/* --------------------------------------------------------------------------- Open Asset Import Library (assimp) --------------------------------------------------------------------------- Copyright (c) 2006-2020, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file WriteTextDumb.cpp * @brief Implementation of the 'assimp dump' utility */ #include "Main.h" #include "PostProcessing/ProcessHelper.h" const char* AICMD_MSG_DUMP_HELP = "assimp dump [] [-b] [-s] [-z] [common parameters]\n" "\t -b Binary output \n" "\t -s Shortened \n" "\t -z Compressed \n" "\t[See the assimp_cmd docs for a full list of all common parameters] \n" "\t -cfast Fast post processing preset, runs just a few important steps \n" "\t -cdefault Default post processing: runs all recommended steps\n" "\t -cfull Fires almost all post processing steps \n" ; #include "Common/assbin_chunks.h" FILE* out = NULL; bool shortened = false; // ----------------------------------------------------------------------------------- // Compress a binary dump file (beginning at offset head_size) void CompressBinaryDump(const char* file, unsigned int head_size) { // for simplicity ... copy the file into memory again and compress it there FILE* p = fopen(file,"r"); fseek(p,0,SEEK_END); const uint32_t size = ftell(p); fseek(p,0,SEEK_SET); if (size uint32_t Write(const T&); // ----------------------------------------------------------------------------------- // Serialize an aiString template <> inline uint32_t Write(const aiString& s) { const uint32_t s2 = (uint32_t)s.length; fwrite(&s,4,1,out); fwrite(s.data,s2,1,out); return s2+4; } // ----------------------------------------------------------------------------------- // Serialize an unsigned int as uint32_t template <> inline uint32_t Write(const unsigned int& w) { const uint32_t t = (uint32_t)w; if (w > t) { // this shouldn't happen, integers in Assimp data structures never exceed 2^32 printf("loss of data due to 64 -> 32 bit integer conversion"); } fwrite(&t,4,1,out); return 4; } // ----------------------------------------------------------------------------------- // Serialize an unsigned int as uint16_t template <> inline uint32_t Write(const uint16_t& w) { fwrite(&w,2,1,out); return 2; } // ----------------------------------------------------------------------------------- // Serialize a float template <> inline uint32_t Write(const float& f) { static_assert(sizeof(float)==4, "sizeof(float)==4"); fwrite(&f,4,1,out); return 4; } // ----------------------------------------------------------------------------------- // Serialize a double template <> inline uint32_t Write(const double& f) { static_assert(sizeof(double)==8, "sizeof(double)==8"); fwrite(&f,8,1,out); return 8; } // ----------------------------------------------------------------------------------- // Serialize a vec3 template <> inline uint32_t Write(const aiVector3D& v) { uint32_t t = Write(v.x); t += Write(v.y); t += Write(v.z); return t; } // ----------------------------------------------------------------------------------- // Serialize a color value template <> inline uint32_t Write(const aiColor3D& v) { uint32_t t = Write(v.r); t += Write(v.g); t += Write(v.b); return t; } // ----------------------------------------------------------------------------------- // Serialize a color value template <> inline uint32_t Write(const aiColor4D& v) { uint32_t t = Write(v.r); t += Write(v.g); t += Write(v.b); t += Write(v.a); return t; } // ----------------------------------------------------------------------------------- // Serialize a quaternion template <> inline uint32_t Write(const aiQuaternion& v) { uint32_t t = Write(v.w); t += Write(v.x); t += Write(v.y); t += Write(v.z); ai_assert(t == 16); return 16; } // ----------------------------------------------------------------------------------- // Serialize a vertex weight template <> inline uint32_t Write(const aiVertexWeight& v) { uint32_t t = Write(v.mVertexId); return t+Write(v.mWeight); } // ----------------------------------------------------------------------------------- // Serialize a mat4x4 template <> inline uint32_t Write(const aiMatrix4x4& m) { for (unsigned int i = 0; i < 4;++i) { for (unsigned int i2 = 0; i2 < 4;++i2) { Write(m[i][i2]); } } return 