/* --------------------------------------------------------------------------- Open Asset Import Library (ASSIMP) --------------------------------------------------------------------------- Copyright (c) 2006-2008, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file LWSLoader.cpp * @brief Implementation of the LWS importer class */ #include "AssimpPCH.h" #include "LWSLoader.h" #include "ParsingUtils.h" #include "fast_atof.h" #include "SceneCombiner.h" #include "GenericProperty.h" #include "SkeletonMeshBuilder.h" #include "ConvertToLHProcess.h" using namespace Assimp; // ------------------------------------------------------------------------------------------------ // Recursive parsing of LWS files void LWS::Element::Parse (const char*& buffer) { for (;SkipSpacesAndLineEnd(&buffer);SkipLine(&buffer)) { // begin of a new element with children bool sub = false; if (*buffer == '{') { ++buffer; SkipSpaces(&buffer); sub = true; } else if (*buffer == '}') return; children.push_back(Element()); // copy data line - read token per token const char* cur = buffer; while (!IsSpaceOrNewLine(*buffer)) ++buffer; children.back().tokens[0] = std::string(cur,(size_t) (buffer-cur)); SkipSpaces(&buffer); if (children.back().tokens[0] == "Plugin") { DefaultLogger::get()->debug("LWS: Skipping over plugin-specific data"); // strange stuff inside Plugin/Endplugin blocks. Needn't // follow LWS syntax, so we skip over it for (;SkipSpacesAndLineEnd(&buffer);SkipLine(&buffer)) { if (!::strncmp(buffer,"EndPlugin",9)) { //SkipLine(&buffer); break; } } continue; } cur = buffer; while (!IsLineEnd(*buffer)) ++buffer; children.back().tokens[1] = std::string(cur,(size_t) (buffer-cur)); // parse more elements recursively if (sub) children.back().Parse(buffer); } } // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer LWSImporter::LWSImporter() { // nothing to do here } // ------------------------------------------------------------------------------------------------ // Destructor, private as well LWSImporter::~LWSImporter() { // nothing to do here } // ------------------------------------------------------------------------------------------------ // Returns whether the class can handle the format of the given file. bool LWSImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler,bool checkSig) const { const std::string extension = GetExtension(pFile); if (extension == "lws" || extension == "mot") return true; // if check for extension is not enough, check for the magic tokens LWSC and LWMO if (!extension.length() || checkSig) { uint32_t tokens[2]; tokens[0] = AI_MAKE_MAGIC("LWSC"); tokens[1] = AI_MAKE_MAGIC("LWMO"); return CheckMagicToken(pIOHandler,pFile,tokens,2); } return false; } // ------------------------------------------------------------------------------------------------ // Get list of file extensions void LWSImporter::GetExtensionList(std::string& append) { append.append("*.lws;*.mot"); } // ------------------------------------------------------------------------------------------------ // Setup configuration properties void LWSImporter::SetupProperties(const Importer* pImp) { // AI_CONFIG_FAVOUR_SPEED configSpeedFlag = (0 != pImp->GetPropertyInteger(AI_CONFIG_FAVOUR_SPEED,0)); // AI_CONFIG_IMPORT_LWS_ANIM_START first = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_LWS_ANIM_START, 150392 /* magic hack */); // AI_CONFIG_IMPORT_LWS_ANIM_END last = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_LWS_ANIM_END, 150392 /* magic hack */); if (last < first) { std::swap(last,first); } } // ------------------------------------------------------------------------------------------------ // Read an envelope description void LWSImporter::ReadEnvelope(const LWS::Element& dad, LWO::Envelope& fill ) { if (dad.children.empty()) { DefaultLogger::get()->error("LWS: Envelope descriptions must not be empty"); return; } // reserve enough storage std::list< LWS::Element >::const_iterator it = dad.children.begin();; fill.keys.reserve(strtol10(it->tokens[1].c_str())); for (++it; it != dad.children.end(); ++it) { const char* c = (*it).tokens[1].c_str(); if ((*it).tokens[0] == "Key") { fill.keys.push_back(LWO::Key()); LWO::Key& key = fill.keys.back(); float f; SkipSpaces(&c); c = fast_atof_move(c,key.value); SkipSpaces(&c); c = fast_atof_move(c,f); key.time = f; unsigned int span = strtol10(c,&c), num = 0; switch (span) { case 0: key.inter = LWO::IT_TCB; num = 5; break; case 1: case 2: key.inter = LWO::IT_HERM; num = 5; break; case 3: key.inter = LWO::IT_LINE; num = 0; break; case 4: key.inter = LWO::IT_STEP; num = 0; break; case 5: key.inter = LWO::IT_BEZ2; num = 4; break; default: DefaultLogger::get()->error("LWS: Unknown span type"); } for (unsigned int i = 0; i < num;++i) { SkipSpaces(&c); c = fast_atof_move(c,key.params[i]); } } else if ((*it).tokens[0] == "Behaviors") { SkipSpaces(&c); fill.pre = (LWO::PrePostBehaviour) strtol10(c,&c); SkipSpaces(&c); fill.post = (LWO::PrePostBehaviour) strtol10(c,&c); } } } // ------------------------------------------------------------------------------------------------ // Read animation channels in the old LightWave animation format void LWSImporter::ReadEnvelope_Old( std::list< LWS::Element >::const_iterator& it, const std::list< LWS::Element >::const_iterator& end, LWS::NodeDesc& nodes, unsigned int version) { unsigned int num,sub_num; if (++it == end)goto unexpected_end; num = strtol10((*it).tokens[0].c_str()); for (unsigned int i = 0; i < num; ++i) { nodes.channels.push_back(LWO::Envelope()); LWO::Envelope& envl = nodes.channels.back(); envl.index = i; envl.type = (LWO::EnvelopeType)(i+1); if (++it == end)goto unexpected_end; sub_num = strtol10((*it).tokens[0].c_str()); for (unsigned int n = 0; n < sub_num;++n) { if (++it == end)goto unexpected_end; // parse value and time, skip the rest for the moment. LWO::Key key; const char* c = fast_atof_move((*it).tokens[0].c_str(),key.value); SkipSpaces(&c); float f; fast_atof_move((*it).tokens[0].c_str(),f); key.time = f; envl.keys.push_back(key); } } return; unexpected_end: DefaultLogger::get()->error("LWS: Encountered unexpected end of file while parsing object motion"); } // ------------------------------------------------------------------------------------------------ // Setup a nice name for a node void LWSImporter::SetupNodeName(aiNode* nd, LWS::NodeDesc& src) { const unsigned int combined = src.number | ((unsigned int)src.type) << 28u; // the name depends on the type. We break LWS's strange naming convention // and return human-readable, but still machine-parsable and unique, strings. if (src.type == LWS::NodeDesc::OBJECT) { if (src.path.length()) { std::string::size_type s = src.path.find_last_of("\\/"); if (s == std::string::npos) s = 0; else ++s; nd->mName.length = ::sprintf(nd->mName.data,"%s_(%08X)",src.path.substr(s).c_str(),combined); return; } } nd->mName.length = ::sprintf(nd->mName.data,"%s_(%08X)",src.name,combined); } // ------------------------------------------------------------------------------------------------ // Recursively build the scenegraph void LWSImporter::BuildGraph(aiNode* nd, LWS::NodeDesc& src, std::vector& attach, BatchLoader& batch, aiCamera**& camOut, aiLight**& lightOut, std::vector& animOut) { // Setup a very cryptic name for the node, we want the user to be happy SetupNodeName(nd,src); // If this is an object from an external file - get the scene // and setup proper attachment tags if (src.type == LWS::NodeDesc::OBJECT && src.path.length() ) { aiScene* obj = batch.GetImport(src.id); if (!obj) { DefaultLogger::get()->error("LWS: Failed to read external file " + src.path); } else { attach.push_back(AttachmentInfo(obj,nd)); } } // If object is a light source - setup a corresponding ai structure else if (src.type == LWS::NodeDesc::LIGHT) { aiLight* lit = *lightOut++ = new aiLight(); // compute final light color lit->mColorDiffuse = lit->mColorSpecular = src.lightColor*src.lightIntensity; // name to attach light to node -> unique due to LWs indexing system lit->mName = nd->mName; // detemine light type and setup additional members if (src.lightType == 2) { /* spot light */ lit->mType = aiLightSource_SPOT; lit->mAngleInnerCone = (float)AI_DEG_TO_RAD( src.lightConeAngle ); lit->mAngleOuterCone = lit->mAngleInnerCone+(float)AI_DEG_TO_RAD( src.lightEdgeAngle ); } else if (src.lightType == 1) { /* directional light source */ lit->mType = aiLightSource_DIRECTIONAL; } else lit->mType = aiLightSource_POINT; // fixme: no proper handling of light falloffs yet if (src.lightFalloffType == 1) lit->mAttenuationConstant = 1.f; else if (src.lightFalloffType == 1) lit->mAttenuationLinear = 1.f; else lit->mAttenuationQuadratic = 1.f; } // If object is a camera - setup a corresponding ai structure else if (src.type == LWS::NodeDesc::CAMERA) { aiCamera* cam = *camOut++ = new aiCamera(); // name to attach cam to node -> unique due to LWs indexing system cam->mName = nd->mName; } // Get the node transformation from the LWO key LWO::AnimResolver resolver(src.channels,fps); resolver.ExtractBindPose(nd->mTransformation); // .. and construct animation channels aiNodeAnim* anim = NULL; #if 0 /* not yet */ if (first != last) { resolver.SetAnimationRange(first,last); resolver.ExtractAnimChannel(&anim,AI_LWO_ANIM_FLAG_SAMPLE_ANIMS|AI_LWO_ANIM_FLAG_START_AT_ZERO); if (anim) { anim->mNodeName = nd->mName; animOut.push_back(anim); } } #endif // process pivot point, if any if (src.pivotPos != aiVector3D()) { aiMatrix4x4 tmp; aiMatrix4x4::Translation(-src.pivotPos,tmp); if (anim) { // We have an animation channel for this node. Problem: to combine the pivot // point with the node anims, we'd need to interpolate *all* keys, get // transformation matrices from them, apply the translation and decompose // the resulting matrices again in order to reconstruct the keys. This // solution here is *much* easier ... we're just inserting an extra node // in the hierarchy. // Maybe the final optimization here will be done during postprocessing. aiNode* pivot = new aiNode(); pivot->mName.Set("$Pivot"); pivot->mTransformation = tmp; pivot->mChildren = new aiNode*[pivot->mNumChildren = 1]; pivot->mChildren[0] = nd; pivot->mParent = nd->mParent; nd->mParent = pivot; // swap children ad hope the parents wont see a huge difference pivot->mParent->mChildren[pivot->mParent->mNumChildren-1] = pivot; } else { nd->mTransformation = tmp * nd->mTransformation; } } // Add children if (src.children.size()) { nd->mChildren = new aiNode*[src.children.size()]; for (std::list::iterator it = src.children.begin(); it != src.children.end(); ++it) { aiNode* ndd = nd->mChildren[nd->mNumChildren++] = new aiNode(); ndd->mParent = nd; BuildGraph(ndd,**it,attach,batch,camOut,lightOut,animOut); } } } // ------------------------------------------------------------------------------------------------ // Determine the exact location of a LWO file std::string LWSImporter::FindLWOFile(const std::string& in) { // insert missing directory seperator if necessary std::string tmp; if (in.length() > 3 && in[1] == ':'&& in[2] != '\\' && in[2] != '/') { tmp = in[0] + ":\\" + in.substr(2); } else tmp = in; if (io->Exists(tmp)) return in; // file is not accessible for us ... maybe it's packed by // LightWave's 'Package Scene' command? // Relevant for us are the following two directories: // \Objects\\<*>.lwo // \Scenes\\<*>.lws // where is optional. std::string test = ".." + io->getOsSeparator() + tmp; if (io->Exists(test)) return test; test = ".." + io->getOsSeparator() + test; if (io->Exists(test)) return test; // return original path, maybe the IOsystem knows better return tmp; } // ------------------------------------------------------------------------------------------------ // Read file into given scene data structure void LWSImporter::InternReadFile( const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler) { io = pIOHandler; boost::scoped_ptr file( pIOHandler->Open( pFile, "rb")); // Check whether we can read from the file if( file.get() == NULL) throw new ImportErrorException( "Failed to open LWS file " + pFile + "."); // Allocate storage and copy the contents of the file to a memory buffer