/* Open Asset Import Library (assimp) ---------------------------------------------------------------------- Copyright (c) 2006-2012, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------- */ /** @file FBXConverter.cpp * @brief Implementation of the FBX DOM -> aiScene converter */ #include "AssimpPCH.h" #ifndef ASSIMP_BUILD_NO_FBX_IMPORTER #include #include "FBXParser.h" #include "FBXConverter.h" #include "FBXDocument.h" #include "FBXUtil.h" #include "FBXProperties.h" #include "FBXImporter.h" namespace Assimp { namespace FBX { using namespace Util; // XXX vc9's debugger won't step into anonymous namespaces //namespace { /** Dummy class to encapsulate the conversion process */ class Converter { public: Converter(aiScene* out, const Document& doc) : out(out) , doc(doc) { ConvertRootNode(); ConvertAnimations(); if(doc.Settings().readAllMaterials) { // unfortunately this means we have to evaluate all objects BOOST_FOREACH(const ObjectMap::value_type& v,doc.Objects()) { const Object* ob = v.second->Get(); if(!ob) { continue; } const Material* mat = dynamic_cast(ob); if(mat) { if (materials_converted.find(mat) == materials_converted.end()) { ConvertMaterial(*mat); } } } } TransferDataToScene(); } ~Converter() { std::for_each(meshes.begin(),meshes.end(),Util::delete_fun()); std::for_each(materials.begin(),materials.end(),Util::delete_fun()); std::for_each(animations.begin(),animations.end(),Util::delete_fun()); } private: // ------------------------------------------------------------------------------------------------ // find scene root and trigger recursive scene conversion void ConvertRootNode() { out->mRootNode = new aiNode(); out->mRootNode->mName.Set("RootNode"); // root has ID 0 ConvertNodes(0L, *out->mRootNode); } // ------------------------------------------------------------------------------------------------ // collect and assign child nodes void ConvertNodes(uint64_t id, aiNode& parent) { const std::vector& conns = doc.GetConnectionsByDestinationSequenced(id, "Model"); std::vector nodes; nodes.reserve(conns.size()); BOOST_FOREACH(const Connection* con, conns) { // ignore object-property links if(con->PropertyName().length()) { continue; } const Object* const object = con->SourceObject(); if(!object) { FBXImporter::LogWarn("failed to convert source object for node link"); continue; } const Model* const model = dynamic_cast(object); if(model) { aiNode* nd = new aiNode(); nodes.push_back(nd); nd->mName.Set(FixNodeName(model->Name())); nd->mParent = &parent; ConvertTransformation(*model,*nd); ConvertModel(*model, *nd); ConvertNodes(model->ID(), *nd); } } if(nodes.size()) { parent.mChildren = new aiNode*[nodes.size()](); parent.mNumChildren = static_cast(nodes.size()); std::swap_ranges(nodes.begin(),nodes.end(),parent.mChildren); } } // ------------------------------------------------------------------------------------------------ void ConvertTransformation(const Model& model, aiNode& nd) { const PropertyTable& props = model.Props(); bool ok; aiVector3D Translation = PropertyGet(props,"Lcl Translation",ok); if(!ok) { Translation = aiVector3D(0.0f,0.0f,0.0f); } aiVector3D Scaling = PropertyGet(props,"Lcl Scaling",ok); if(!ok) { Scaling = aiVector3D(1.0f,1.0f,1.0f); } // XXX euler angles, radians, xyz order? aiVector3D Rotation = PropertyGet(props,"Lcl Rotation",ok); if(!ok) { Rotation = aiVector3D(0.0f,0.0f,0.0f); } aiMatrix4x4 temp; nd.mTransformation = aiMatrix4x4::Scaling(Scaling,temp); if(fabs(Rotation.x) > 1e-6f) { nd.mTransformation *= aiMatrix4x4::RotationX(Rotation.x,temp); } if(fabs(Rotation.y) > 1e-6f) { nd.mTransformation *= aiMatrix4x4::RotationY(Rotation.y,temp); } if(fabs(Rotation.z) > 1e-6f) { nd.mTransformation *= aiMatrix4x4::RotationZ(Rotation.z,temp); } nd.mTransformation.a4 = Translation.x; nd.mTransformation.b4 = Translation.y; nd.mTransformation.c4 = Translation.z; } // ------------------------------------------------------------------------------------------------ void ConvertModel(const Model& model, aiNode& nd) { const std::vector& geos = model.GetGeometry(); std::vector meshes; meshes.reserve(geos.size()); BOOST_FOREACH(const Geometry* geo, geos) { const MeshGeometry* const mesh = dynamic_cast(geo); if(mesh) { const std::vector& indices = ConvertMesh(*mesh, model); std::copy(indices.begin(),indices.end(),std::back_inserter(meshes) ); } else { FBXImporter::LogWarn("ignoring unrecognized geometry: " + geo->Name()); } } if(meshes.size()) { nd.mMeshes = new unsigned int[meshes.size()](); nd.mNumMeshes = static_cast(meshes.size()); std::swap_ranges(meshes.begin(),meshes.end(),nd.mMeshes); } } // ------------------------------------------------------------------------------------------------ // MeshGeometry -> aiMesh, return mesh index + 1 or 0 if the conversion failed std::vector ConvertMesh(const MeshGeometry& mesh, const Model& model) { std::vector temp; MeshMap::const_iterator it = meshes_converted.find(&mesh); if (it != meshes_converted.end()) { std::copy((*it).second.begin(),(*it).second.end(),std::back_inserter(temp)); return temp; } const std::vector& vertices = mesh.GetVertices(); const std::vector& faces = mesh.GetFaceIndexCounts(); if(vertices.empty() || faces.empty()) { FBXImporter::LogWarn("ignoring empty geometry: " + mesh.Name()); return temp; } // one material per mesh maps easily to aiMesh. Multiple material // meshes need to be split. const std::vector& mindices = mesh.GetMaterialIndices(); if (doc.Settings().readMaterials && !mindices.empty()) { const unsigned int base = mindices[0]; BOOST_FOREACH(unsigned int index, mindices) { if(index != base) { return ConvertMeshMultiMaterial(mesh, model); } } } // faster codepath, just copy the data temp.push_back(ConvertMeshSingleMaterial(mesh, model)); return temp; } // ------------------------------------------------------------------------------------------------ aiMesh* SetupEmptyMesh(const MeshGeometry& mesh, unsigned int material_index) { aiMesh* const out_mesh = new aiMesh(); meshes.push_back(out_mesh); meshes_converted[&mesh].push_back(static_cast(meshes.size()-1)); // set name std::string name = mesh.Name(); if (name.substr(0,10) == "Geometry::") { name = name.substr(10); } if(name.length()) { out_mesh->mName.Set(name); } return out_mesh; } // ------------------------------------------------------------------------------------------------ unsigned int ConvertMeshSingleMaterial(const MeshGeometry& mesh, const Model& model) { const std::vector& mindices = mesh.GetMaterialIndices(); aiMesh* const out_mesh = SetupEmptyMesh(mesh,mindices.size() ? mindices[0] : static_cast(-1)); const std::vector& vertices = mesh.GetVertices(); const std::vector& faces = mesh.GetFaceIndexCounts(); // copy vertices out_mesh->mNumVertices = static_cast(vertices.size()); out_mesh->mVertices = new aiVector3D[vertices.size()]; std::copy(vertices.begin(),vertices.end(),out_mesh->mVertices); // generate dummy faces out_mesh->mNumFaces = static_cast(faces.size()); aiFace* fac = out_mesh->mFaces = new aiFace[faces.size()](); unsigned int cursor = 0; BOOST_FOREACH(unsigned int pcount, faces) { aiFace& f = *fac++; f.mNumIndices = pcount; f.mIndices = new unsigned int[pcount]; switch(pcount) { case 1: out_mesh->mPrimitiveTypes |= aiPrimitiveType_POINT; break; case 2: out_mesh->mPrimitiveTypes |= aiPrimitiveType_LINE; break; case 3: out_mesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE; break; default: out_mesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON; break; } for (unsigned int i = 0; i < pcount; ++i) { f.mIndices[i] = cursor++; } } // copy normals const std::vector& normals = mesh.GetNormals(); if(normals.size()) { ai_assert(normals.size() == vertices.size()); out_mesh->mNormals = new aiVector3D[vertices.size()]; std::copy(normals.begin(),normals.end(),out_mesh->mNormals); } // copy tangents - assimp requires both tangents and bitangents (binormals) // to be present, or neither of them. Compute binormals from normals // and tangents if needed. const std::vector& tangents = mesh.GetTangents(); const std::vector* binormals = &mesh.GetBinormals(); if(tangents.size()) { std::vector tempBinormals; if (!binormals->size()) { if (normals.size()) { tempBinormals.resize(normals.size()); for (unsigned int i = 0; i < tangents.size(); ++i) { tempBinormals[i] = normals[i] ^ tangents[i]; } binormals = &tempBinormals; } else { binormals = NULL; } } if(binormals) { ai_assert(tangents.size() == vertices.size() && binormals->size() == vertices.size()); out_mesh->mTangents = new aiVector3D[vertices.size()]; std::copy(tangents.begin(),tangents.end(),out_mesh->mTangents); out_mesh->mBitangents = new aiVector3D[vertices.size()]; std::copy(binormals->begin(),binormals->end(),out_mesh->mBitangents); } } // copy texture coords for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) { const std::vector& uvs = mesh.GetTextureCoords(i); if(uvs.empty()) { break; } aiVector3D* out_uv = out_mesh->mTextureCoords[i] = new aiVector3D[vertices.size()]; BOOST_FOREACH(const aiVector2D& v, uvs) { *out_uv++ = aiVector3D(v.x,v.y,0.0f); } out_mesh->mNumUVComponents[i] = 2; } // copy vertex colors for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_COLOR_SETS; ++i) { const std::vector& colors = mesh.GetVertexColors(i); if(colors.empty()) { break; } out_mesh->mColors[i] = new aiColor4D[vertices.size()]; std::copy(colors.begin(),colors.end(),out_mesh->mColors[i]); } if(!doc.Settings().readMaterials || mindices.empty()) { FBXImporter::LogError("no material assigned to mesh, setting default material"); out_mesh->mMaterialIndex = GetDefaultMaterial(); } else { ConvertMaterialForMesh(out_mesh,model,mesh,mindices[0]); } if(doc.Settings().readWeights && mesh.DeformerSkin() != NULL) { ConvertWeights(out_mesh, model, mesh, std::numeric_limits::max()); } return static_cast(meshes.size() - 1); } // ------------------------------------------------------------------------------------------------ std::vector ConvertMeshMultiMaterial(const MeshGeometry& mesh, const