64; } // ----------------------------------------------------------------------------------- // Serialize an aiVectorKey template <> inline uint32_t Write(const aiVectorKey& v) { const uint32_t t = Write(v.mTime); return t + Write(v.mValue); } // ----------------------------------------------------------------------------------- // Serialize an aiQuatKey template <> inline uint32_t Write(const aiQuatKey& v) { const uint32_t t = Write(v.mTime); return t + Write(v.mValue); } // ----------------------------------------------------------------------------------- // Write the min/max values of an array of Ts to the file template inline uint32_t WriteBounds(const T* in, unsigned int size) { T minc,maxc; Assimp::ArrayBounds(in,size,minc,maxc); const uint32_t t = Write(minc); return t + Write(maxc); } // ----------------------------------------------------------------------------------- void ChangeInteger(uint32_t ofs,uint32_t n) { const uint32_t cur = ftell(out); int retCode; retCode = fseek(out, ofs, SEEK_SET); ai_assert(0 == retCode); fwrite(&n, 4, 1, out); retCode = fseek(out, cur, SEEK_SET); ai_assert(0 == retCode); } // ----------------------------------------------------------------------------------- uint32_t WriteBinaryNode(const aiNode* node) { uint32_t len = 0, old = WriteMagic(ASSBIN_CHUNK_AINODE); len += Write(node->mName); len += Write(node->mTransformation); len += Write(node->mNumChildren); len += Write(node->mNumMeshes); for (unsigned int i = 0; i < node->mNumMeshes;++i) { len += Write(node->mMeshes[i]); } for (unsigned int i = 0; i < node->mNumChildren;++i) { len += WriteBinaryNode(node->mChildren[i])+8; } ChangeInteger(old,len); return len; } // ----------------------------------------------------------------------------------- uint32_t WriteBinaryTexture(const aiTexture* tex) { uint32_t len = 0, old = WriteMagic(ASSBIN_CHUNK_AITEXTURE); len += Write(tex->mWidth); len += Write(tex->mHeight); // Write the texture format, but don't include the null terminator. len += static_cast(fwrite(tex->achFormatHint,sizeof(char),HINTMAXTEXTURELEN - 1,out)); if(!shortened) { if (!tex->mHeight) { len += static_cast(fwrite(tex->pcData,1,tex->mWidth,out)); } else { len += static_cast(fwrite(tex->pcData,1,tex->mWidth*tex->mHeight*4,out)); } } ChangeInteger(old,len); return len; } // ----------------------------------------------------------------------------------- uint32_t WriteBinaryBone(const aiBone* b) { uint32_t len = 0, old = WriteMagic(ASSBIN_CHUNK_AIBONE); len += Write(b->mName); len += Write(b->mNumWeights); len += Write(b->mOffsetMatrix); // for the moment we write dumb min/max values for the bones, too. // maybe I'll add a better, hash-like solution later if (shortened) { len += WriteBounds(b->mWeights,b->mNumWeights); } // else write as usual else len += static_cast(fwrite(b->mWeights,1,b->mNumWeights*sizeof(aiVertexWeight),out)); ChangeInteger(old,len); return len; } // ----------------------------------------------------------------------------------- uint32_t WriteBinaryMesh(const aiMesh* mesh) { uint32_t len = 0, old = WriteMagic(ASSBIN_CHUNK_AIMESH); len += Write(mesh->mPrimitiveTypes); len += Write(mesh->mNumVertices); len += Write(mesh->mNumFaces); len += Write(mesh->mNumBones); len += Write(mesh->mMaterialIndex); // first of all, write bits for all existent vertex components unsigned int c = 0; if (mesh->mVertices) { c |= ASSBIN_MESH_HAS_POSITIONS; } if (mesh->mNormals) { c |= ASSBIN_MESH_HAS_NORMALS; } if (mesh->mTangents && mesh->mBitangents) { c |= ASSBIN_MESH_HAS_TANGENTS_AND_BITANGENTS; } for (unsigned int n = 0; n < AI_MAX_NUMBER_OF_TEXTURECOORDS;++n) { if (!mesh->mTextureCoords[n]) { break; } c |= ASSBIN_MESH_HAS_TEXCOORD(n); } for (unsigned int n = 0; n < AI_MAX_NUMBER_OF_COLOR_SETS;++n) { if (!mesh->mColors[n]) { break; } c |= ASSBIN_MESH_HAS_COLOR(n); } len += Write(c); aiVector3D minVec, maxVec; if (mesh->mVertices) { if (shortened) { len += WriteBounds(mesh->mVertices,mesh->mNumVertices); } // else write as usual else len += static_cast(fwrite(mesh->mVertices,1,12*mesh->mNumVertices,out)); } if (mesh->mNormals) { if (shortened) { len += WriteBounds(mesh->mNormals,mesh->mNumVertices); } // else write as usual else len += static_cast(fwrite(mesh->mNormals,1,12*mesh->mNumVertices,out)); } if (mesh->mTangents && mesh->mBitangents) { if (shortened) { len += WriteBounds(mesh->mTangents,mesh->mNumVertices); len += WriteBounds(mesh->mBitangents,mesh->mNumVertices); } // else write as usual else { len += static_cast(fwrite(mesh->mTangents,1,12*mesh->mNumVertices,out)); len += static_cast(fwrite(mesh->mBitangents,1,12*mesh->mNumVertices,out)); } } for (unsigned int n = 0; n < AI_MAX_NUMBER_OF_COLOR_SETS;++n) { if (!mesh->mColors[n]) break; if (shortened) { len += WriteBounds(mesh->mColors[n],mesh->mNumVertices); } // else write as usual else len += static_cast(fwrite(mesh->mColors[n],16*mesh->mNumVertices,1,out)); } for (unsigned int n = 0; n < AI_MAX_NUMBER_OF_TEXTURECOORDS;++n) { if (!mesh->mTextureCoords[n]) break; // write number of UV components len += Write(mesh->mNumUVComponents[n]); if (shortened) { len += WriteBounds(mesh->mTextureCoords[n],mesh->mNumVertices); } // else write as usual else len += static_cast(fwrite(mesh->mTextureCoords[n],12*mesh->mNumVertices,1,out)); } // write faces. There are no floating-point calculations involved // in these, so we can write a simple hash over the face data // to the dump file. We generate a single 32 Bit hash for 512 faces // using Assimp's standard hashing function. if (shortened) { unsigned int processed = 0; for (unsigned int job;(job = std::min(mesh->mNumFaces-processed,512u));processed += job) { uint32_t hash = 0; for (unsigned int a = 0; a < job;++a) { const aiFace& f = mesh->mFaces[processed+a]; uint32_t tmp = f.mNumIndices; hash = SuperFastHash(reinterpret_cast(&tmp),sizeof tmp,hash); for (unsigned int i = 0; i < f.mNumIndices; ++i) { static_assert(AI_MAX_VERTICES <= 0xffffffff, "AI_MAX_VERTICES <= 0xffffffff"); tmp = static_cast( f.mIndices[i] ); hash = SuperFastHash(reinterpret_cast(&tmp),sizeof tmp,hash); } } len += Write(hash); } } else // else write as usual { // if there are less than 2^16 vertices, we can simply use 16 bit integers ... for (unsigned int i = 0; i < mesh->mNumFaces;++i) { const aiFace& f = mesh->mFaces[i]; static_assert(AI_MAX_FACE_INDICES <= 0xffff, "AI_MAX_FACE_INDICES <= 0xffff"); len += Write(f.mNumIndices); for (unsigned int a = 0; a < f.mNumIndices;++a) { if (mesh->mNumVertices < (1u<<16)) { len += Write(f.mIndices[a]); } else len += Write(f.mIndices[a]); } } } // write bones if (mesh->mNumBones) { for (unsigned int a = 0; a < mesh->mNumBones;++a) { const aiBone* b = mesh->mBones[a]; len += WriteBinaryBone(b)+8; } } ChangeInteger(old,len); return len; } // ----------------------------------------------------------------------------------- uint32_t WriteBinaryMaterialProperty(const aiMaterialProperty* prop) { uint32_t len = 0, old = WriteMagic(ASSBIN_CHUNK_AIMATERIALPROPERTY); len += Write(prop->mKey); len += Write(prop->mSemantic); len += Write(prop->mIndex); len += Write(prop->mDataLength); len += Write((unsigned int)prop->mType); len += static_cast(fwrite(prop->mData,1,prop->mDataLength,out)); ChangeInteger(old,len); return len; } // ----------------------------------------------------------------------------------- uint32_t WriteBinaryMaterial(const aiMaterial* mat) { uint32_t len = 0, old = WriteMagic(ASSBIN_CHUNK_AIMATERIAL); len += Write(mat->mNumProperties); for (unsigned int i = 0; i < mat->mNumProperties;++i) { len += WriteBinaryMaterialProperty(mat->mProperties[i])+8; } ChangeInteger(old,len); return len; } // ----------------------------------------------------------------------------------- uint32_t WriteBinaryNodeAnim(const aiNodeAnim* nd) { uint32_t len = 0, old = WriteMagic(ASSBIN_CHUNK_AINODEANIM); len += Write(nd->mNodeName); len += Write(nd->mNumPositionKeys); len += Write(nd->mNumRotationKeys); len += Write(nd->mNumScalingKeys); len += Write(nd->mPreState); len += Write(nd->mPostState); if (nd->mPositionKeys) { if (shortened) { len += WriteBounds(nd->mPositionKeys,nd->mNumPositionKeys); } // else write as usual else len += static_cast(fwrite(nd->mPositionKeys,1,nd->mNumPositionKeys*sizeof(aiVectorKey),out)); } if (nd->mRotationKeys) { if (shortened) { len += WriteBounds(nd->mRotationKeys,nd->mNumRotationKeys); } // else write as usual else len += static_cast(fwrite(nd->mRotationKeys,1,nd->mNumRotationKeys*sizeof(aiQuatKey),out)); } if (nd->mScalingKeys) { if (shortened) { len += WriteBounds(nd->mScalingKeys,nd->mNumScalingKeys); } // else write as usual else len += static_cast(fwrite(nd->mScalingKeys,1,nd->mNumScalingKeys*sizeof(aiVectorKey),out)); } ChangeInteger(old,len); return len; } // ----------------------------------------------------------------------------------- uint32_t WriteBinaryAnim(const aiAnimation* anim) { uint32_t len = 0, old = WriteMagic(ASSBIN_CHUNK_AIANIMATION); len += Write (anim->mName); len += Write (anim->mDuration); len += Write (anim->mTicksPerSecond); len += Write(anim->mNumChannels); for (unsigned int a = 0; a < anim->mNumChannels;++a) { const aiNodeAnim* nd = anim->mChannels[a]; len += WriteBinaryNodeAnim(nd)+8; } ChangeInteger(old,len); return len; } // ----------------------------------------------------------------------------------- uint32_t WriteBinaryLight(const aiLight* l) { uint32_t len = 0, old = WriteMagic(ASSBIN_CHUNK_AILIGHT); len += Write(l->mName); len += Write(l->mType); if (l->mType != aiLightSource_DIRECTIONAL) { len += Write(l->mAttenuationConstant); len += Write(l->mAttenuationLinear); len += Write(l->mAttenuationQuadratic); } len += Write(l->mColorDiffuse); len += Write(l->mColorSpecular); len += Write(l->mColorAmbient); if (l->mType == aiLightSource_SPOT) { len += Write(l->mAngleInnerCone); len += Write(l->mAngleOuterCone); } ChangeInteger(old,len); return len; } // ----------------------------------------------------------------------------------- uint32_t WriteBinaryCamera(const aiCamera* cam) { uint32_t len = 0, old = WriteMagic(ASSBIN_CHUNK_AICAMERA); len += Write(cam->mName); len += Write(cam->mPosition); len += Write(cam->mLookAt); len += Write(cam->mUp); len += Write(cam->mHorizontalFOV); len += Write(cam->mClipPlaneNear); len += Write(cam->mClipPlaneFar); len += Write(cam->mAspect); ChangeInteger(old,len); return len; } // ----------------------------------------------------------------------------------- uint32_t WriteBinaryScene(const aiScene* scene) { uint32_t len = 0, old = WriteMagic(ASSBIN_CHUNK_AISCENE); // basic scene information len += Write(scene->mFlags); len += Write(scene->mNumMeshes); len += Write(scene->mNumMaterials); len += Write(scene->mNumAnimations); len += Write(scene->mNumTextures); len += Write(scene->mNumLights); len += Write(scene->mNumCameras); // write node graph len += WriteBinaryNode(scene->mRootNode)+8; // write all meshes for (unsigned int i = 0; i < scene->mNumMeshes;++i) { const aiMesh* mesh = scene->mMeshes[i]; len += WriteBinaryMesh(mesh)+8; } // write materials for (unsigned int i = 0; i< scene->mNumMaterials; ++i) { const aiMaterial* mat = scene->mMaterials[i]; len += WriteBinaryMaterial(mat)+8; } // write all animations for (unsigned int i = 0; i < scene->mNumAnimations;++i) { const aiAnimation* anim = scene->mAnimations[i]; len += WriteBinaryAnim(anim)+8; } // write all textures for (unsigned int i = 0; i < scene->mNumTextures;++i) { const aiTexture* mesh = scene->mTextures[i]; len += WriteBinaryTexture(mesh)+8; } // write lights for (unsigned int i = 0; i < scene->mNumLights;++i) { const aiLight* l = scene->mLights[i]; len += WriteBinaryLight(l)+8; } // write cameras for (unsigned int i = 0; i < scene->mNumCameras;++i) { const aiCamera* cam = scene->mCameras[i]; len += WriteBinaryCamera(cam)+8; } ChangeInteger(old,len); return len; } // ----------------------------------------------------------------------------------- // Write a binary model dump void WriteBinaryDump(const aiScene* scene, FILE* _out, const char* src, const char* cmd, bool _shortened, bool compressed, ImportData& /*imp*/) { out = _out; shortened = _shortened; time_t tt = time(NULL); #if _WIN32 tm* p = gmtime(&tt); #else struct tm now; tm* p = gmtime_r(&tt, &now); #endif ai_assert(nullptr != p); // header fprintf(out,"ASSIMP.binary-dump.