const size_t fileSize = file->FileSize(); std::vector< char > mBuffer(fileSize); file->Read( &mBuffer[0], 1, fileSize); // Parse the file structure LWS::Element root; const char* dummy = &mBuffer[0]; root.Parse(dummy); // Construct a Batchimporter to read more files recursively BatchLoader batch(pIOHandler); batch.SetBasePath(pFile); // Construct an array to receive the flat output graph std::list nodes; unsigned int cur_light = 0, cur_camera = 0, cur_object = 0; unsigned int num_light = 0, num_camera = 0, num_object = 0; // check magic identifier, 'LWSC' bool motion_file = false; std::list< LWS::Element >::const_iterator it = root.children.begin(); if ((*it).tokens[0] == "LWMO") motion_file = true; if ((*it).tokens[0] != "LWSC" && !motion_file) throw new ImportErrorException("LWS: Not a LightWave scene, magic tag LWSC not found"); // get file format version and print to log ++it; unsigned int version = strtol10((*it).tokens[0].c_str()); DefaultLogger::get()->info("LWS file format version is " + (*it).tokens[0]); first = 0.; last = 60.; fps = 25.; /* seems to be a good default frame rate */ // Now read all elements in a very straghtforward manner for (; it != root.children.end(); ++it) { const char* c = (*it).tokens[1].c_str(); // 'FirstFrame': begin of animation slice if ((*it).tokens[0] == "FirstFrame") { if (150392. != first /* see SetupProperties() */) first = strtol10(c,&c)-1.; /* we're zero-based */ } // 'LastFrame': end of animation slice else if ((*it).tokens[0] == "LastFrame") { if (150392. != last /* see SetupProperties() */) last = strtol10(c,&c)-1.; /* we're zero-based */ } // 'FramesPerSecond': frames per second else if ((*it).tokens[0] == "FramesPerSecond") { fps = strtol10(c,&c); } // 'LoadObjectLayer': load a layer of a specific LWO file else if ((*it).tokens[0] == "LoadObjectLayer") { // get layer index const int layer = strtol10(c,&c); // setup the layer to be loaded BatchLoader::PropertyMap props; SetGenericProperty(props.ints,AI_CONFIG_IMPORT_LWO_ONE_LAYER_ONLY,layer); // add node to list LWS::NodeDesc d; d.type = LWS::NodeDesc::OBJECT; if (version >= 4) { // handle LWSC 4 explicit ID SkipSpaces(&c); d.number = strtol16(c,&c) & AI_LWS_MASK; } else d.number = cur_object++; // and add the file to the import list SkipSpaces(&c); std::string path = FindLWOFile( c ); d.path = path; d.id = batch.AddLoadRequest(path,0,&props); nodes.push_back(d); num_object++; } // 'LoadObject': load a LWO file into the scenegraph else if ((*it).tokens[0] == "LoadObject") { // add node to list LWS::NodeDesc d; d.type = LWS::NodeDesc::OBJECT; if (version >= 4) { // handle LWSC 4 explicit ID d.number = strtol16(c,&c) & AI_LWS_MASK; SkipSpaces(&c); } else d.number = cur_object++; std::string path = FindLWOFile( c ); d.id = batch.AddLoadRequest(path,0,NULL); d.path = path; nodes.push_back(d); num_object++; } // 'AddNullObject': add a dummy node to the hierarchy else if ((*it).tokens[0] == "AddNullObject") { // add node to list LWS::NodeDesc d; d.type = LWS::NodeDesc::OBJECT; d.name = c; if (version >= 4) { // handle LWSC 4 explicit ID d.number = strtol16(c,&c) & AI_LWS_MASK; } else d.number = cur_object++; nodes.push_back(d); num_object++; } // 'NumChannels': Number of envelope channels assigned to last layer else if ((*it).tokens[0] == "NumChannels") { // ignore for now } // 'Channel': preceedes any envelope description else if ((*it).tokens[0] == "Channel") { if (nodes.empty()) { if (motion_file) { // LightWave motion file. Add dummy node LWS::NodeDesc d; d.type = LWS::NodeDesc::OBJECT; d.name = c; d.number = cur_object++; nodes.push_back(d); } else DefaultLogger::get()->error("LWS: Unexpected keyword: \'Channel\'"); } // important: index of channel nodes.back().channels.push_back(LWO::Envelope()); LWO::Envelope& env = nodes.back().channels.back(); env.index = strtol10(c); // currently we can just interpret the standard channels 0...9 // (hack) assume that index-i yields the binary channel type from LWO env.type = (LWO::EnvelopeType)(env.index+1); } // 'Envelope': a single animation