/* --------------------------------------------------------------------------- Open Asset Import Library (assimp) --------------------------------------------------------------------------- Copyright (c) 2006-2016, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file Implementation of the post processing step to join identical vertices * for all imported meshes */ #ifndef ASSIMP_BUILD_NO_JOINVERTICES_PROCESS #include "JoinVerticesProcess.h" #include "ProcessHelper.h" #include "Vertex.h" #include "TinyFormatter.h" #include #include using namespace Assimp; // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer JoinVerticesProcess::JoinVerticesProcess() { // nothing to do here } // ------------------------------------------------------------------------------------------------ // Destructor, private as well JoinVerticesProcess::~JoinVerticesProcess() { // nothing to do here } // ------------------------------------------------------------------------------------------------ // Returns whether the processing step is present in the given flag field. bool JoinVerticesProcess::IsActive( unsigned int pFlags) const { return (pFlags & aiProcess_JoinIdenticalVertices) != 0; } // ------------------------------------------------------------------------------------------------ // Executes the post processing step on the given imported data. void JoinVerticesProcess::Execute( aiScene* pScene) { DefaultLogger::get()->debug("JoinVerticesProcess begin"); // get the total number of vertices BEFORE the step is executed int iNumOldVertices = 0; if (!DefaultLogger::isNullLogger()) { for( unsigned int a = 0; a < pScene->mNumMeshes; a++) { iNumOldVertices += pScene->mMeshes[a]->mNumVertices; } } // execute the step int iNumVertices = 0; for( unsigned int a = 0; a < pScene->mNumMeshes; a++) iNumVertices += ProcessMesh( pScene->mMeshes[a],a); // if logging is active, print detailed statistics if (!DefaultLogger::isNullLogger()) { if (iNumOldVertices == iNumVertices) { DefaultLogger::get()->debug("JoinVerticesProcess finished "); } else { char szBuff[128]; // should be sufficiently large in every case ::ai_snprintf(szBuff,128,"JoinVerticesProcess finished | Verts in: %i out: %i | ~%.1f%%", iNumOldVertices, iNumVertices, ((iNumOldVertices - iNumVertices) / (float)iNumOldVertices) * 100.f); DefaultLogger::get()->info(szBuff); } } pScene->mFlags |= AI_SCENE_FLAGS_NON_VERBOSE_FORMAT; } // ------------------------------------------------------------------------------------------------ // Unites identical vertices in the given mesh int JoinVerticesProcess::ProcessMesh( aiMesh* pMesh, unsigned int meshIndex) { BOOST_STATIC_ASSERT( AI_MAX_NUMBER_OF_COLOR_SETS == 8); BOOST_STATIC_ASSERT( AI_MAX_NUMBER_OF_TEXTURECOORDS == 8); // Return early if we don't have any positions if (!pMesh->HasPositions() || !pMesh->HasFaces()) { return 0; } // We'll never have more vertices afterwards. std::vector uniqueVertices; uniqueVertices.reserve( pMesh->mNumVertices); // For each vertex the index of the vertex it was replaced by. // Since the maximal number of vertices is 2^31-1, the most significand bit can be used to mark // whether a new vertex was created for the index (true) or if it was replaced by an existing // unique vertex (false). This saves an additional std::vector and greatly enhances // branching performance. BOOST_STATIC_ASSERT(AI_MAX_VERTICES == 0x7fffffff); std::vector replaceIndex( pMesh->mNumVertices, 0xffffffff); // A little helper to find locally close vertices faster. // Try to reuse the lookup table from the last step. const static float epsilon = 1e-5f; // float posEpsilonSqr; SpatialSort* vertexFinder = NULL; SpatialSort _vertexFinder; typedef std::pair SpatPair; if (shared) { std::vector* avf; shared->GetProperty(AI_SPP_SPATIAL_SORT,avf); if (avf) { SpatPair& blubb = (*avf)[meshIndex]; vertexFinder = &blubb.first; // posEpsilonSqr = blubb.second; } } if (!vertexFinder) { // bad, need to compute it. _vertexFinder.Fill(pMesh->mVertices, pMesh->mNumVertices, sizeof( aiVector3D)); vertexFinder = &_vertexFinder; // posEpsilonSqr = ComputePositionEpsilon(pMesh); } // Squared because we check against squared length of the vector difference static