%s",asctime(p)); // == 44 bytes Write(ASSBIN_VERSION_MAJOR); Write(ASSBIN_VERSION_MINOR); Write(aiGetVersionRevision()); Write(aiGetCompileFlags()); Write(shortened); Write(compressed); // == 20 bytes { char buff[256] = { 0 }; strncpy(buff,src,256); buff[255] = 0; fwrite(buff,256,1,out); } { char buff[128] = { 0 }; strncpy(buff,cmd,128); buff[127] = 0; fwrite(buff,128,1,out); } // leave 64 bytes free for future extensions { char buff[64]; memset(buff,0xcd,64); fwrite(buff,64,1,out); } // == 435 bytes // ==== total header size: 512 bytes ai_assert(ftell(out)==ASSBIN_HEADER_LENGTH); // Up to here the data is uncompressed. For compressed files, the rest // is compressed using standard DEFLATE from zlib. WriteBinaryScene(scene); } // ----------------------------------------------------------------------------------- // Convert a name to standard XML format void ConvertName(aiString& out, const aiString& in) { out.length = 0; for (unsigned int i = 0; i < in.length; ++i) { switch (in.data[i]) { case '<': out.Append("<");break; case '>': out.Append(">");break; case '&': out.Append("&");break; case '\"': out.Append(""");break; case '\'': out.Append("'");break; default: out.data[out.length++] = in.data[i]; } } out.data[out.length] = 0; } // ----------------------------------------------------------------------------------- // Write a single node as text dump void WriteNode(const aiNode* node, FILE* out, unsigned int depth) { char prefix[512]; for (unsigned int i = 0; i < depth;++i) prefix[i] = '\t'; prefix[depth] = '\0'; const aiMatrix4x4& m = node->mTransformation; aiString name; ConvertName(name,node->mName); fprintf(out,"%s \n" "%s\t \n" "%s\t\t%0 6f %0 6f %0 6f %0 6f\n" "%s\t\t%0 6f %0 6f %0 6f %0 6f\n" "%s\t\t%0 6f %0 6f %0 6f %0 6f\n" "%s\t\t%0 6f %0 6f %0 6f %0 6f\n" "%s\t \n", prefix,name.data,prefix, prefix,m.a1,m.a2,m.a3,m.a4, prefix,m.b1,m.b2,m.b3,m.b4, prefix,m.c1,m.c2,m.c3,m.c4, prefix,m.d1,m.d2,m.d3,m.d4,prefix); if (node->mNumMeshes) { fprintf(out, "%s\t\n%s\t", prefix,node->mNumMeshes,prefix); for (unsigned int i = 0; i < node->mNumMeshes;++i) { fprintf(out,"%u ",node->mMeshes[i]); } fprintf(out,"\n%s\t\n",prefix); } if (node->mNumChildren) { fprintf(out,"%s\t\n", prefix,node->mNumChildren); for (unsigned int i = 0; i < node->mNumChildren;++i) { WriteNode(node->mChildren[i],out,depth+2); } fprintf(out,"%s\t\n",prefix); } fprintf(out,"%s\n",prefix); } // ------------------------------------------------------------------------------- const char* TextureTypeToString(aiTextureType in) { switch (in) { case aiTextureType_NONE: return "n/a"; case aiTextureType_DIFFUSE: return "Diffuse"; case aiTextureType_SPECULAR: return "Specular"; case aiTextureType_AMBIENT: return "Ambient"; case aiTextureType_EMISSIVE: return "Emissive"; case aiTextureType_OPACITY: return "Opacity"; case aiTextureType_NORMALS: return "Normals"; case aiTextureType_HEIGHT: return "Height"; case aiTextureType_SHININESS: return "Shininess"; case aiTextureType_DISPLACEMENT: return "Displacement"; case aiTextureType_LIGHTMAP: return "Lightmap"; case aiTextureType_REFLECTION: return "Reflection"; case aiTextureType_UNKNOWN: return "Unknown"; default: break; } ai_assert(false); return "BUG"; } // ----------------------------------------------------------------------------------- // Some chuncks of text will need to be encoded for XML // http://stackoverflow.com/questions/5665231/most-efficient-way-to-escape-xml-html-in-c-string#5665377 static std::string encodeXML(const std::string& data) { std::string buffer; buffer.reserve(data.size()); for(size_t pos = 0; pos != data.size(); ++pos) { switch(data[pos]) { case '&': buffer.append("&"); break; case '\"': buffer.append("""); break; case '\'': buffer.append("'"); break; case '<': buffer.append("<"); break; case '>': buffer.append(">"); break; default: buffer.append(&data[pos], 1); break; } } return buffer; } // ----------------------------------------------------------------------------------- // Write a text model dump void WriteDump(const aiScene* scene, FILE* out, const char* src, const char* cmd, bool shortened) { time_t tt = ::time(NULL); #if _WIN32 tm* p = gmtime(&tt); #else struct tm now; tm* p = gmtime_r(&tt, &now); #endif ai_assert(nullptr != p); std::string c = cmd; std::string::size_type s; // https://sourceforge.net/tracker/?func=detail&aid=3167364&group_id=226462&atid=1067632 // -- not allowed in XML comments while((s = c.find("--")) != std::string::npos) { c[s] = '?'; } aiString name; // write header fprintf(out, "\n" "\n\n" "" " \n\n" "\n", aiGetVersionMajor(),aiGetVersionMinor(),aiGetVersionRevision(),src,c.c_str(),asctime(p), scene->mFlags, 0 /*globalImporter->GetEffectivePostProcessing()*/); // write the node graph WriteNode(scene->mRootNode, out, 0); #if 0 // write cameras for (unsigned int i = 0; i < scene->mNumCameras;++i) { aiCamera* cam = scene->mCameras[i]; ConvertName(name,cam->mName); // camera