channel else if ((*it).tokens[0] == "Envelope") { if (nodes.empty() || nodes.back().channels.empty()) DefaultLogger::get()->error("LWS: Unexpected keyword: \'Envelope\'"); else { ReadEnvelope((*it),nodes.back().channels.back()); } } // 'ObjectMotion': animation information for older lightwave formats else if (version < 3 && ((*it).tokens[0] == "ObjectMotion" || (*it).tokens[0] == "CameraMotion" || (*it).tokens[0] == "LightMotion")) { if (nodes.empty()) DefaultLogger::get()->error("LWS: Unexpected keyword: \'Motion\'"); else { ReadEnvelope_Old(it,root.children.end(),nodes.back(),version); } } // 'Pre/PostBehavior': pre/post animation behaviour for LWSC 2 else if (version == 2 && (*it).tokens[0] == "Pre/PostBehavior") { if (nodes.empty()) DefaultLogger::get()->error("LWS: Unexpected keyword: \'Pre/PostBehavior'"); else { for (std::list::iterator it = nodes.back().channels.begin(); it != nodes.back().channels.end(); ++it) { // two ints per envelope LWO::Envelope& env = *it; env.pre = (LWO::PrePostBehaviour) strtol10(c,&c); SkipSpaces(&c); env.post = (LWO::PrePostBehaviour) strtol10(c,&c); SkipSpaces(&c); } } } // 'ParentItem': specifies the parent of the current element else if ((*it).tokens[0] == "ParentItem") { if (nodes.empty()) DefaultLogger::get()->error("LWS: Unexpected keyword: \'ParentItem\'"); else nodes.back().parent = strtol16(c,&c); } // 'ParentObject': deprecated one for older formats else if (version < 3 && (*it).tokens[0] == "ParentObject") { if (nodes.empty()) DefaultLogger::get()->error("LWS: Unexpected keyword: \'ParentObject\'"); else { nodes.back().parent = strtol10(c,&c) | (1u << 28u); } } // 'AddCamera': add a camera to the scenegraph else if ((*it).tokens[0] == "AddCamera") { // add node to list LWS::NodeDesc d; d.type = LWS::NodeDesc::CAMERA; if (version >= 4) { // handle LWSC 4 explicit ID d.number = strtol16(c,&c) & AI_LWS_MASK; } else d.number = cur_camera++; nodes.push_back(d); num_camera++; } // 'CameraName': set name of currently active camera else if ((*it).tokens[0] == "CameraName") { if (nodes.empty() || nodes.back().type != LWS::NodeDesc::CAMERA) DefaultLogger::get()->error("LWS: Unexpected keyword: \'CameraName\'"); else nodes.back().name = c; } // 'AddLight': add a light to the scenegraph else if ((*it).tokens[0] == "AddLight") { // add node to list LWS::NodeDesc d; d.type = LWS::NodeDesc::LIGHT; if (version >= 4) { // handle LWSC 4 explicit ID d.number = strtol16(c,&c) & AI_LWS_MASK; } else d.number = cur_light++; nodes.push_back(d); num_light++; } // 'LightName': set name of currently active light else if ((*it).tokens[0] == "LightName") { if (nodes.empty() || nodes.back().type != LWS::NodeDesc::LIGHT) DefaultLogger::get()->error("LWS: Unexpected keyword: \'LightName\'"); else nodes.back().name = c; } // 'LightIntensity': set intensity of currently active light else if ((*it).tokens[0] == "LightIntensity" || (*it).tokens[0] == "LgtIntensity" ) { if (nodes.empty() || nodes.back().type != LWS::NodeDesc::LIGHT) DefaultLogger::get()->error("LWS: Unexpected keyword: \'LightIntensity\'"); else fast_atof_move(c, nodes.back().lightIntensity ); } // 'LightType': set type of currently active light else if ((*it).tokens[0] == "LightType") { if (nodes.empty() || nodes.back().type != LWS::NodeDesc::LIGHT) DefaultLogger::get()->error("LWS: Unexpected keyword: \'LightType\'"); else nodes.back().lightType = strtol10(c); } // 'LightFalloffType': set falloff type of currently active light else if ((*it).tokens[0] == "LightFalloffType") { if (nodes.empty() || nodes.back().type != LWS::NodeDesc::LIGHT) DefaultLogger::get()->error("LWS: Unexpected keyword: \'LightFalloffType\'"); else nodes.back().lightFalloffType = strtol10(c); } // 'LightConeAngle': set cone angle of currently active light else if ((*it).tokens[0] == "LightConeAngle") { if (nodes.empty() || nodes.back().type != LWS::NodeDesc::LIGHT) DefaultLogger::get()->error("LWS: Unexpected keyword: \'LightConeAngle\'"); else nodes.back().lightConeAngle = fast_atof(c); } // 'LightEdgeAngle': set area where