Model& model) { const std::vector& mindices = mesh.GetMaterialIndices(); ai_assert(mindices.size()); std::set had; std::vector indices; BOOST_FOREACH(unsigned int index, mindices) { if(had.find(index) == had.end()) { indices.push_back(ConvertMeshMultiMaterial(mesh, model, index)); had.insert(index); } } return indices; } // ------------------------------------------------------------------------------------------------ unsigned int ConvertMeshMultiMaterial(const MeshGeometry& mesh, const Model& model, unsigned int index) { aiMesh* const out_mesh = SetupEmptyMesh(mesh, index); const std::vector& mindices = mesh.GetMaterialIndices(); const std::vector& vertices = mesh.GetVertices(); const std::vector& faces = mesh.GetFaceIndexCounts(); unsigned int count_faces = 0; unsigned int count_vertices = 0; // count faces for(std::vector::const_iterator it = mindices.begin(), end = mindices.end(), itf = faces.begin(); it != end; ++it, ++itf) { if ((*it) != index) { continue; } ++count_faces; count_vertices += *itf; } ai_assert(count_faces); // allocate output data arrays, but don't fill them yet out_mesh->mNumVertices = count_vertices; out_mesh->mVertices = new aiVector3D[count_vertices]; out_mesh->mNumFaces = count_faces; aiFace* fac = out_mesh->mFaces = new aiFace[count_faces](); // allocate normals const std::vector& normals = mesh.GetNormals(); if(normals.size()) { ai_assert(normals.size() == vertices.size()); out_mesh->mNormals = new aiVector3D[vertices.size()]; } // allocate tangents, binormals. const std::vector& tangents = mesh.GetTangents(); const std::vector* binormals = &mesh.GetBinormals(); if(tangents.size()) { std::vector tempBinormals; if (!binormals->size()) { if (normals.size()) { // XXX this computes the binormals for the entire mesh, not only // the part for which we need them. tempBinormals.resize(normals.size()); for (unsigned int i = 0; i < tangents.size(); ++i) { tempBinormals[i] = normals[i] ^ tangents[i]; } binormals = &tempBinormals; } else { binormals = NULL; } } if(binormals) { ai_assert(tangents.size() == vertices.size() && binormals->size() == vertices.size()); out_mesh->mTangents = new aiVector3D[vertices.size()]; out_mesh->mBitangents = new aiVector3D[vertices.size()]; } } // allocate texture coords unsigned int num_uvs = 0; for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i, ++num_uvs) { const std::vector& uvs = mesh.GetTextureCoords(i); if(uvs.empty()) { break; } out_mesh->mTextureCoords[i] = new aiVector3D[vertices.size()]; out_mesh->mNumUVComponents[i] = 2; } // allocate vertex colors unsigned int num_vcs = 0; for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_COLOR_SETS; ++i, ++num_vcs) { const std::vector& colors = mesh.GetVertexColors(i); if(colors.empty()) { break; } out_mesh->mColors[i] = new aiColor4D[vertices.size()]; } unsigned int cursor = 0, in_cursor = 0; for(std::vector::const_iterator it = mindices.begin(), end = mindices.end(), itf = faces.begin(); it != end; ++it, ++itf) { const unsigned int pcount = *itf; if ((*it) != index) { in_cursor += pcount; continue; } aiFace& f = *fac++; f.mNumIndices = pcount; f.mIndices = new unsigned int[pcount]; switch(pcount) { case 1: out_mesh->mPrimitiveTypes |= aiPrimitiveType_POINT; break; case 2: out_mesh->mPrimitiveTypes |= aiPrimitiveType_LINE; break; case 3: out_mesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE; break; default: out_mesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON; break; } for (unsigned int i = 0; i < pcount; ++i, ++cursor, ++in_cursor) { f.mIndices[i] = cursor; out_mesh->mVertices[cursor] = vertices[in_cursor]; if(out_mesh->mNormals) { out_mesh->mNormals[cursor] = normals[in_cursor]; } if(out_mesh->mTangents) { out_mesh->mTangents[cursor] = tangents[in_cursor]; out_mesh->mBitangents[cursor] = (*binormals)[in_cursor]; } for (unsigned int i = 0; i < num_uvs; ++i) { const std::vector& uvs = mesh.GetTextureCoords(i); out_mesh->mTextureCoords[i][cursor] = aiVector3D(uvs[in_cursor].x,uvs[in_cursor].y, 0.0f); } for (unsigned int i = 0; i < num_vcs; ++i) { const std::vector& cols = mesh.GetVertexColors(i); out_mesh->mColors[i][cursor] = cols[in_cursor]; } } } ConvertMaterialForMesh(out_mesh,model,mesh,index); return static_cast(meshes.size() - 1); } // ------------------------------------------------------------------------------------------------ void ConvertWeights(aiMesh* out, const Model& model, const MeshGeometry& geo, unsigned int materialIndex) { ai_assert(geo.DeformerSkin()); std::vector out_indices; std::vector index_out_indices; std::vector count_out_indices; const Skin& sk = *geo.DeformerSkin(); std::vector bones; bones.reserve(sk.Clusters().size()); const bool no_mat_check = materialIndex == std::numeric_limits::max(); try { BOOST_FOREACH(const Cluster* cluster, sk.Clusters()) { ai_assert(cluster); const WeightIndexArray& indices = cluster->GetIndices(); const WeightArray& weights = cluster->GetWeights(); if(indices.empty()) { continue; } const