header fprintf(out,"\t\n" "\t\t %0 8f %0 8f %0 8f \n" "\t\t %0 8f %0 8f %0 8f \n" "\t\t %0 8f %0 8f %0 8f \n" "\t\t %f \n" "\t\t %f \n" "\t\t %f \n" "\t\t %f \n" "\t\n", name.data, cam->mUp.x,cam->mUp.y,cam->mUp.z, cam->mLookAt.x,cam->mLookAt.y,cam->mLookAt.z, cam->mPosition.x,cam->mPosition.y,cam->mPosition.z, cam->mHorizontalFOV,cam->mAspect,cam->mClipPlaneNear,cam->mClipPlaneFar,i); } // write lights for (unsigned int i = 0; i < scene->mNumLights;++i) { aiLight* l = scene->mLights[i]; ConvertName(name,l->mName); // light header fprintf(out,"\t type=\"%s\"\n" "\t\t %0 8f %0 8f %0 8f \n" "\t\t %0 8f %0 8f %0 8f \n" "\t\t %0 8f %0 8f %0 8f \n", name.data, (l->mType == aiLightSource_DIRECTIONAL ? "directional" : (l->mType == aiLightSource_POINT ? "point" : "spot" )), l->mColorDiffuse.r, l->mColorDiffuse.g, l->mColorDiffuse.b, l->mColorSpecular.r,l->mColorSpecular.g,l->mColorSpecular.b, l->mColorAmbient.r, l->mColorAmbient.g, l->mColorAmbient.b); if (l->mType != aiLightSource_DIRECTIONAL) { fprintf(out, "\t\t %0 8f %0 8f %0 8f \n" "\t\t %f \n" "\t\t %f \n" "\t\t %f \n", l->mPosition.x,l->mPosition.y,l->mPosition.z, l->mAttenuationConstant,l->mAttenuationLinear,l->mAttenuationQuadratic); } if (l->mType != aiLightSource_POINT) { fprintf(out, "\t\t %0 8f %0 8f %0 8f \n", l->mDirection.x,l->mDirection.y,l->mDirection.z); } if (l->mType == aiLightSource_SPOT) { fprintf(out, "\t\t %f \n" "\t\t %f \n", l->mAngleOuterCone,l->mAngleInnerCone); } fprintf(out,"\t\n"); } #endif // write textures if (scene->mNumTextures) { fprintf(out,"\n",scene->mNumTextures); for (unsigned int i = 0; i < scene->mNumTextures;++i) { aiTexture* tex = scene->mTextures[i]; bool compressed = (tex->mHeight == 0); // mesh header fprintf(out,"\t \n", (compressed ? -1 : tex->mWidth),(compressed ? -1 : tex->mHeight), (compressed ? "true" : "false")); if (compressed) { fprintf(out,"\t\t \n",tex->mWidth); if (!shortened) { for (unsigned int n = 0; n < tex->mWidth;++n) { fprintf(out,"\t\t\t%2x",reinterpret_cast(tex->pcData)[n]); if (n && !(n % 50)) { fprintf(out,"\n"); } } } } else if (!shortened){ fprintf(out,"\t\t \n",tex->mWidth*tex->mHeight*4); // const unsigned int width = (unsigned int)log10((double)std::max(tex->mHeight,tex->mWidth))+1; for (unsigned int y = 0; y < tex->mHeight;++y) { for (unsigned int x = 0; x < tex->mWidth;++x) { aiTexel* tx = tex->pcData + y*tex->mWidth+x; unsigned int r = tx->r,g=tx->g,b=tx->b,a=tx->a; fprintf(out,"\t\t\t%2x %2x %2x %2x",r,g,b,a); // group by four for readibility if (0 == (x+y*tex->mWidth) % 4) fprintf(out,"\n"); } } } fprintf(out,"\t\t\n\t\n"); } fprintf(out,"\n"); } // write materials if (scene->mNumMaterials) { fprintf(out,"\n",scene->mNumMaterials); for (unsigned int i = 0; i< scene->mNumMaterials; ++i) { const aiMaterial* mat = scene->mMaterials[i]; fprintf(out,"\t\n"); fprintf(out,"\t\t\n",mat->mNumProperties); for (unsigned int n = 0; n < mat->mNumProperties;++n) { const aiMaterialProperty* prop = mat->mProperties[n]; const char* sz = ""; if (prop->mType == aiPTI_Float) { sz = "float"; } else if (prop->mType == aiPTI_Integer) { sz = "integer"; } else if (prop->mType == aiPTI_String) { sz = "string"; } else if (prop->mType == aiPTI_Buffer) { sz = "binary_buffer"; } fprintf(out,"\t\t\tmKey.data, sz, ::TextureTypeToString((aiTextureType)prop->mSemantic),prop->mIndex); if (prop->mType == aiPTI_Float) { fprintf(out," size=\"%i\">\n\t\t\t\t", static_cast(prop->mDataLength/sizeof(float))); for (unsigned int p = 0; p < prop->mDataLength/sizeof(float);++p) { fprintf(out,"%f ",*((float*)(prop->mData+p*sizeof(float)))); } } else if (prop->mType == aiPTI_Integer) { fprintf(out," size=\"%i\">\n\t\t\t\t", static_cast(prop->mDataLength/sizeof(int))); for (unsigned int p = 0; p < prop->mDataLength/sizeof(int);++p) { fprintf(out,"%i ",*((int*)(prop->mData+p*sizeof(int)))); } } else if (prop->mType == aiPTI_Buffer) { fprintf(out," size=\"%i\">\n\t\t\t\t", static_cast(prop->mDataLength)); for (unsigned int p = 0; p < prop->mDataLength;++p) { fprintf(out,"%2x ",prop->mData[p]); if (p && 0 == p%30) { fprintf(out,"\n\t\t\t\t"); } } } else if (prop->mType == aiPTI_String) { fprintf(out,">\n\t\t\t\t\"%s\"",encodeXML(prop->mData+4).c_str() /* skip length */); } fprintf(out,"\n\t\t\t\n"); } fprintf(out,"\t\t\n"); fprintf(out,"\t\n"); } fprintf(out,"\n"); } // write