals array in buffer. SIZE_MAX - mean that mesh has no normals. std::vector idx_srcdata_tc;// Array of indices. Every index point to begin of texture coordinates array in buffer. size_t idx_srcdata_ind;// Index of begin of coordinates indices array in buffer. bool comp_allow;// Point that data of current mesh can be compressed. // Variables needed for compression. END. std::string fname = std::string(mFilename); std::string bufferIdPrefix = fname.substr(0, fname.rfind(".gltf")); std::string bufferId = mAsset->FindUniqueID("", bufferIdPrefix.c_str()); Ref b = mAsset->GetBodyBuffer(); if (!b) { b = mAsset->buffers.Create(bufferId); } //---------------------------------------- // Initialize variables for the skin bool createSkin = false; for (unsigned int idx_mesh = 0; idx_mesh < mScene->mNumMeshes; ++idx_mesh) { const aiMesh* aim = mScene->mMeshes[idx_mesh]; if(aim->HasBones()) { createSkin = true; break; } } Ref skinRef; std::string skinName = mAsset->FindUniqueID("skin", "skin"); std::vector inverseBindMatricesData; if(createSkin) { skinRef = mAsset->skins.Create(skinName); skinRef->name = skinName; } //---------------------------------------- for (unsigned int idx_mesh = 0; idx_mesh < mScene->mNumMeshes; ++idx_mesh) { const aiMesh* aim = mScene->mMeshes[idx_mesh]; // Check if compressing requested and mesh can be encoded. #ifdef ASSIMP_IMPORTER_GLTF_USE_OPEN3DGC comp_allow = mProperties->GetPropertyBool("extensions.Open3DGC.use", false); #else comp_allow = false; #endif if(comp_allow && (aim->mPrimitiveTypes == aiPrimitiveType_TRIANGLE) && (aim->mNumVertices > 0) && (aim->mNumFaces > 0)) { idx_srcdata_tc.clear(); idx_srcdata_tc.reserve(AI_MAX_NUMBER_OF_TEXTURECOORDS); } else { std::string msg; if(aim->mPrimitiveTypes != aiPrimitiveType_TRIANGLE) msg = "all primitives of the mesh must be a triangles."; else msg = "mesh must has vertices and faces."; DefaultLogger::get()->warn("GLTF: can not use Open3DGC-compression: " + msg); comp_allow = false; } std::string meshId = mAsset->FindUniqueID(aim->mName.C_Str(), "mesh"); Ref m = mAsset->meshes.Create(meshId); m->primitives.resize(1); Mesh::Primitive& p = m->primitives.back(); p.material = mAsset->materials.Get(aim->mMaterialIndex); /******************* Vertices ********************/ // If compression is used then you need parameters of uncompressed region: begin and size. At this step "begin" is stored. if(comp_allow) idx_srcdata_begin = b->byteLength; Ref v = ExportData(*mAsset, meshId, b, aim->mNumVertices, aim->mVertices, AttribType::VEC3, AttribType::VEC3, ComponentType_FLOAT); if (v) p.attributes.position.push_back(v); /******************** Normals ********************/ if(comp_allow && (aim->mNormals != 0)) idx_srcdata_normal = b->byteLength;// Store index of normals array. Ref n = ExportData(*mAsset, meshId, b, aim->mNumVertices, aim->mNormals, AttribType::VEC3, AttribType::VEC3, ComponentType_FLOAT); if (n) p.attributes.normal.push_back(n); /************** Texture coordinates **************/ for (int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) { // Flip UV y coords if (aim -> mNumUVComponents[i] > 1) { for (unsigned int j = 0; j < aim->mNumVertices; ++j) { aim->mTextureCoords[i][j].y = 1 - aim->mTextureCoords[i][j].y; } } if (aim->mNumUVComponents[i] > 0) { AttribType::Value type = (aim->mNumUVComponents[i] == 2) ? AttribType::VEC2 : AttribType::VEC3; if(comp_allow) idx_srcdata_tc.push_back(b->byteLength);// Store index of texture coordinates array. Ref tc = ExportData(*mAsset, meshId, b, aim->mNumVertices, aim->mTextureCoords[i], AttribType::VEC3, type, ComponentType_FLOAT, false); if (tc) p.attributes.texcoord.push_back(tc); } } /*************** Vertices indices ****************/ idx_srcdata_ind = b->byteLength;// Store index of indices array. if (aim->mNumFaces > 0) { std::vector indices; unsigned int nIndicesPerFace = aim->mFaces[0].mNumIndices; indices.resize(aim->mNumFaces * nIndicesPerFace); for (size_t i = 0; i < aim->mNumFaces; ++i) { for (size_t j = 0; j < nIndicesPerFace; ++j) { indices[i*nIndicesPerFace + j] = uint16_t(aim->mFaces[i].mIndices[j]); } } p.indices = ExportData(*mAsset, meshId, b, unsigned(indices.size()), &indices[0], AttribType::SCALAR, AttribType::SCALAR, ComponentType_UNSIGNED_SHORT, true); } switch (aim->mPrimitiveTypes) { case aiPrimitiveType_POLYGON: p.mode = PrimitiveMode_TRIANGLES; break; // TODO implement this case aiPrimitiveType_LINE: p.mode = PrimitiveMode_LINES; break; case aiPrimitiveType_POINT: p.mode = PrimitiveMode_POINTS; break; default: // aiPrimitiveType_TRIANGLE p.mode = PrimitiveMode_TRIANGLES; } /*************** Skins ****************/ if(aim->HasBones()) { ExportSkin(*mAsset, aim, m, b, skinRef, inverseBindMatricesData); } /****************** Compression ******************/ ///TODO: animation: weights, joints. if(comp_allow) { #ifdef ASSIMP_IMPORTER_GLTF_USE_OPEN3DGC // Only one type of compression supported at now - Open3DGC. // o3dgc::BinaryStream bs; o3dgc::SC3DMCEncoder encoder; o3dgc::IndexedFaceSet comp_o3dgc_ifs; o3dgc::SC3DMCEncodeParams comp_o3dgc_params; // // Fill data for encoder. // // Quantization unsigned quant_coord = mProperties->GetPropertyInteger("extensions.Open3DGC.quantization.POSITION", 12); unsigned quant_normal = mProperties->GetPropertyInteger("extensions.Open3DGC.quantization.NORMAL", 10); unsigned quant_texcoord = mProperties->GetPropertyInteger("extensions.Open3DGC.quantization.TEXCOORD", 10); // Prediction o3dgc::O3DGCSC3DMCPredictionMode prediction_position = o3dgc::O3DGC_SC3DMC_PARALLELOGRAM_PREDICTION; o3dgc::O3DGCSC3DMCPredictionMode prediction_normal = o3dgc::O3DGC_SC3DMC_SURF_NORMALS_PREDICTION; o3dgc::O3DGCSC3DMCPredictionMode prediction_texcoord = o3dgc::O3DGC_SC3DMC_PARALLELOGRAM_PREDICTION; // IndexedFacesSet: "Crease angle", "solid", "convex" are set to default. comp_o3dgc_ifs.SetCCW(true); comp_o3dgc_ifs.SetIsTriangularMesh(true); comp_o3dgc_ifs.SetNumFloatAttributes(0); // Coordinates comp_o3dgc_params.SetCoordQuantBits(quant_coord); comp_o3dgc_params.SetCoordPredMode(prediction_position); comp_o3dgc_ifs.SetNCoord(aim->mNumVertices); comp_o3dgc_ifs.SetCoord((o3dgc::Real* const)&b->GetPointer()[idx_srcdata_begin]); // Normals if(idx_srcdata_normal != SIZE_MAX) { comp_o3dgc_params.SetNormalQuantBits(quant_normal); comp_o3dgc_params.SetNormalPredMode(prediction_normal); comp_o3dgc_ifs.SetNNormal(aim->mNumVertices); comp_o3dgc_ifs.SetNormal((o3dgc::Real* const)&b->GetPointer()[idx_srcdata_normal]); } // Texture coordinates for(size_t num_tc = 0; num_tc < idx_srcdata_tc.size(); num_tc++) { size_t num = comp_o3dgc_ifs.GetNumFloatAttributes(); comp_o3dgc_params.SetFloatAttributeQuantBits(static_cast(num), quant_texcoord); comp_o3dgc_params.SetFloatAttributePredMode(static_cast(num), prediction_texcoord); comp_o3dgc_ifs.SetNFloatAttribute(static_cast(num), aim->mNumVertices);// number of elements. comp_o3dgc_ifs.SetFloatAttributeDim(static_cast(num), aim->mNumUVComponents[num_tc]);// components per