MatIndexArray& mats = geo.GetMaterialIndices(); bool ok = false; const size_t no_index_sentinel = std::numeric_limits::max(); count_out_indices.clear(); index_out_indices.clear(); out_indices.clear(); // now check if *any* of these weights is contained in the output mesh, // taking notes so we don't need to do it twice. BOOST_FOREACH(WeightIndexArray::value_type index, indices) { unsigned int count; const unsigned int* const out_idx = geo.ToOutputVertexIndex(index, count); index_out_indices.push_back(no_index_sentinel); for(unsigned int i = 0; i < count; ++i) { const unsigned int out_face_idx = geo.FaceForVertexIndex(out_idx[i]); ai_assert(out_face_idx <= mats.size()); if (no_mat_check || mats[out_face_idx] == materialIndex) { if (index_out_indices.back() == no_index_sentinel) { index_out_indices.back() = out_indices.size(); } out_indices.push_back(out_idx[i]); ++count_out_indices.back(); ok = true; } } } // if we found at least one, generate the output bones // XXX this could be heavily simplified by collecting the bone // data in a single step. if (ok) { ConvertCluster(bones, *cluster, out_indices, index_out_indices, count_out_indices); } } } catch (std::exception&) { std::for_each(bones.begin(),bones.end(),Util::delete_fun()); throw; } if(bones.empty()) { return; } out->mBones = new aiBone*[bones.size()](); out->mNumBones = static_cast(bones.size()); std::swap_ranges(bones.begin(),bones.end(),out->mBones); } // ------------------------------------------------------------------------------------------------ void ConvertCluster(std::vector& bones, const Cluster& cl, std::vector& out_indices, std::vector& index_out_indices, std::vector& count_out_indices ) { aiBone* const bone = new aiBone(); bones.push_back(bone); bone->mName = FixNodeName(cl.TargetNode()->Name()); bone->mNumWeights = static_cast(out_indices.size()); aiVertexWeight* cursor = bone->mWeights = new aiVertexWeight[out_indices.size()]; const size_t no_index_sentinel = std::numeric_limits::max(); const WeightArray& weights = cl.GetWeights(); const size_t c = index_out_indices.size(); for (size_t i = 0; i < c; ++i) { const size_t index_index = index_out_indices[i]; if (index_index == no_index_sentinel) { continue; } const size_t cc = count_out_indices[i]; for (size_t j = 0; j < cc; ++j) { aiVertexWeight& out_weight = *cursor++; out_weight.mVertexId = static_cast(out_indices[index_index + j]); out_weight.mWeight = weights[i]; } } } // ------------------------------------------------------------------------------------------------ void ConvertMaterialForMesh(aiMesh* out, const Model& model, const MeshGeometry& geo, unsigned int materialIndex) { // locate source materials for this mesh const std::vector& mats = model.GetMaterials(); if (materialIndex >= mats.size()) { FBXImporter::LogError("material index out of bounds, setting default material"); out->mMaterialIndex = GetDefaultMaterial(); return; } const Material* const mat = mats[materialIndex]; MaterialMap::const_iterator it = materials_converted.find(mat); if (it != materials_converted.end()) { out->mMaterialIndex = (*it).second; return; } out->mMaterialIndex = ConvertMaterial(*mat); materials_converted[mat] = out->mMaterialIndex; } // ------------------------------------------------------------------------------------------------ unsigned int GetDefaultMaterial() { if (defaultMaterialIndex) { return defaultMaterialIndex - 1; } aiMaterial* out_mat = new aiMaterial(); materials.push_back(out_mat); const aiColor3D diffuse = aiColor3D(0.8f,0.8f,0.8f); out_mat->AddProperty(&diffuse,1,AI_MATKEY_COLOR_DIFFUSE); aiString s; s.Set(AI_DEFAULT_MATERIAL_NAME); out_mat->AddProperty(&s,AI_MATKEY_NAME); defaultMaterialIndex = static_cast(materials.size()); return defaultMaterialIndex - 1; } // ------------------------------------------------------------------------------------------------ // Material -> aiMaterial unsigned int ConvertMaterial(const Material& material) { const PropertyTable& props = material.Props(); // generate empty output material aiMaterial* out_mat = new aiMaterial(); materials_converted[&material] = static_cast(materials.size()); materials.push_back(out_mat); aiString str; // stip Material:: prefix std::string name = material.Name(); if(name.substr(0,10) == "Material::") { name = name.substr(10); } // set material name if not empty - this could happen // and there should be no key for it in this case. if(name.length()) { str.Set(name); out_mat->AddProperty(&str,AI_MATKEY_NAME); } // shading stuff and colors SetShadingPropertiesCommon(out_mat,props); // texture assignments SetTextureProperties(out_mat,material.Textures()); return static_cast(materials.size() - 1); } // ------------------------------------------------------------------------------------------------ void TrySetTextureProperties(aiMaterial* out_mat, const TextureMap& textures, const std::string& propName, aiTextureType target) { TextureMap::const_iterator it = textures.find(propName); if(it == textures.end()) { return; } const