animations if (scene->mNumAnimations) { fprintf(out,"\n",scene->mNumAnimations); for (unsigned int i = 0; i < scene->mNumAnimations;++i) { aiAnimation* anim = scene->mAnimations[i]; // anim header ConvertName(name,anim->mName); fprintf(out,"\t\n", name.data, anim->mDuration, anim->mTicksPerSecond); // write bone animation channels if (anim->mNumChannels) { fprintf(out,"\t\t\n",anim->mNumChannels); for (unsigned int n = 0; n < anim->mNumChannels;++n) { aiNodeAnim* nd = anim->mChannels[n]; // node anim header ConvertName(name,nd->mNodeName); fprintf(out,"\t\t\t\n",name.data); if (!shortened) { // write position keys if (nd->mNumPositionKeys) { fprintf(out,"\t\t\t\t\n",nd->mNumPositionKeys); for (unsigned int a = 0; a < nd->mNumPositionKeys;++a) { aiVectorKey* vc = nd->mPositionKeys+a; fprintf(out,"\t\t\t\t\t\n" "\t\t\t\t\t\t%0 8f %0 8f %0 8f\n\t\t\t\t\t\n", vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z); } fprintf(out,"\t\t\t\t\n"); } // write scaling keys if (nd->mNumScalingKeys) { fprintf(out,"\t\t\t\t\n",nd->mNumScalingKeys); for (unsigned int a = 0; a < nd->mNumScalingKeys;++a) { aiVectorKey* vc = nd->mScalingKeys+a; fprintf(out,"\t\t\t\t\t\n" "\t\t\t\t\t\t%0 8f %0 8f %0 8f\n\t\t\t\t\t\n", vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z); } fprintf(out,"\t\t\t\t\n"); } // write rotation keys if (nd->mNumRotationKeys) { fprintf(out,"\t\t\t\t\n",nd->mNumRotationKeys); for (unsigned int a = 0; a < nd->mNumRotationKeys;++a) { aiQuatKey* vc = nd->mRotationKeys+a; fprintf(out,"\t\t\t\t\t\n" "\t\t\t\t\t\t%0 8f %0 8f %0 8f %0 8f\n\t\t\t\t\t\n", vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z,vc->mValue.w); } fprintf(out,"\t\t\t\t\n"); } } fprintf(out,"\t\t\t\n"); } fprintf(out,"\t\t\n"); } fprintf(out,"\t\n"); } fprintf(out,"\n"); } // write meshes if (scene->mNumMeshes) { fprintf(out,"\n",scene->mNumMeshes); for (unsigned int i = 0; i < scene->mNumMeshes;++i) { aiMesh* mesh = scene->mMeshes[i]; // const unsigned int width = (unsigned int)log10((double)mesh->mNumVertices)+1; // mesh header fprintf(out,"\t\n", (mesh->mPrimitiveTypes & aiPrimitiveType_POINT ? "points" : ""), (mesh->mPrimitiveTypes & aiPrimitiveType_LINE ? "lines" : ""), (mesh->mPrimitiveTypes & aiPrimitiveType_TRIANGLE ? "triangles" : ""), (mesh->mPrimitiveTypes & aiPrimitiveType_POLYGON ? "polygons" : ""), mesh->mMaterialIndex); // bones if (mesh->mNumBones) { fprintf(out,"\t\t\n",mesh->mNumBones); for (unsigned int n = 0; n < mesh->mNumBones;++n) { aiBone* bone = mesh->mBones[n]; ConvertName(name,bone->mName); // bone header fprintf(out,"\t\t\t\n" "\t\t\t\t \n" "\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n" "\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n" "\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n" "\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n" "\t\t\t\t \n", name.data, bone->mOffsetMatrix.a1,bone->mOffsetMatrix.a2,bone->mOffsetMatrix.a3,bone->mOffsetMatrix.a4, bone->mOffsetMatrix.b1,bone->mOffsetMatrix.b2,bone->mOffsetMatrix.b3,bone->mOffsetMatrix.b4, bone->mOffsetMatrix.c1,bone->mOffsetMatrix.c2,bone->mOffsetMatrix.c3,bone->mOffsetMatrix.c4, bone->mOffsetMatrix.d1,bone->mOffsetMatrix.d2,bone->mOffsetMatrix.d3,bone->mOffsetMatrix.d4); if (!shortened && bone->mNumWeights) { fprintf(out,"\t\t\t\t\n",bone->mNumWeights); // bone weights for (unsigned int a = 0; a < bone->mNumWeights;++a) { aiVertexWeight* wght = bone->mWeights+a; fprintf(out,"\t\t\t\t\t\n\t\t\t\t\t\t%f\n\t\t\t\t\t\n", wght->mVertexId,wght->mWeight); } fprintf(out,"\t\t\t\t\n"); } fprintf(out,"\t\t\t\n"); } fprintf(out,"\t\t\n"); } // faces if (!shortened && mesh->mNumFaces) { fprintf(out,"\t\t\n",mesh->mNumFaces); for (unsigned int n = 0; n < mesh->mNumFaces; ++n) { aiFace& f = mesh->mFaces[n]; fprintf(out,"\t\t\t\n" "\t\t\t\t",f.mNumIndices); for (unsigned int j = 0; j < f.mNumIndices;++j) fprintf(out,"%u ",f.mIndices[j]); fprintf(out,"\n\t\t\t\n"); } fprintf(out,"\t\t\n"); } // vertex positions if (mesh->HasPositions()) { fprintf(out,"\t\t \n",mesh->mNumVertices); if (!shortened) { for (unsigned int n = 0; n < mesh->mNumVertices; ++n) { fprintf(out,"\t\t%0 8f %0 8f %0 8f\n", mesh->mVertices[n].x, mesh->mVertices[n].y, mesh->mVertices[n].z); } } fprintf(out,"\t\t\n"); } // vertex normals if (mesh->HasNormals()) { fprintf(out,"\t\t \n",mesh->mNumVertices); if (!shortened) { for (unsigned int n = 0; n < mesh->mNumVertices; ++n) { fprintf(out,"\t\t%0 8f %0 8f %0 8f\n", mesh->mNormals[n].x, mesh->mNormals[n].y, mesh->mNormals[n].z); } } else { } fprintf(out,"\t\t\n"); } // vertex tangents and bitangents if (mesh->HasTangentsAndBitangents()) { fprintf(out,"\t\t \n",mesh->mNumVertices); if (!shortened) { for (unsigned int n = 0; n < mesh->mNumVertices; ++n) { fprintf(out,"\t\t%0 8f %0 8f %0 8f\n", mesh->mTangents[n].x, mesh->mTangents[n].y, mesh->mTangents[n].z); } } fprintf(out,"\t\t\n"); fprintf(out,"\t\t \n",mesh->mNumVertices); if (!shortened) { for (unsigned int n = 0; n < mesh->mNumVertices; ++n) { fprintf(out,"\t\t%0 8f %0 8f %0 8f\n", mesh->mBitangents[n].x, mesh->mBitangents[n].y, mesh->mBitangents[n].z); } } fprintf(out,"\t\t\n"); } // texture coordinates for (unsigned int a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) { if (!mesh->mTextureCoords[a]) break; fprintf(out,"\t\t \n",mesh->mNumVertices, a,mesh->mNumUVComponents[a]); if (!shortened) { if (mesh->mNumUVComponents[a] == 3) { for (unsigned int n = 0; n < mesh->mNumVertices; ++n) { fprintf(out,"\t\t%0 8f %0 8f %0 8f\n", mesh->mTextureCoords[a][n].x, mesh->mTextureCoords[a][n].y, mesh->mTextureCoords[a][n].z); } } else { for (unsigned int n = 0; n < mesh->mNumVertices; ++n) { fprintf(out,"\t\t%0 8f %0 8f\n", mesh->mTextureCoords[a][n].x, mesh->mTextureCoords[a][n].y); } } } fprintf(out,"\t\t\n"); } // vertex colors for (unsigned int a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a) { if (!mesh->mColors[a]) break; fprintf(out,"\t\t \n",mesh->mNumVertices,a); if (!shortened) { for (unsigned int n = 0; n < mesh->mNumVertices; ++n) { fprintf(out,"\t\t%0 8f %0 8f %0 8f %0 8f\n", mesh->mColors[a][n].r, mesh->mColors[a][n].g, mesh->mColors[a][n].b, mesh->mColors[a][n].a); } } fprintf(out,"\t\t\n"); } fprintf(out,"\t\n"); } fprintf(out,"\n"); } fprintf(out,"\n"); } // ----------------------------------------------------------------------------------- int Assimp_Dump (const char* const* params, unsigned int num) { const char* fail = "assimp dump: Invalid number of arguments. " "See \'assimp dump --help\'\r\n"; // --help if (!strcmp( params[0], "-h") || !strcmp( params[0], "--help") || !strcmp( params[0], "-?") ) { printf("%s",AICMD_MSG_DUMP_HELP); return 0; } // asssimp dump in out [options] if (num < 1) { printf("%s", fail); return 1; } std::string in = std::string(params[0]); std::string out = (num > 1 ? std::string(params[1]) : std::string("-")); // store full command line std::string cmd; for (unsigned int i = (out[0] == '-' ? 1 : 2); i < num;++i) { if (!params[i])continue; cmd.append(params[i]); cmd.append(" "); } // get import flags ImportData import; ProcessStandardArguments(import,params+1,num-1); bool binary = false, shortened = false,compressed=false; // process other flags for (unsigned int i = 1; i < num;++i) { if (!params[i])continue; if (!strcmp( params[i], "-b") || !strcmp( params[i], "--binary")) { binary = true; } else if (!strcmp( params[i], "-s") || !strcmp( params[i], "--short")) { shortened = true; } else if (!strcmp( params[i], "-z") || !strcmp( params[i], "--compressed")) { compressed = true; } #if 0 else if (i > 2 || params[i][0] == '-') { ::printf("Unknown parameter: %s\n",params[i]); return 10; } #endif } if (out[0] == '-') { // take file name from input file std::string::size_type s = in.find_last_of('.'); if (s == std::string::npos) { s = in.length(); } out = in.substr(0,s); out.append((binary ? ".assbin" : ".assxml")); if (shortened && binary) { out.append(".regress"); } } // import the main model const aiScene* scene = ImportModel(import,in); if (!scene) { printf("assimp dump: Unable to load input file %s\n",in.c_str()); return 5; } // open the output file and build the dump FILE* o = ::fopen(out.c_str(),(binary ? "wb" : "wt")); if (!o) { printf("assimp dump: Unable to open output file %s\n",out.c_str()); return 12; } if (binary) { WriteBinaryDump (scene,o,in.c_str(),cmd.c_str(),shortened,compressed,import); } else WriteDump (scene,o,in.c_str(),cmd.c_str(),shortened); fclose(o); if (compressed && binary) { CompressBinaryDump(out.c_str(),ASSBIN_HEADER_LENGTH); } printf("assimp dump: Wrote output dump %s\n",out.c_str()); return 0; }