/* Open Asset Import Library (assimp) ---------------------------------------------------------------------- Copyright (c) 2006-2024, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------- */ /** @file LWOAnimation.cpp * @brief LWOAnimationResolver utility class * * It's a very generic implementation of LightWave's system of * component-wise-animated stuff. The one and only fully free * implementation of LightWave envelopes of which I know. */ #if (!defined ASSIMP_BUILD_NO_LWO_IMPORTER) && (!defined ASSIMP_BUILD_NO_LWS_IMPORTER) #include // internal headers #include "LWOFileData.h" #include using namespace Assimp; using namespace Assimp::LWO; // ------------------------------------------------------------------------------------------------ // Construct an animation resolver from a given list of envelopes AnimResolver::AnimResolver(std::list &_envelopes, double tick) : envelopes(_envelopes), sample_rate(0.), envl_x(), envl_y(), envl_z(), end_x(), end_y(), end_z(), flags(), sample_delta() { trans_x = trans_y = trans_z = nullptr; rotat_x = rotat_y = rotat_z = nullptr; scale_x = scale_y = scale_z = nullptr; first = last = 150392.; // find transformation envelopes for (std::list::iterator it = envelopes.begin(); it != envelopes.end(); ++it) { (*it).old_first = 0; (*it).old_last = (*it).keys.size() - 1; if ((*it).keys.empty()) { continue; } if ((int)(*it).type < 1 || (int)(*it).type>EnvelopeType_Unknown) { continue; } switch ((*it).type) { // translation case LWO::EnvelopeType_Position_X: trans_x = &*it; break; case LWO::EnvelopeType_Position_Y: trans_y = &*it; break; case LWO::EnvelopeType_Position_Z: trans_z = &*it; break; // rotation case LWO::EnvelopeType_Rotation_Heading: rotat_x = &*it; break; case LWO::EnvelopeType_Rotation_Pitch: rotat_y = &*it; break; case LWO::EnvelopeType_Rotation_Bank: rotat_z = &*it; break; // scaling case LWO::EnvelopeType_Scaling_X: scale_x = &*it; break; case LWO::EnvelopeType_Scaling_Y: scale_y = &*it; break; case LWO::EnvelopeType_Scaling_Z: scale_z = &*it; break; default: continue; }; // convert from seconds to ticks for (std::vector::iterator d = (*it).keys.begin(); d != (*it).keys.end(); ++d) (*d).time *= tick; // set default animation range (minimum and maximum time value for which we have a keyframe) first = std::min(first, (*it).keys.front().time); last = std::max(last, (*it).keys.back().time); } // deferred setup of animation range to increase performance. // typically the application will want to specify its own. need_to_setup = true; } // ------------------------------------------------------------------------------------------------ // Reset all envelopes to their original contents void AnimResolver::ClearAnimRangeSetup() { for (std::list::iterator it = envelopes.begin(); it != envelopes.end(); ++it) { (*it).keys.erase((*it).keys.begin(), (*it).keys.begin() + (*it).old_first); (*it).keys.erase((*it).keys.begin() + (*it).old_last + 1, (*it).keys.end()); } } // ------------------------------------------------------------------------------------------------ // Insert additional keys to match LWO's pre& post behaviors. void AnimResolver::UpdateAnimRangeSetup() { // XXX doesn't work yet (hangs if more than one envelope channels needs to be interpolated) for (std::list::iterator it = envelopes.begin(); it != envelopes.end(); ++it) { if ((*it).keys.empty()) continue; const double my_first = (*it).keys.front().time; const double my_last = (*it).keys.back().time; const double delta = my_last - my_first; if (delta == 0.0) { continue; } const size_t old_size = (*it).keys.size(); const float value_delta = (*it).keys.back().value - (*it).keys.front().value; // NOTE: We won't handle reset, linear and constant here. // See DoInterpolation() for their implementation. // process pre behavior switch ((*it).pre) { case LWO::PrePostBehaviour_OffsetRepeat: case LWO::PrePostBehaviour_Repeat: case LWO::PrePostBehaviour_Oscillate: { const double start_time = delta - std::fmod(my_first - first, delta); std::vector::iterator n = std::find_if((*it).keys.begin(), (*it).keys.end(), [start_time](double t) { return start_time > t; }), m; size_t ofs = 0; if (n != (*it).keys.end()) { // copy from here - don't use iterators, insert() would invalidate them ofs = (*it).keys.end() - n; (*it).keys.insert((*it).keys.begin(), ofs, LWO::Key()); std::copy((*it).keys.end() - ofs, (*it).keys.end(), (*it).keys.begin()); } // do full copies. again, no iterators const unsigned int num = (unsigned int)((my_first - first) / delta); (*it).keys.resize((*it).keys.size() + num * old_size); n = (*it).keys.begin() + ofs; bool reverse = false; for (unsigned int i = 0; i < num; ++i) { m = n + old_size * (i + 1); std::copy(n, n + old_size, m); const bool res = ((*it).pre == LWO::PrePostBehaviour_Oscillate); reverse = !reverse; if (res && reverse) { std::reverse(m, m + old_size - 1); } } // update time values n = (*it).keys.end() - (old_size + 1); double cur_minus = delta; unsigned int tt = 1; for (const double tmp = delta * (num + 1); cur_minus <= tmp; cur_minus += delta, ++tt) { m = (delta == tmp ? (*it).keys.begin() : n - (old_size + 1)); for (; m != n; --n) { (*n).time -= cur_minus; // offset repeat? add delta offset to key value if ((*it).pre == LWO::PrePostBehaviour_OffsetRepeat) { (*n).value += tt * value_delta; } } } break; } default: // silence compiler warning break; } // process post behavior switch ((*it).post) { case LWO::PrePostBehaviour_OffsetRepeat: case LWO::PrePostBehaviour_Repeat: case LWO::PrePostBehaviour_Oscillate: break; default: // silence compiler warning break; } } } // ------------------------------------------------------------------------------------------------ // Extract bind pose matrix void AnimResolver::ExtractBindPose(aiMatrix4x4 &out) { // If we have no envelopes, return identity if (envelopes.empty()) { out = aiMatrix4x4(); return; } aiVector3D angles, scaling(1.f, 1.f, 1.f), translation; if (trans_x) translation.x = trans_x->keys[0].value; if (trans_y) translation.y = trans_y->keys[0].value; if (trans_z) translation.z = trans_z->keys[0].value; if (rotat_x) angles.x = rotat_x->keys[0].value; if (rotat_y) angles.y = rotat_y->keys[0].value; if (rotat_z) angles.z = rotat_z->keys[0].value; if (scale_x) scaling.x = scale_x->keys[0].value; if (scale_y) scaling.y = scale_y->keys[0].value; if (scale_z) scaling.z = scale_z->keys[0].value; // build the final matrix aiMatrix4x4 s, rx, ry, rz, t; aiMatrix4x4::RotationZ(angles.z, rz); aiMatrix4x4::RotationX(angles.y, rx); aiMatrix4x4::RotationY(angles.x, ry); aiMatrix4x4::Translation(translation, t); aiMatrix4x4::Scaling(scaling, s); out = t * ry * rx * rz * s; } // ------------------------------------------------------------------------------------------------ // Do a single interpolation on a channel void AnimResolver::DoInterpolation(std::vector::const_iterator cur, LWO::Envelope *envl, double time, float &fill) { if (envl->keys.size() == 1) { fill = envl->keys[0].value; return; } // check whether we're at the beginning of the animation track if (cur == envl->keys.begin()) { // ok ... this depends on pre behaviour now // we don't need to handle repeat&offset repeat&oszillate here, see UpdateAnimRangeSetup() switch (envl->pre) { case LWO::PrePostBehaviour_Linear: DoInterpolation2(cur, cur + 1, time, fill); return; case LWO::PrePostBehaviour_Reset: fill = 0.f; return; default: //case LWO::PrePostBehaviour_Constant: fill = (*cur).value; return; } } // check whether we're at the end of the animation track else if (cur == envl->keys.end() - 1 && time > envl->keys.rbegin()->time) { // ok ... this depends on post behaviour now switch (envl->post) { case LWO::PrePostBehaviour_Linear: DoInterpolation2(cur, cur - 1, time, fill); return; case LWO::PrePostBehaviour_Reset: fill = 0.f; return; default: //case LWO::PrePostBehaviour_Constant: fill = (*cur).value; return; } } // Otherwise do a simple interpolation DoInterpolation2(cur - 