Texture* const tex = (*it).second; aiString path; path.Set(tex->RelativeFilename()); out_mat->AddProperty(&path,_AI_MATKEY_TEXTURE_BASE,target,0); aiUVTransform uvTrafo; // XXX handle all kinds of UV transformations uvTrafo.mScaling = tex->UVScaling(); uvTrafo.mTranslation = tex->UVTranslation(); out_mat->AddProperty(&uvTrafo,1,_AI_MATKEY_UVTRANSFORM_BASE,target,0); const PropertyTable& props = tex->Props(); int uvIndex = 0; bool ok; const std::string& uvSet = PropertyGet(props,"UVSet",ok); if(ok) { // "default" is the name which usually appears in the FbxFileTexture template if(uvSet != "default" && uvSet.length()) { // this is a bit awkward - we need to find a mesh that uses this // material and scan its UV channels for the given UV name because // assimp references UV channels by index, not by name. // XXX: the case that UV channels may appear in different orders // in meshes is unhandled. A possible solution would be to sort // the UV channels alphabetically, but this would have the side // effect that the primary (first) UV channel would sometimes // be moved, causing trouble when users read only the first // UV channel and ignore UV channel assignments altogether. const unsigned int matIndex = static_cast(std::distance(materials.begin(), std::find(materials.begin(),materials.end(),out_mat) )); uvIndex = -1; BOOST_FOREACH(const MeshMap::value_type& v,meshes_converted) { const MeshGeometry* const mesh = dynamic_cast (v.first); if(!mesh) { continue; } const std::vector& mats = mesh->GetMaterialIndices(); if(std::find(mats.begin(),mats.end(),matIndex) == mats.end()) { continue; } int index = -1; for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) { if(mesh->GetTextureCoords(i).empty()) { break; } const std::string& name = mesh->GetTextureCoordChannelName(i); if(name == uvSet) { index = static_cast(i); break; } } if(index == -1) { FBXImporter::LogWarn("did not find UV channel named " + uvSet + " in a mesh using this material"); continue; } if(uvIndex == -1) { uvIndex = index; } else { FBXImporter::LogWarn("the UV channel named " + uvSet + " appears at different positions in meshes, results will be wrong"); } } if(uvIndex == -1) { FBXImporter::LogWarn("failed to resolve UV channel " + uvSet + ", using first UV channel"); uvIndex = 0; } } } out_mat->AddProperty(&uvIndex,1,_AI_MATKEY_UVWSRC_BASE,target,0); } // ------------------------------------------------------------------------------------------------ void SetTextureProperties(aiMaterial* out_mat, const TextureMap& textures) { TrySetTextureProperties(out_mat, textures, "DiffuseColor", aiTextureType_DIFFUSE); TrySetTextureProperties(out_mat, textures, "AmbientColor", aiTextureType_AMBIENT); TrySetTextureProperties(out_mat, textures, "EmissiveColor", aiTextureType_EMISSIVE); TrySetTextureProperties(out_mat, textures, "SpecularColor", aiTextureType_SPECULAR); TrySetTextureProperties(out_mat, textures, "TransparentColor", aiTextureType_OPACITY); TrySetTextureProperties(out_mat, textures, "ReflectionColor", aiTextureType_REFLECTION); TrySetTextureProperties(out_mat, textures, "DisplacementColor", aiTextureType_DISPLACEMENT); TrySetTextureProperties(out_mat, textures, "NormalMap", aiTextureType_NORMALS); TrySetTextureProperties(out_mat, textures, "Bump", aiTextureType_HEIGHT); } // ------------------------------------------------------------------------------------------------ aiColor3D GetColorPropertyFromMaterial(const PropertyTable& props,const std::string& baseName, bool& result) { result = true; bool ok; const aiVector3D& Diffuse = PropertyGet(props,baseName,ok); if(ok) { return aiColor3D(Diffuse.x,Diffuse.y,Diffuse.z); } else { aiVector3D DiffuseColor = PropertyGet(props,baseName + "Color",ok); if(ok) { float DiffuseFactor = PropertyGet(props,baseName + "Factor",ok); if(ok) { DiffuseColor *= DiffuseFactor; } return aiColor3D(DiffuseColor.x,DiffuseColor.y,DiffuseColor.z); } } result = false; return aiColor3D(0.0f,0.0f,0.0f); } // ------------------------------------------------------------------------------------------------ void SetShadingPropertiesCommon(aiMaterial* out_mat, const PropertyTable& props) { // set shading properties. There are various, redundant ways in which FBX materials // specify their shading settings (depending on shading models, prop // template etc.). No idea which one is right in a particular context. // Just try to make sense of it - there's no spec to verify this against, // so why should we. bool ok; const aiColor3D& Diffuse = GetColorPropertyFromMaterial(props,"Diffuse",ok); if(ok) { out_mat->AddProperty(&Diffuse,1,AI_MATKEY_COLOR_DIFFUSE); } const aiColor3D& Emissive = GetColorPropertyFromMaterial(props,"Emissive",ok); if(ok) { out_mat->AddProperty(&Emissive,1,AI_MATKEY_COLOR_EMISSIVE); } const aiColor3D& Ambient = GetColorPropertyFromMaterial(props,"Ambient",ok); if(ok) { out_mat->AddProperty(&Ambient,1,AI_MATKEY_COLOR_AMBIENT); } const aiColor3D& Specular = GetColorPropertyFromMaterial(props,"Specular",ok); if(ok) { out_mat->AddProperty(&Specular,1,AI_MATKEY_COLOR_SPECULAR); } const float Opacity = PropertyGet(props,"Opacity",ok); if(ok) { out_mat->AddProperty(&Opacity,1,AI_MATKEY_OPACITY); } const float Reflectivity = PropertyGet(props,"Reflectivity",ok); if(ok) { out_mat->AddProperty(&Reflectivity,1,AI_MATKEY_REFLECTIVITY); } const float Shininess = PropertyGet(props,"Shininess",ok); if(ok) { out_mat->AddProperty(&Shininess,1,AI_MATKEY_SHININESS_STRENGTH); } const float ShininessExponent = PropertyGet(props,"ShininessExponent",ok); if(ok) { out_mat->AddProperty(&ShininessExponent,1,AI_MATKEY_SHININESS); } } // ------------------------------------------------------------------------------------------------ // convert animation data to aiAnimation et al void ConvertAnimations() { const std::vector& animations = doc.AnimationStacks(); BOOST_FOREACH(const AnimationStack* stack, animations) { ConvertAnimationStack(*stack); } } // name -> prefix_stripped? typedef std::map NodeNameMap; NodeNameMap node_names; // ------------------------------------------------------------------------------------------------ std::string FixNodeName(const std::string& name) { // strip Model:: prefix, avoiding ambiguities (i.e. don't strip if // this causes ambiguities, well possible between empty identifiers, // such as "Model::" and ""). Make sure the behaviour is consistent // across multiple calls to FixNodeName(). if(name.substr(0,7) == "Model::") { std::string temp = name.substr(7); const NodeNameMap::const_iterator it = node_names.find(temp); if (it != node_names.end()) { if (!(*it).second) { return FixNodeName(name + "_"); } } node_names[temp] = true; return temp; } const NodeNameMap::const_iterator it = node_names.find(name); if (it != node_names.end()) { if ((*it).second) { return FixNodeName(name + "_"); } } node_names[name] = false; return name; } typedef std::map LayerMap; // ------------------------------------------------------------------------------------------------ void ConvertAnimationStack(const AnimationStack& st) { const AnimationLayerList& layers = st.Layers(); if(layers.empty()) { return; } aiAnimation* const anim = new aiAnimation(); animations.push_back(anim); // strip AnimationStack:: prefix std::string name = st.Name(); if(name.substr(0,16) == "AnimationStack::") { name = name.substr(16); } anim->mName.Set(name); // need to find all nodes for which we need to generate node animations - // it may happen that we need to merge multiple layers, though. // XXX: better use multi_map .. typedef std::map > NodeMap; NodeMap node_map; // reverse mapping from curves to layers, much faster than querying // the FBX DOM for it. LayerMap layer_map; BOOST_FOREACH(const AnimationLayer* layer, layers) { ai_assert(layer); const AnimationCurveNodeList& nodes = layer->Nodes(); BOOST_FOREACH(const AnimationCurveNode* node, nodes) { ai_assert(node); const Model* const model = dynamic_cast(node->Target()); // this can happen - it could also be a NodeAttribute (i.e. for camera animations) if(!model) { continue; } const std::string& name = FixNodeName(model->Name()); node_map[name].push_back(node); layer_map[node] = layer; } } // generate node animations std::vector node_anims; double min_time = 1e10; double max_time = -1e10; try { NodeMap node_property_map; BOOST_FOREACH(const NodeMap::value_type& kv, node_map) { node_property_map.clear(); ai_assert(kv.second.size()); const AnimationCurveNode* curve_node; BOOST_FOREACH(const AnimationCurveNode* node, kv.second) { ai_assert(node); if (node->TargetProperty().empty()) { FBXImporter::LogWarn("target property for animation curve not set"); continue; } curve_node = node; if (node->Curves().empty()) { FBXImporter::LogWarn("no animation curves assigned to AnimationCurveNode"); continue; } node_property_map[node->TargetProperty()].push_back(node); } ai_assert(curve_node); const NodeMap::const_iterator itScale = node_property_map.find("Lcl Scaling"); const NodeMap::const_iterator itRotation = node_property_map.find("Lcl Rotation"); const NodeMap::const_iterator itTranslation = node_property_map.find("Lcl Translation"); const bool hasScale = itScale != node_property_map.end(); const bool hasRotation = itRotation != node_property_map.end(); const bool hasTranslation = itTranslation != node_property_map.end(); if (!hasScale && !hasRotation && !hasTranslation) { FBXImporter::LogWarn("ignoring node animation, did not find transformation key frames"); continue; } aiNodeAnim* const na = new aiNodeAnim(); node_anims.push_back(na); na->mNodeName.Set(kv.first); ai_assert(curve_node->TargetAsModel()); const PropertyTable& props = curve_node->TargetAsModel()->Props(); // if a particular transformation is not given, grab it from // the corresponding node to meet the semantics of aiNodeAnim, // which requires all of rotation, scaling and translation // to be set. if(hasScale) { ConvertScaleKeys(na, (*itScale).second, layer_map, max_time, min_time); } else { na->mScalingKeys = new