const float squareEpsilon = epsilon * epsilon; // Again, better waste some bytes than a realloc ... std::vector verticesFound; verticesFound.reserve(10); // Run an optimized code path if we don't have multiple UVs or vertex colors. // This should yield false in more than 99% of all imports ... const bool complex = ( pMesh->GetNumColorChannels() > 0 || pMesh->GetNumUVChannels() > 1); // Now check each vertex if it brings something new to the table for( unsigned int a = 0; a < pMesh->mNumVertices; a++) { // collect the vertex data Vertex v(pMesh,a); // collect all vertices that are close enough to the given position vertexFinder->FindIdenticalPositions( v.position, verticesFound); unsigned int matchIndex = 0xffffffff; // check all unique vertices close to the position if this vertex is already present among them for( unsigned int b = 0; b < verticesFound.size(); b++) { const unsigned int vidx = verticesFound[b]; const unsigned int uidx = replaceIndex[ vidx]; if( uidx & 0x80000000) continue; const Vertex& uv = uniqueVertices[ uidx]; // Position mismatch is impossible - the vertex finder already discarded all non-matching positions // We just test the other attributes even if they're not present in the mesh. // In this case they're initialized to 0 so the comparision succeeds. // By this method the non-present attributes are effectively ignored in the comparision. if( (uv.normal - v.normal).SquareLength() > squareEpsilon) continue; if( (uv.texcoords[0] - v.texcoords[0]).SquareLength() > squareEpsilon) continue; if( (uv.tangent - v.tangent).SquareLength() > squareEpsilon) continue; if( (uv.bitangent - v.bitangent).SquareLength() > squareEpsilon) continue; // Usually we won't have vertex colors or multiple UVs, so we can skip from here // Actually this increases runtime performance slightly, at least if branch // prediction is on our side. if (complex){ // manually unrolled because continue wouldn't work as desired in an inner loop, // also because some compilers seem to fail the task. Colors and UV coords // are interleaved since the higher entries are most likely to be // zero and thus useless. By interleaving the arrays, vertices are, // on average, rejected earlier. if( (uv.texcoords[1] - v.texcoords[1]).SquareLength() > squareEpsilon) continue; if( GetColorDifference( uv.colors[0], v.colors[0]) > squareEpsilon) continue; if( (uv.texcoords[2] - v.texcoords[2]).SquareLength() > squareEpsilon) continue; if( GetColorDifference( uv.colors[1], v.colors[1]) > squareEpsilon) continue; if( (uv.texcoords[3] - v.texcoords[3]).SquareLength() > squareEpsilon) continue; if( GetColorDifference( uv.colors[2], v.colors[2]) > squareEpsilon) continue; if( (uv.texcoords[4] - v.texcoords[4]).SquareLength() > squareEpsilon) continue; if( GetColorDifference( uv.colors[3], v.colors[3]) > squareEpsilon) continue; if( (uv.texcoords[5] - v.texcoords[5]).SquareLength() > squareEpsilon) continue; if( GetColorDifference( uv.colors[4], v.colors[4]) > squareEpsilon) continue; if( (uv.texcoords[6] - v.texcoords[6]).SquareLength() > squareEpsilon) continue; if( GetColorDifference( uv.colors[5], v.colors[5]) > squareEpsilon) continue; if( (uv.texcoords[7] - v.texcoords[7]).SquareLength() > squareEpsilon) continue; if( GetColorDifference( uv.colors[6], v.colors[6]) > squareEpsilon) continue; if( GetColorDifference( uv.colors[7], v.colors[7]) > squareEpsilon) continue; } // we're still here -> this vertex perfectly matches our given vertex matchIndex = uidx; break; } // found a replacement vertex among the uniques? if( matchIndex != 0xffffffff) { // store where to found the matching unique vertex replaceIndex[a] = matchIndex | 0x80000000; } else { // no unique vertex matches it upto now -> so add it replaceIndex[a] = (unsigned int)uniqueVertices.size(); uniqueVertices.push_back( v); } } if (!DefaultLogger::isNullLogger() && DefaultLogger::get()->getLogSeverity() == Logger::VERBOSE) { DefaultLogger::get()->debug((Formatter::format(), "Mesh ",meshIndex, " (", (pMesh->mName.length ? pMesh->mName.data : "unnamed"), ") | Verts in: ",pMesh->mNumVertices, " out: ", uniqueVertices.size(), " | ~", ((pMesh->mNumVertices - uniqueVertices.size()) / (float)pMesh->mNumVertices) * 