1, cur, time, fill); } // ------------------------------------------------------------------------------------------------ // Almost the same, except we won't handle pre/post conditions here void AnimResolver::DoInterpolation2(std::vector::const_iterator beg, std::vector::const_iterator end, double time, float &fill) { switch ((*end).inter) { case LWO::IT_STEP: // no interpolation at all - take the value of the last key fill = (*beg).value; return; default: // silence compiler warning break; } // linear interpolation - default double duration = (*end).time - (*beg).time; if (duration > 0.0) { fill = (*beg).value + ((*end).value - (*beg).value) * (float)(((time - (*beg).time) / duration)); } else { fill = (*beg).value; } } // ------------------------------------------------------------------------------------------------ // Subsample animation track by given key values void AnimResolver::SubsampleAnimTrack(std::vector & /*out*/, double /*time*/, double /*sample_delta*/) { //ai_assert(out.empty() && sample_delta); //const double time_start = out.back().mTime; // for () } // ------------------------------------------------------------------------------------------------ // Track interpolation void AnimResolver::InterpolateTrack(std::vector &out, aiVectorKey &fill, double time) { // subsample animation track? if (flags & AI_LWO_ANIM_FLAG_SAMPLE_ANIMS) { SubsampleAnimTrack(out, time, sample_delta); } fill.mTime = time; // get x if ((*cur_x).time == time) { fill.mValue.x = (*cur_x).value; if (cur_x != envl_x->keys.end() - 1) /* increment x */ ++cur_x; else end_x = true; } else DoInterpolation(cur_x, envl_x, time, (float &)fill.mValue.x); // get y if ((*cur_y).time == time) { fill.mValue.y = (*cur_y).value; if (cur_y != envl_y->keys.end() - 1) /* increment y */ ++cur_y; else end_y = true; } else DoInterpolation(cur_y, envl_y, time, (float &)fill.mValue.y); // get z if ((*cur_z).time == time) { fill.mValue.z = (*cur_z).value; if (cur_z != envl_z->keys.end() - 1) /* increment z */ ++cur_z; else end_x = true; } else DoInterpolation(cur_z, envl_z, time, (float &)fill.mValue.z); } // ------------------------------------------------------------------------------------------------ // Build linearly subsampled keys from three single envelopes, one for each component (x,y,z) void AnimResolver::GetKeys(std::vector &out, LWO::Envelope *_envl_x, LWO::Envelope *_envl_y, LWO::Envelope *_envl_z, unsigned int _flags) { envl_x = _envl_x; envl_y = _envl_y; envl_z = _envl_z; flags = _flags; // generate default channels if none are given LWO::Envelope def_x, def_y, def_z; LWO::Key key_dummy; key_dummy.time = 0.f; if ((envl_x && envl_x->type == LWO::EnvelopeType_Scaling_X) || (envl_y && envl_y->type == LWO::EnvelopeType_Scaling_Y) || (envl_z && envl_z->type == LWO::EnvelopeType_Scaling_Z)) { key_dummy.value = 1.f; } else key_dummy.value = 0.f; if (!envl_x) { envl_x = &def_x; envl_x->keys.push_back(key_dummy); } if (!envl_y) { envl_y = &def_y; envl_y->keys.push_back(key_dummy); } if (!envl_z) { envl_z = &def_z; envl_z->keys.push_back(key_dummy); } // guess how many keys we'll get size_t reserve; double sr = 1.; if (flags & AI_LWO_ANIM_FLAG_SAMPLE_ANIMS) { if (!sample_rate) sr = 100.f; else sr = sample_rate; sample_delta = 1.f / sr; reserve = (size_t)( std::max(envl_x->keys.rbegin()->time, std::max(envl_y->keys.rbegin()->time, envl_z->keys.rbegin()->time)) * sr); } else reserve = std::max(envl_x->keys.size(), std::max(envl_x->keys.size(), envl_z->keys.size())); out.reserve(reserve + (reserve >> 1)); // Iterate through all three arrays at once - it's tricky, but // rather interesting to implement. cur_x = envl_x->keys.begin(); cur_y = envl_y->keys.begin(); cur_z = envl_z->keys.begin(); end_x = end_y = end_z = false; while (true) { aiVectorKey fill; if ((*cur_x).time == (*cur_y).time && (*cur_x).time == (*cur_z).time) { // we have a keyframe for all of them defined .. this means // we don't need to interpolate here. fill.mTime = (*cur_x).time; fill.mValue.x = (*cur_x).value; fill.mValue.y = (*cur_y).value; fill.mValue.z = (*cur_z).value; // subsample animation track if (flags & AI_LWO_ANIM_FLAG_SAMPLE_ANIMS) { //SubsampleAnimTrack(out,cur_x, cur_y, cur_z, d, sample_delta); } } // Find key with lowest time value else if ((*cur_x).time <= (*cur_y).time && !end_x) { if ((*cur_z).time <= (*cur_x).time && !end_z) { InterpolateTrack(out, fill, (*cur_z).time); } else { InterpolateTrack(out, fill, (*cur_x).time); } } else if ((*cur_z).time <= (*cur_y).time && !end_y) { InterpolateTrack(out, fill, (*cur_y).time); } else if (!end_y) { // welcome on the server, y InterpolateTrack(out, fill, (*cur_y).time); } else { // we have reached the end of at least 2 channels, // only one is remaining. Extrapolate the 2. if (end_y) { InterpolateTrack(out, fill, (end_x ? (*cur_z) : (*cur_x)).time); } else if (end_x) { InterpolateTrack(out, fill, (end_z ? (*cur_y) : (*cur_z)).time); } else { // if (end_z) InterpolateTrack(out, fill, (end_y ? (*cur_x) : (*cur_y)).time); } } double lasttime = fill.mTime; out.push_back(fill); if (lasttime >= (*cur_x).time) { if (cur_x != envl_x->keys.end() - 1) ++cur_x; else end_x = true; } if (lasttime >= (*cur_y).time) { if (cur_y != envl_y->keys.end() - 1) ++cur_y; else end_y = true; } if (lasttime >= (*cur_z).time) { if (cur_z != envl_z->keys.end() - 1) ++cur_z; else end_z = true; } if (end_x && end_y && end_z) /* finished? */ break; } if (flags & AI_LWO_ANIM_FLAG_START_AT_ZERO) { for (std::vector::iterator it = out.begin(); it != out.end(); ++it) (*it).mTime -= first; } } // ------------------------------------------------------------------------------------------------ // Extract animation channel void AnimResolver::ExtractAnimChannel(aiNodeAnim **out, unsigned int /*= 0*/) { *out = nullptr; //FIXME: crashes if more than one component is animated at different timings, to be resolved. // If we have no envelopes, return nullptr if (envelopes.empty()) { return; } // We won't spawn an animation channel if we don't have at least one envelope with more than one keyframe defined. const bool trans = ((trans_x && trans_x->keys.size() > 1) || (trans_y && trans_y->keys.size() > 1) || (trans_z && trans_z->keys.size() > 1)); const bool rotat = ((rotat_x && rotat_x->keys.size() > 1) || (rotat_y && rotat_y->keys.size() > 1) || (rotat_z && rotat_z->keys.size() > 1)); const bool scale = ((scale_x && scale_x->keys.size() > 1) || (scale_y && scale_y->keys.size() > 1) || (scale_z && scale_z->keys.size() > 1)); if (!trans && !rotat && !scale) return; // Allocate the output animation aiNodeAnim *anim = *out = new aiNodeAnim(); // Setup default animation setup if necessary if (need_to_setup) { UpdateAnimRangeSetup(); need_to_setup = false; } // copy translation keys if (trans) { std::vector keys; GetKeys(keys, trans_x, trans_y, trans_z, flags); anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys = static_cast(keys.size())]; std::copy(keys.begin(), keys.end(), anim->mPositionKeys); } // copy rotation keys if (rotat) { std::vector keys; GetKeys(keys, rotat_x, rotat_y, rotat_z, flags); anim->mRotationKeys = new aiQuatKey[anim->mNumRotationKeys = static_cast(keys.size())]; // convert heading, pitch, bank to quaternion // mValue.x=Heading=Rot(Y), mValue.y=Pitch=Rot(X), mValue.z=Bank=Rot(Z) // Lightwave's rotation order is ZXY aiVector3D X(1.0, 0.0, 0.0); aiVector3D Y(0.0, 1.0, 0.0); aiVector3D Z(0.0, 0.0, 1.0); for (unsigned int i = 0; i < anim->mNumRotationKeys; ++i) { aiQuatKey &qk = anim->mRotationKeys[i]; qk.mTime = keys[i].mTime; qk.mValue = aiQuaternion(Y, keys[i].mValue.x) * aiQuaternion(X, keys[i].mValue.y) * aiQuaternion(Z, keys[i].mValue.z); } } // copy scaling keys if (scale) { std::vector keys; GetKeys(keys, scale_x, scale_y, scale_z, flags); anim->mScalingKeys = new aiVectorKey[anim->mNumScalingKeys = static_cast(keys.size())]; std::copy(keys.begin(), keys.end(), anim->mScalingKeys); } } #endif // no lwo or no lws