aiVectorKey[1]; na->mNumScalingKeys = 1; na->mScalingKeys[0].mTime = 0.; na->mScalingKeys[0].mValue = PropertyGet(props,"Lcl Scaling",aiVector3D(1.f,1.f,1.f)); } if(hasRotation) { ConvertRotationKeys(na, (*itRotation).second, layer_map, max_time, min_time); } else { na->mRotationKeys = new aiQuatKey[1]; na->mNumRotationKeys = 1; na->mRotationKeys[0].mTime = 0.; na->mRotationKeys[0].mValue = EulerToQuaternion( PropertyGet(props,"Lcl Rotation",aiVector3D(0.f,0.f,0.f)) ); } if(hasTranslation) { ConvertTranslationKeys(na, (*itTranslation).second, layer_map, max_time, min_time); } else { na->mPositionKeys = new aiVectorKey[1]; na->mNumPositionKeys = 1; na->mPositionKeys[0].mTime = 0.; na->mPositionKeys[0].mValue = PropertyGet(props,"Lcl Translation",aiVector3D(0.f,0.f,0.f)); } } } catch(std::exception&) { std::for_each(node_anims.begin(), node_anims.end(), Util::delete_fun()); throw; } if(node_anims.size()) { anim->mChannels = new aiNodeAnim*[node_anims.size()](); anim->mNumChannels = static_cast(node_anims.size()); std::swap_ranges(node_anims.begin(),node_anims.end(),anim->mChannels); } else { // empty animations would fail validation, so drop them delete anim; animations.pop_back(); FBXImporter::LogInfo("ignoring empty AnimationStack: " + name); return; } // for some mysterious reason, mDuration is simply the maximum key -- the // validator always assumes animations to start at zero. anim->mDuration = max_time /*- min_time */; anim->mTicksPerSecond = 1000.0; } // key (time), value, mapto (component index) typedef boost::tuple< const KeyTimeList*, const KeyValueList*, unsigned int > KeyFrameList; typedef std::vector KeyFrameListList; // ------------------------------------------------------------------------------------------------ KeyFrameListList GetKeyframeList(const std::vector& nodes) { KeyFrameListList inputs; inputs.reserve(nodes.size()*3); BOOST_FOREACH(const AnimationCurveNode* node, nodes) { ai_assert(node); const AnimationCurveMap& curves = node->Curves(); BOOST_FOREACH(const AnimationCurveMap::value_type& kv, curves) { unsigned int mapto; if (kv.first == "d|X") { mapto = 0; } else if (kv.first == "d|Y") { mapto = 1; } else if (kv.first == "d|Z") { mapto = 2; } else { FBXImporter::LogWarn("ignoring scale animation curve, did not recognize target component"); continue; } const AnimationCurve* const curve = kv.second; ai_assert(curve->GetKeys().size() == curve->GetValues().size() && curve->GetKeys().size()); inputs.push_back(boost::make_tuple(&curve->GetKeys(), &curve->GetValues(), mapto)); } } return inputs; // pray for NRVO :-) } // ------------------------------------------------------------------------------------------------ KeyTimeList GetKeyTimeList(const KeyFrameListList& inputs) { ai_assert(inputs.size()); // reserve some space upfront - it is likely that the keyframe lists // have matching time values, so max(of all keyframe lists) should // be a good estimate. KeyTimeList keys; size_t estimate = 0; BOOST_FOREACH(const KeyFrameList& kfl, inputs) { estimate = std::max(estimate, kfl.get<0>()->size()); } keys.reserve(estimate); std::vector next_pos; next_pos.resize(inputs.size(),0); const size_t count = inputs.size(); while(true) { uint64_t min_tick = std::numeric_limits::max(); for (size_t i = 0; i < count; ++i) { const KeyFrameList& kfl = inputs[i]; if (kfl.get<0>()->size() > next_pos[i] && kfl.get<0>()->at(next_pos[i]) < min_tick) { min_tick = kfl.get<0>()->at(next_pos[i]); } } if (min_tick == std::numeric_limits::max()) { break; } keys.push_back(min_tick); for (size_t i = 0; i < count; ++i) { const KeyFrameList& kfl = inputs[i]; while(kfl.get<0>()->size() > next_pos[i] && kfl.get<0>()->at(next_pos[i]) == min_tick) { ++next_pos[i]; } } } return keys; } // ------------------------------------------------------------------------------------------------ void InterpolateKeys(aiVectorKey* valOut,const KeyTimeList& keys, const KeyFrameListList& inputs, const bool geom, double& maxTime, double& minTime) { ai_assert(keys.size()); ai_assert(valOut); std::vector next_pos; const size_t count = inputs.size(); next_pos.resize(inputs.size(),0); BOOST_FOREACH(KeyTimeList::value_type time, keys) { float result[3] = {0.0f, 0.0f, 0.0f}; if(geom) { result[0] = result[1] = result[2] = 1.0f; } for (size_t i = 0; i < count; ++i) { const KeyFrameList& kfl = inputs[i]; const size_t ksize = kfl.get<0>()->size(); if (ksize > next_pos[i] && kfl.get<0>()->at(next_pos[i]) == time) { ++next_pos[i]; } const size_t id0 = next_pos[i]>0 ? next_pos[i]-1 : 0; const size_t id1 = next_pos[i]==ksize ? ksize-1 : next_pos[i]; // use lerp for interpolation const KeyValueList::value_type valueA = kfl.get<1>()->at(id0); const KeyValueList::value_type valueB = kfl.get<1>()->at(id1); const KeyTimeList::value_type timeA = kfl.get<0>()->at(id0); const KeyTimeList::value_type timeB = kfl.get<0>()->at(id1); // do the actual interpolation in double-precision arithmetics // because it is a bit sensitive to rounding errors. const double factor = timeB == timeA ? 