100.f, "%" )); } // replace vertex data with the unique data sets pMesh->mNumVertices = (unsigned int)uniqueVertices.size(); // ---------------------------------------------------------------------------- // NOTE - we're *not* calling Vertex::SortBack() because it would check for // presence of every single vertex component once PER VERTEX. And our CPU // dislikes branches, even if they're easily predictable. // ---------------------------------------------------------------------------- // Position delete [] pMesh->mVertices; pMesh->mVertices = new aiVector3D[pMesh->mNumVertices]; for( unsigned int a = 0; a < pMesh->mNumVertices; a++) pMesh->mVertices[a] = uniqueVertices[a].position; // Normals, if present if( pMesh->mNormals) { delete [] pMesh->mNormals; pMesh->mNormals = new aiVector3D[pMesh->mNumVertices]; for( unsigned int a = 0; a < pMesh->mNumVertices; a++) { pMesh->mNormals[a] = uniqueVertices[a].normal; } } // Tangents, if present if( pMesh->mTangents) { delete [] pMesh->mTangents; pMesh->mTangents = new aiVector3D[pMesh->mNumVertices]; for( unsigned int a = 0; a < pMesh->mNumVertices; a++) { pMesh->mTangents[a] = uniqueVertices[a].tangent; } } // Bitangents as well if( pMesh->mBitangents) { delete [] pMesh->mBitangents; pMesh->mBitangents = new aiVector3D[pMesh->mNumVertices]; for( unsigned int a = 0; a < pMesh->mNumVertices; a++) { pMesh->mBitangents[a] = uniqueVertices[a].bitangent; } } // Vertex colors for( unsigned int a = 0; pMesh->HasVertexColors(a); a++) { delete [] pMesh->mColors[a]; pMesh->mColors[a] = new aiColor4D[pMesh->mNumVertices]; for( unsigned int b = 0; b < pMesh->mNumVertices; b++) { pMesh->mColors[a][b] = uniqueVertices[b].colors[a]; } } // Texture coords for( unsigned int a = 0; pMesh->HasTextureCoords(a); a++) { delete [] pMesh->mTextureCoords[a]; pMesh->mTextureCoords[a] = new aiVector3D[pMesh->mNumVertices]; for( unsigned int b = 0; b < pMesh->mNumVertices; b++) { pMesh->mTextureCoords[a][b] = uniqueVertices[b].texcoords[a]; } } // adjust the indices in all faces for( unsigned int a = 0; a < pMesh->mNumFaces; a++) { aiFace& face = pMesh->mFaces[a]; for( unsigned int b = 0; b < face.mNumIndices; b++) { face.mIndices[b] = replaceIndex[face.mIndices[b]] & ~0x80000000; } } // adjust bone vertex weights. for( int a = 0; a < (int)pMesh->mNumBones; a++) { aiBone* bone = pMesh->mBones[a]; std::vector newWeights; newWeights.reserve( bone->mNumWeights); if ( NULL != bone->mWeights ) { for ( unsigned int b = 0; b < bone->mNumWeights; b++ ) { const aiVertexWeight& ow = bone->mWeights[ b ]; // if the vertex is a unique one, translate it if ( !( replaceIndex[ ow.mVertexId ] & 0x80000000 ) ) { aiVertexWeight nw; nw.mVertexId = replaceIndex[ ow.mVertexId ]; nw.mWeight = ow.mWeight; newWeights.push_back( nw ); } } } else { DefaultLogger::get()->error( "X-Export: aiBone shall contain weights, but pointer to them is NULL." ); } if (newWeights.size() > 0) { // kill the old and replace them with the translated weights delete [] bone->mWeights; bone->mNumWeights = (unsigned int)newWeights.size(); bone->mWeights = new aiVertexWeight[bone->mNumWeights]; memcpy( bone->mWeights, &newWeights[0], bone->mNumWeights * sizeof( aiVertexWeight)); } else { /* NOTE: * * In the algorithm above we're assuming that there are no vertices * with a different bone weight setup at the same position. That wouldn't * make sense, but it is not absolutely impossible. SkeletonMeshBuilder * for example generates such input data if two skeleton points * share the same position. Again this doesn't make sense but is * reality for some model formats (MD5 for example uses these special * nodes as attachment tags for its weapons). * * Then it is possible that a bone has no weights anymore .... as a quick * workaround, we're just removing these bones. If they're animated, * model geometry might be modified but at least there's no risk of a crash. */ delete bone; --pMesh->mNumBones; for (unsigned int n = a; n < pMesh->mNumBones; ++n) { pMesh->mBones[n] = pMesh->mBones[n+1]; } --a; DefaultLogger::get()->warn("Removing bone -> no weights remaining"); } } return pMesh->mNumVertices; } #endif // !! ASSIMP_BUILD_NO_JOINVERTICES_PROCESS