element: aiVector3D => x * float comp_o3dgc_ifs.SetFloatAttributeType(static_cast(num), o3dgc::O3DGC_IFS_FLOAT_ATTRIBUTE_TYPE_TEXCOORD); comp_o3dgc_ifs.SetFloatAttribute(static_cast(num), (o3dgc::Real* const)&b->GetPointer()[idx_srcdata_tc[num_tc]]); comp_o3dgc_ifs.SetNumFloatAttributes(static_cast(num + 1)); } // Coordinates indices comp_o3dgc_ifs.SetNCoordIndex(aim->mNumFaces); comp_o3dgc_ifs.SetCoordIndex((IndicesType* const)&b->GetPointer()[idx_srcdata_ind]); // Prepare to enconding comp_o3dgc_params.SetNumFloatAttributes(comp_o3dgc_ifs.GetNumFloatAttributes()); if(mProperties->GetPropertyBool("extensions.Open3DGC.binary", true)) comp_o3dgc_params.SetStreamType(o3dgc::O3DGC_STREAM_TYPE_BINARY); else comp_o3dgc_params.SetStreamType(o3dgc::O3DGC_STREAM_TYPE_ASCII); comp_o3dgc_ifs.ComputeMinMax(o3dgc::O3DGC_SC3DMC_MAX_ALL_DIMS); // // Encoding // encoder.Encode(comp_o3dgc_params, comp_o3dgc_ifs, bs); // Replace data in buffer. b->ReplaceData(idx_srcdata_begin, b->byteLength - idx_srcdata_begin, bs.GetBuffer(), bs.GetSize()); // // Add information about extension to mesh. // // Create extension structure. Mesh::SCompression_Open3DGC* ext = new Mesh::SCompression_Open3DGC; // Fill it. ext->Buffer = b->id; ext->Offset = idx_srcdata_begin; ext->Count = b->byteLength - idx_srcdata_begin; ext->Binary = mProperties->GetPropertyBool("extensions.Open3DGC.binary"); ext->IndicesCount = comp_o3dgc_ifs.GetNCoordIndex() * 3; ext->VerticesCount = comp_o3dgc_ifs.GetNCoord(); // And assign to mesh. m->Extension.push_back(ext); #endif }// if(comp_allow) }// for (unsigned int i = 0; i < mScene->mNumMeshes; ++i) //---------------------------------------- // Finish the skin // Create the Accessor for skinRef->inverseBindMatrices if (createSkin) { mat4* invBindMatrixData = new mat4[inverseBindMatricesData.size()]; for ( unsigned int idx_joint = 0; idx_joint < inverseBindMatricesData.size(); ++idx_joint) { CopyValue(inverseBindMatricesData[idx_joint], invBindMatrixData[idx_joint]); } Ref invBindMatrixAccessor = ExportData(*mAsset, skinName, b, static_cast(inverseBindMatricesData.size()), invBindMatrixData, AttribType::MAT4, AttribType::MAT4, ComponentType_FLOAT); if (invBindMatrixAccessor) skinRef->inverseBindMatrices = invBindMatrixAccessor; // Identity Matrix =====> skinRef->bindShapeMatrix // Temporary. Hard-coded identity matrix here skinRef->bindShapeMatrix.isPresent = true; IdentityMatrix4(skinRef->bindShapeMatrix.value); // Find node that contains this mesh and add "skeletons" and "skin" attributes to that node. Ref rootNode = mAsset->nodes.Get(unsigned(0)); Ref meshNode; std::string meshID = mAsset->meshes.Get(unsigned(0))->id; FindMeshNode(rootNode, meshNode, meshID); Ref rootJoint = FindSkeletonRootJoint(skinRef); meshNode->skeletons.push_back(rootJoint); meshNode->skin = skinRef; } } /* * Export the root node of the node hierarchy. * Calls ExportNode for all children. */ unsigned int glTFExporter::ExportNodeHierarchy(const aiNode* n) { Ref node = mAsset->nodes.Create(mAsset->FindUniqueID(n->mName.C_Str(), "node")); if (!n->mTransformation.IsIdentity()) { node->matrix.isPresent = true; CopyValue(n->mTransformation, node->matrix.value); } for (unsigned int i = 0; i < n->mNumMeshes; ++i) { node->meshes.push_back(mAsset->meshes.Get(n->mMeshes[i])); } for (unsigned int i = 0; i < n->mNumChildren; ++i) { unsigned int idx = ExportNode(n->mChildren[i], node); node->children.push_back(mAsset->nodes.Get(idx)); } return node.GetIndex(); } /* * Export