we're smoothing from min to max intensity else if ((*it).tokens[0] == "LightEdgeAngle") { if (nodes.empty() || nodes.back().type != LWS::NodeDesc::LIGHT) DefaultLogger::get()->error("LWS: Unexpected keyword: \'LightEdgeAngle\'"); else nodes.back().lightEdgeAngle = fast_atof(c); } // 'LightColor': set color of currently active light else if ((*it).tokens[0] == "LightColor") { if (nodes.empty() || nodes.back().type != LWS::NodeDesc::LIGHT) DefaultLogger::get()->error("LWS: Unexpected keyword: \'LightColor\'"); else { c = fast_atof_move(c, (float&) nodes.back().lightColor.r ); SkipSpaces(&c); c = fast_atof_move(c, (float&) nodes.back().lightColor.g ); SkipSpaces(&c); c = fast_atof_move(c, (float&) nodes.back().lightColor.b ); } } // 'PivotPosition': position of local transformation origin else if ((*it).tokens[0] == "PivotPosition" || (*it).tokens[0] == "PivotPoint") { if (nodes.empty()) DefaultLogger::get()->error("LWS: Unexpected keyword: \'PivotPosition\'"); else { c = fast_atof_move(c, (float&) nodes.back().pivotPos.x ); SkipSpaces(&c); c = fast_atof_move(c, (float&) nodes.back().pivotPos.y ); SkipSpaces(&c); c = fast_atof_move(c, (float&) nodes.back().pivotPos.z ); } } } // resolve parenting for (std::list::iterator it = nodes.begin(); it != nodes.end(); ++it) { // check whether there is another node which calls us a parent for (std::list::iterator dit = nodes.begin(); dit != nodes.end(); ++dit) { if (dit != it && *it == (*dit).parent) { if ((*dit).parent_resolved) { // fixme: it's still possible to produce an overflow due to cross references .. DefaultLogger::get()->error("LWS: Found cross reference in scenegraph"); continue; } (*it).children.push_back(&*dit); (*dit).parent_resolved = &*it; } } } // find out how many nodes have no parent yet unsigned int no_parent = 0; for (std::list::iterator it = nodes.begin(); it != nodes.end(); ++it) { if (!(*it).parent_resolved) ++ no_parent; } if (!no_parent) throw new ImportErrorException("LWS: Unable to find scene root node"); // Load all subsequent files batch.LoadAll(); // and build the final output graph by attaching the loaded external // files to ourselves. first build a master graph aiScene* master = new aiScene(); aiNode* nd = master->mRootNode = new aiNode(); // allocate storage for cameras&lights if (num_camera) { master->mCameras = new aiCamera*[master->mNumCameras = num_camera]; } aiCamera** cams = master->mCameras; if (num_light) { master->mLights = new aiLight*[master->mNumLights = num_light]; } aiLight** lights = master->mLights; std::vector attach; std::vector anims; nd->mName.Set(""); nd->mChildren = new aiNode*[no_parent]; for (std::list::iterator it = nodes.begin(); it != nodes.end(); ++it) { if (!(*it).parent_resolved) { aiNode* ro = nd->mChildren[ nd->mNumChildren++ ] = new aiNode(); ro->mParent = nd; // ... and build the scene graph. If we encounter object nodes, // add then to our attachment table. BuildGraph(ro,*it, attach, batch, cams, lights, anims); } } // create a master animation channel for us if (anims.size()) { master->mAnimations = new aiAnimation*[master->mNumAnimations = 1]; aiAnimation* anim = master->mAnimations[0] = new aiAnimation(); anim->mName.Set("LWSMasterAnim"); // LWS uses seconds as time units, but we convert to frames anim->mTicksPerSecond = fps; anim->mDuration = last-(first-1); /* fixme ... zero or one-based?*/ anim->mChannels = new aiNodeAnim*[anim->mNumChannels = anims.size()]; std::copy(anims.begin(),anims.end(),anim->mChannels); } // convert the master scene to RH MakeLeftHandedProcess monster_cheat; monster_cheat.Execute(master); // OK ... finally build the output graph SceneCombiner::MergeScenes(&pScene,master,attach, AI_INT_MERGE_SCENE_GEN_UNIQUE_NAMES | (!configSpeedFlag ? ( AI_INT_MERGE_SCENE_GEN_UNIQUE_NAMES_IF_NECESSARY | AI_INT_MERGE_SCENE_GEN_UNIQUE_MATNAMES) : 0)); // Check flags if (!pScene->mNumMeshes || !pScene->mNumMaterials) { pScene->mFlags |= AI_SCENE_FLAGS_INCOMPLETE; if (pScene->mNumAnimations) { // construct skeleton mesh SkeletonMeshBuilder builder(pScene); } } }