0. : static_cast((time - timeA) / (timeB - timeA)); const float interpValue = static_cast(valueA + (valueB - valueA) * factor); if(geom) { result[kfl.get<2>()] *= interpValue; } else { result[kfl.get<2>()] += interpValue; } } // magic value to convert fbx times to milliseconds valOut->mTime = static_cast(time) / 46186158; minTime = std::min(minTime, valOut->mTime); maxTime = std::max(maxTime, valOut->mTime); valOut->mValue.x = result[0]; valOut->mValue.y = result[1]; valOut->mValue.z = result[2]; ++valOut; } } // ------------------------------------------------------------------------------------------------ void InterpolateKeys(aiQuatKey* valOut,const KeyTimeList& keys, const KeyFrameListList& inputs, const bool geom, double& maxTime, double& minTime) { ai_assert(keys.size()); ai_assert(valOut); boost::scoped_array temp(new aiVectorKey[keys.size()]); InterpolateKeys(temp.get(),keys,inputs,geom,maxTime, minTime); for (size_t i = 0, c = keys.size(); i < c; ++i) { valOut[i].mTime = temp[i].mTime; valOut[i].mValue = EulerToQuaternion(temp[i].mValue); } } // ------------------------------------------------------------------------------------------------ // euler xyz -> quat aiQuaternion EulerToQuaternion(const aiVector3D& rot) { aiMatrix4x4 m, mtemp; if(fabs(rot.x) > 1e-6f) { m *= aiMatrix4x4::RotationX(rot.x,mtemp); } if(fabs(rot.y) > 1e-6f) { m *= aiMatrix4x4::RotationY(rot.y,mtemp); } if(fabs(rot.z) > 1e-6f) { m *= aiMatrix4x4::RotationZ(rot.z,mtemp); } return aiQuaternion(aiMatrix3x3(m)); } // ------------------------------------------------------------------------------------------------ void ConvertScaleKeys(aiNodeAnim* na, const std::vector& nodes, const LayerMap& layers, double& maxTime, double& minTime) { ai_assert(nodes.size()); // XXX for now, assume scale should be blended geometrically (i.e. two // layers should be multiplied with each other). There is a FBX // property in the layer to specify the behaviour, though. const KeyFrameListList& inputs = GetKeyframeList(nodes); const KeyTimeList& keys = GetKeyTimeList(inputs); na->mNumScalingKeys = static_cast(keys.size()); na->mScalingKeys = new aiVectorKey[keys.size()]; InterpolateKeys(na->mScalingKeys, keys, inputs, true, maxTime, minTime); } // ------------------------------------------------------------------------------------------------ void ConvertTranslationKeys(aiNodeAnim* na, const std::vector& nodes, const LayerMap& layers, double& maxTime, double& minTime) { ai_assert(nodes.size()); // XXX see notes in ConvertScaleKeys() const KeyFrameListList& inputs = GetKeyframeList(nodes); const KeyTimeList& keys = GetKeyTimeList(inputs); na->mNumPositionKeys = static_cast(keys.size()); na->mPositionKeys = new aiVectorKey[keys.size()]; InterpolateKeys(na->mPositionKeys, keys, inputs, false, maxTime, minTime); } // ------------------------------------------------------------------------------------------------ void ConvertRotationKeys(aiNodeAnim* na, const std::vector& nodes, const LayerMap& layers, double& maxTime, double& minTime) { ai_assert(nodes.size()); // XXX see notes in ConvertScaleKeys() const std::vector< KeyFrameList >& inputs = GetKeyframeList(nodes); const KeyTimeList& keys = GetKeyTimeList(inputs); na->mNumRotationKeys = static_cast(keys.size()); na->mRotationKeys = new aiQuatKey[keys.size()]; InterpolateKeys(na->mRotationKeys, keys, inputs, false, maxTime, minTime); } // ------------------------------------------------------------------------------------------------ // copy generated meshes, animations, lights, cameras and textures to the output scene void TransferDataToScene() { ai_assert(!out->mMeshes && !out->mNumMeshes); // note: the trailing () ensures initialization with NULL - not // many C++ users seem to know this, so pointing it out to avoid // confusion why this code works. out->mMeshes = new aiMesh*[meshes.size()](); out->mNumMeshes = static_cast(meshes.size()); std::swap_ranges(meshes.begin(),meshes.end(),out->mMeshes); if(materials.size()) { out->mMaterials = new aiMaterial*[materials.size()](); out->mNumMaterials = static_cast(materials.size()); std::swap_ranges(materials.begin(),materials.end(),out->mMaterials); } if(animations.size()) { out->mAnimations = new aiAnimation*[animations.size()](); out->mNumAnimations = static_cast(animations.size()); std::swap_ranges(animations.begin(),animations.end(),out->mAnimations); } } private: // 0: not assigned yet, others: index is value - 1 unsigned int defaultMaterialIndex; std::vector meshes; std::vector materials; std::vector animations; typedef std::map MaterialMap; MaterialMap materials_converted; typedef std::map > MeshMap; MeshMap meshes_converted; aiScene* const out; const FBX::Document& doc; }; //} // !anon // ------------------------------------------------------------------------------------------------ void ConvertToAssimpScene(aiScene* out, const Document& doc) { Converter converter(out,doc); } } // !FBX } // !Assimp #endif