node and recursively calls ExportNode for all children. * Since these nodes are not the root node, we also export the parent Ref */ unsigned int glTFExporter::ExportNode(const aiNode* n, Ref& parent) { Ref node = mAsset->nodes.Create(mAsset->FindUniqueID(n->mName.C_Str(), "node")); node->parent = parent; if (!n->mTransformation.IsIdentity()) { node->matrix.isPresent = true; CopyValue(n->mTransformation, node->matrix.value); } for (unsigned int i = 0; i < n->mNumMeshes; ++i) { node->meshes.push_back(mAsset->meshes.Get(n->mMeshes[i])); } for (unsigned int i = 0; i < n->mNumChildren; ++i) { unsigned int idx = ExportNode(n->mChildren[i], node); node->children.push_back(mAsset->nodes.Get(idx)); } return node.GetIndex(); } void glTFExporter::ExportScene() { const char* sceneName = "defaultScene"; Ref scene = mAsset->scenes.Create(sceneName); // root node will be the first one exported (idx 0) if (mAsset->nodes.Size() > 0) { scene->nodes.push_back(mAsset->nodes.Get(0u)); } // set as the default scene mAsset->scene = scene; } void glTFExporter::ExportMetadata() { glTF::AssetMetadata& asset = mAsset->asset; asset.version = 1; char buffer[256]; ai_snprintf(buffer, 256, "Open Asset Import Library (assimp v%d.%d.%d)", aiGetVersionMajor(), aiGetVersionMinor(), aiGetVersionRevision()); asset.generator = buffer; } inline void ExtractAnimationData(Asset& mAsset, std::string& animId, Ref& animRef, Ref& buffer, const aiNodeAnim* nodeChannel, float ticksPerSecond) { // Loop over the data and check to see if it exactly matches an existing buffer. // If yes, then reference the existing corresponding accessor. // Otherwise, add to the buffer and create a new accessor. size_t counts[3] = { nodeChannel->mNumPositionKeys, nodeChannel->mNumScalingKeys, nodeChannel->mNumRotationKeys, }; size_t numKeyframes = 1; for (int i = 0; i < 3; ++i) { if (counts[i] > numKeyframes) { numKeyframes = counts[i]; } } //------------------------------------------------------- // Extract TIME parameter data. // Check if the timeStamps are the same for mPositionKeys, mRotationKeys, and mScalingKeys. if(nodeChannel->mNumPositionKeys > 0) { typedef float TimeType; std::vector timeData; timeData.resize(numKeyframes); for (size_t i = 0; i < numKeyframes; ++i) { size_t frameIndex = i * nodeChannel->mNumPositionKeys / numKeyframes; // mTime is measured in ticks, but GLTF time is measured in seconds, so convert. // Check if we have to cast type here. e.g. uint16_t() timeData[i] = static_cast(nodeChannel->mPositionKeys[frameIndex].mTime / ticksPerSecond); } Ref timeAccessor = ExportData(mAsset, animId, buffer, static_cast(numKeyframes), &timeData[0], AttribType::SCALAR, AttribType::SCALAR, ComponentType_FLOAT); if (timeAccessor) animRef->Parameters.TIME = timeAccessor; } //------------------------------------------------------- // Extract translation parameter data if(nodeChannel->mNumPositionKeys > 0) { C_STRUCT aiVector3D* translationData = new aiVector3D[numKeyframes]; for (size_t i = 0; i < numKeyframes; ++i) { size_t frameIndex = i * nodeChannel->mNumPositionKeys / numKeyframes; translationData[i] = nodeChannel->mPositionKeys[frameIndex].mValue; } Ref tranAccessor = ExportData(mAsset, animId, buffer, static_cast(numKeyframes), translationData, AttribType::VEC3, AttribType::VEC3, ComponentType_FLOAT); if ( tranAccessor ) { animRef->Parameters.translation = tranAccessor; } delete[] translationData; } //------------------------------------------------------- // Extract scale parameter data if(nodeChannel->mNumScalingKeys > 0) { C_STRUCT aiVector3D* scaleData = new aiVector3D[numKeyframes]; for (size_t i = 0; i < numKeyframes; ++i) { size_t frameIndex = i * nodeChannel->mNumScalingKeys / numKeyframes; scaleData[i] = nodeChannel->mScalingKeys[frameIndex].mValue; } Ref scaleAccessor = ExportData(mAsset, animId, buffer, static_cast(numKeyframes), scaleData, AttribType::VEC3, AttribType::VEC3, ComponentType_FLOAT); if ( scaleAccessor ) { animRef->Parameters.scale = scaleAccessor; } delete[] scaleData; } //------------------------------------------------------- // Extract rotation parameter data if(nodeChannel->mNumRotationKeys > 0) { vec4* rotationData = new vec4[numKeyframes]; for (size_t i = 0; i < numKeyframes; ++i) { size_t frameIndex = i * nodeChannel->mNumRotationKeys / numKeyframes; rotationData[i][0] = nodeChannel->mRotationKeys[frameIndex].mValue.x; rotationData[i][1] = nodeChannel->mRotationKeys[frameIndex].mValue.y; rotationData[i][2] = nodeChannel->mRotationKeys[frameIndex].mValue.z; rotationData[i][3] = nodeChannel->mRotationKeys[frameIndex].mValue.w; } Ref rotAccessor = ExportData(mAsset, animId, buffer, static_cast(numKeyframes), rotationData, AttribType::VEC4, AttribType::VEC4, ComponentType_FLOAT); if ( rotAccessor ) { animRef->Parameters.rotation = rotAccessor; } delete[] rotationData; } } void glTFExporter::ExportAnimations() { Ref bufferRef = mAsset->buffers.Get(unsigned (0)); for (unsigned int i = 0; i < mScene->mNumAnimations; ++i) { const aiAnimation* anim = mScene->mAnimations[i]; std::string nameAnim = "anim"; if (anim->mName.length > 0) { nameAnim = anim->mName.C_Str(); } for (unsigned int channelIndex = 0; channelIndex < anim->mNumChannels; ++channelIndex) { const aiNodeAnim* nodeChannel = anim->mChannels[channelIndex]; // It appears that assimp stores this type of animation as multiple animations. // where each aiNodeAnim in mChannels animates a specific node. std::string name = nameAnim + "_" + to_string(channelIndex); name = mAsset->FindUniqueID(name, "animation"); Ref animRef = mAsset->animations.Create(name); /******************* Parameters ********************/ ExtractAnimationData(*mAsset, name, animRef, bufferRef, nodeChannel, static_cast(anim->mTicksPerSecond)); for (unsigned int j = 0; j < 3; ++j) { std::string channelType; int channelSize; switch (j) { case 0: channelType = "rotation"; channelSize = nodeChannel->mNumRotationKeys; break; case 1: channelType = "scale"; channelSize = nodeChannel->mNumScalingKeys; break; case 2: channelType = "translation"; channelSize = nodeChannel->mNumPositionKeys; break; } if (channelSize < 1) { continue; } Animation::AnimChannel tmpAnimChannel; Animation::AnimSampler tmpAnimSampler; tmpAnimChannel.sampler = name + "_" + channelType; tmpAnimChannel.target.path = channelType; tmpAnimSampler.output = channelType; tmpAnimSampler.id = name + "_" + channelType; tmpAnimChannel.target.id = mAsset->nodes.Get(nodeChannel->mNodeName.C_Str()); tmpAnimSampler.input = "TIME"; tmpAnimSampler.interpolation = "LINEAR"; animRef->Channels.push_back(tmpAnimChannel); animRef->Samplers.push_back(tmpAnimSampler); } } // Assimp documentation staes this is not used (not implemented) // for (unsigned int channelIndex = 0; channelIndex < anim->mNumMeshChannels; ++channelIndex) { // const aiMeshAnim* meshChannel = anim->mMeshChannels[channelIndex]; // } } // End: for-loop mNumAnimations } #endif // ASSIMP_BUILD_NO_GLTF_EXPORTER #endif // ASSIMP_BUILD_NO_EXPORT