/* Open Asset Import Library (assimp) ---------------------------------------------------------------------- Copyright (c) 2006-2016, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------- */ /** @file AssxmlExporter.cpp * ASSXML exporter main code */ #include <stdarg.h> #include "./../include/assimp/version.h" #include "ProcessHelper.h" #include <assimp/IOStream.hpp> #include <assimp/IOSystem.hpp> #include <assimp/Exporter.hpp> #ifdef ASSIMP_BUILD_NO_OWN_ZLIB # include <zlib.h> #else # include <contrib/zlib/zlib.h> #endif #include <time.h> #include <stdio.h> #ifndef ASSIMP_BUILD_NO_EXPORT #ifndef ASSIMP_BUILD_NO_ASSXML_EXPORTER using namespace Assimp; namespace Assimp { namespace AssxmlExport { // ----------------------------------------------------------------------------------- static int ioprintf( IOStream * io, const char *format, ... ) { using namespace std; if ( nullptr == io ) { return -1; } static const size_t Size = 4096; char sz[ Size ]; size_t len( strlen( format ) ); ::memset( sz, '\0', Size ); va_list va; va_start( va, format ); int nSize = vsnprintf( sz, Size-1, format, va ); ai_assert( nSize < Size ); va_end( va ); io->Write( sz, sizeof(char), nSize ); return nSize; } // ----------------------------------------------------------------------------------- // Convert a name to standard XML format static void ConvertName(aiString& out, const aiString& in) { out.length = 0; for (unsigned int i = 0; i < in.length; ++i) { switch (in.data[i]) { case '<': out.Append("<");break; case '>': out.Append(">");break; case '&': out.Append("&");break; case '\"': out.Append(""");break; case '\'': out.Append("'");break; default: out.data[out.length++] = in.data[i]; } } out.data[out.length] = 0; } // ----------------------------------------------------------------------------------- // Write a single node as text dump static void WriteNode(const aiNode* node, IOStream * io, unsigned int depth) { char prefix[512]; for (unsigned int i = 0; i < depth;++i) prefix[i] = '\t'; prefix[depth] = '\0'; const aiMatrix4x4& m = node->mTransformation; aiString name; ConvertName(name,node->mName); ioprintf(io,"%s<Node name=\"%s\"> \n" "%s\t<Matrix4> \n" "%s\t\t%0 6f %0 6f %0 6f %0 6f\n" "%s\t\t%0 6f %0 6f %0 6f %0 6f\n" "%s\t\t%0 6f %0 6f %0 6f %0 6f\n" "%s\t\t%0 6f %0 6f %0 6f %0 6f\n" "%s\t</Matrix4> \n", prefix,name.data,prefix, prefix,m.a1,m.a2,m.a3,m.a4, prefix,m.b1,m.b2,m.b3,m.b4, prefix,m.c1,m.c2,m.c3,m.c4, prefix,m.d1,m.d2,m.d3,m.d4,prefix); if (node->mNumMeshes) { ioprintf(io, "%s\t<MeshRefs num=\"%i\">\n%s\t", prefix,node->mNumMeshes,prefix); for (unsigned int i = 0; i < node->mNumMeshes;++i) { ioprintf(io,"%i ",node->mMeshes[i]); } ioprintf(io,"\n%s\t</MeshRefs>\n",prefix); } if (node->mNumChildren) { ioprintf(io,"%s\t<NodeList num=\"%i\">\n", prefix,node->mNumChildren); for (unsigned int i = 0; i < node->mNumChildren;++i) { WriteNode(node->mChildren[i],io,depth+2); } ioprintf(io,"%s\t</NodeList>\n",prefix); } ioprintf(io,"%s</Node>\n",prefix); } // ----------------------------------------------------------------------------------- // Some chuncks of text will need to be encoded for XML // http://stackoverflow.com/questions/5665231/most-efficient-way-to-escape-xml-html-in-c-string#5665377 static std::string encodeXML(const std::string& data) { std::string buffer; buffer.reserve(data.size()); for(size_t pos = 0; pos != data.size(); ++pos) { switch(data[pos]) { case '&': buffer.append("&"); break; case '\"': buffer.append("""); break; case '\'': buffer.append("'"); break; case '<': buffer.append("<"); break; case '>': buffer.append(">"); break; default: buffer.append(&data[pos], 1); break; } } return buffer; } // ----------------------------------------------------------------------------------- // Write a text model dump static void WriteDump(const aiScene* scene, IOStream* io, bool shortened) { time_t tt = ::time( NULL ); tm* p = ::gmtime( &tt ); ai_assert( nullptr != p ); // write header std::string header( "<?xml version=\"1.0\" encoding=\"utf-8\"?>\n" "<ASSIMP format_id=\"1\">\n\n" "<!-- XML Model dump produced by assimp dump\n" " Library version: %i.%i.%i\n" " %s\n" "-->" " \n\n" "<Scene flags=\"%d\" postprocessing=\"%i\">\n" ); const unsigned int majorVersion( aiGetVersionMajor() ); const unsigned int minorVersion( aiGetVersionMinor() ); const unsigned int rev( aiGetVersionRevision() ); const char *curtime( asctime( p ) ); ioprintf( io, header.c_str(), majorVersion, minorVersion, rev, curtime, scene->mFlags, 0 ); // write the node graph WriteNode(scene->mRootNode, io, 0); #if 0 // write cameras for (unsigned int i = 0; i < scene->mNumCameras;++i) { aiCamera* cam = scene->mCameras[i]; ConvertName(name,cam->mName); // camera header ioprintf(io,"\t<Camera parent=\"%s\">\n" "\t\t<Vector3 name=\"up\" > %0 8f %0 8f %0 8f </Vector3>\n" "\t\t<Vector3 name=\"lookat\" > %0 8f %0 8f %0 8f </Vector3>\n" "\t\t<Vector3 name=\"pos\" > %0 8f %0 8f %0 8f </Vector3>\n" "\t\t<Float name=\"fov\" > %f </Float>\n" "\t\t<Float name=\"aspect\" > %f </Float>\n" "\t\t<Float name=\"near_clip\" > %f </Float>\n" "\t\t<Float name=\"far_clip\" > %f </Float>\n" "\t</Camera>\n", name.data, cam->mUp.x,cam->mUp.y,cam->mUp.z, cam->mLookAt.x,cam->mLookAt.y,cam->mLookAt.z, cam->mPosition.x,cam->mPosition.y,cam->mPosition.z, cam->mHorizontalFOV,cam->mAspect,cam->mClipPlaneNear,cam->mClipPlaneFar,i); } // write lights for (unsigned int i = 0; i < scene->mNumLights;++i) { aiLight* l = scene->mLights[i]; ConvertName(name,l->mName); // light header ioprintf(io,"\t<Light parent=\"%s\"> type=\"%s\"\n" "\t\t<Vector3 name=\"diffuse\" > %0 8f %0 8f %0 8f </Vector3>\n" "\t\t<Vector3 name=\"specular\" > %0 8f %0 8f %0 8f </Vector3>\n" "\t\t<Vector3 name=\"ambient\" > %0 8f %0 8f %0 8f </Vector3>\n", name.data, (l->mType == aiLightSource_DIRECTIONAL ? "directional" : (l->mType == aiLightSource_POINT ? "point" : "spot" )), l->mColorDiffuse.r, l->mColorDiffuse.g, l->mColorDiffuse.b, l->mColorSpecular.r,l->mColorSpecular.g,l->mColorSpecular.b, l->mColorAmbient.r, l->mColorAmbient.g, l->mColorAmbient.b); if (l->mType != aiLightSource_DIRECTIONAL) { ioprintf(io, "\t\t<Vector3 name=\"pos\" > %0 8f %0 8f %0 8f </Vector3>\n" "\t\t<Float name=\"atten_cst\" > %f </Float>\n" "\t\t<Float name=\"atten_lin\" > %f </Float>\n" "\t\t<Float name=\"atten_sqr\" > %f </Float>\n", l->mPosition.x,l->mPosition.y,l->mPosition.z, l->mAttenuationConstant,l->mAttenuationLinear,l->mAttenuationQuadratic); } if (l->mType != aiLightSource_POINT) { ioprintf(io, "\t\t<Vector3 name=\"lookat\" > %0 8f %0 8f %0 8f </Vector3>\n", l->mDirection.x,l->mDirection.y,l->mDirection.z); } if (l->mType == aiLightSource_SPOT) { ioprintf(io, "\t\t<Float name=\"cone_out\" > %f </Float>\n" "\t\t<Float name=\"cone_inn\" > %f </Float>\n", l->mAngleOuterCone,l->mAngleInnerCone); } ioprintf(io,"\t</Light>\n"); } #endif aiString name; // write textures if (scene->mNumTextures) { ioprintf(io,"<TextureList num=\"%i\">\n",scene->mNumTextures); for (unsigned int i = 0; i < scene->mNumTextures;++i) { aiTexture* tex = scene->mTextures[i]; bool compressed = (tex->mHeight == 0); // mesh header ioprintf(io,"\t<Texture width=\"%i\" height=\"%i\" compressed=\"%s\"> \n", (compressed ? -1 : tex->mWidth),(compressed ? -1 : tex->mHeight), (compressed ? "true" : "false")); if (compressed) { ioprintf(io,"\t\t<Data length=\"%i\"> \n",tex->mWidth); if (!shortened) { for (unsigned int n = 0; n < tex->mWidth;++n) { ioprintf(io,"\t\t\t%2x",reinterpret_cast<uint8_t*>(tex->pcData)[n]); if (n && !(n % 50)) { ioprintf(io,"\n"); } } } } else if (!shortened){ ioprintf(io,"\t\t<Data length=\"%i\"> \n",tex->mWidth*tex->mHeight*4); // const unsigned int width = (unsigned int)log10((double)std::max(tex->mHeight,tex->mWidth))+1; for (unsigned int y = 0; y < tex->mHeight;++y) { for (unsigned int x = 0; x < tex->mWidth;++x) { aiTexel* tx = tex->pcData + y*tex->mWidth+x; unsigned int r = tx->r,g=tx->g,b=tx->b,a=tx->a; ioprintf(io,"\t\t\t%2x %2x %2x %2x",r,g,b,a); // group by four for readability if ( 0 == ( x + y*tex->mWidth ) % 4 ) { ioprintf( io, "\n" ); } } } } ioprintf(io,"\t\t</Data>\n\t</Texture>\n"); } ioprintf(io,"</TextureList>\n"); } // write materials if (scene->mNumMaterials) { ioprintf(io,"<MaterialList num=\"%i\">\n",scene->mNumMaterials); for (unsigned int i = 0; i< scene->mNumMaterials; ++i) { const aiMaterial* mat = scene->mMaterials[i]; ioprintf(io,"\t<Material>\n"); ioprintf(io,"\t\t<MatPropertyList num=\"%i\">\n",mat->mNumProperties); for (unsigned int n = 0; n < mat->mNumProperties;++n) { const aiMaterialProperty* prop = mat->mProperties[n]; const char* sz = ""; if (prop->mType == aiPTI_Float) { sz = "float"; } else if (prop->mType == aiPTI_Integer) { sz = "integer"; } else if (prop->mType == aiPTI_String) { sz = "string"; } else if (prop->mType == aiPTI_Buffer) { sz = "binary_buffer"; } ioprintf(io,"\t\t\t<MatProperty key=\"%s\" \n\t\t\ttype=\"%s\" tex_usage=\"%s\" tex_index=\"%i\"", prop->mKey.data, sz, ::TextureTypeToString((aiTextureType)prop->mSemantic),prop->mIndex); if (prop->mType == aiPTI_Float) { ioprintf(io," size=\"%i\">\n\t\t\t\t", static_cast<int>(prop->mDataLength/sizeof(float))); for (unsigned int p = 0; p < prop->mDataLength/sizeof(float);++p) { ioprintf(io,"%f ",*((float*)(prop->mData+p*sizeof(float)))); } } else if (prop->mType == aiPTI_Integer) { ioprintf(io," size=\"%i\">\n\t\t\t\t", static_cast<int>(prop->mDataLength/sizeof(int))); for (unsigned int p = 0; p < prop->mDataLength/sizeof(int);++p) { ioprintf(io,"%i ",*((int*)(prop->mData+p*sizeof(int)))); } } else if (prop->mType == aiPTI_Buffer) { ioprintf(io," size=\"%i\">\n\t\t\t\t", static_cast<int>(prop->mDataLength)); for (unsigned int p = 0; p < prop->mDataLength;++p) { ioprintf(io,"%2x ",prop->mData[p]); if (p && 0 == p%30) { ioprintf(io,"\n\t\t\t\t"); } } } else if (prop->mType == aiPTI_String) { ioprintf(io,">\n\t\t\t\t\"%s\"",encodeXML(prop->mData+4).c_str() /* skip length */); } ioprintf(io,"\n\t\t\t</MatProperty>\n"); } ioprintf(io,"\t\t</MatPropertyList>\n"); ioprintf(io,"\t</Material>\n"); } ioprintf(io,"</MaterialList>\n"); } // write animations if (scene->mNumAnimations) { ioprintf(io,"<AnimationList num=\"%i\">\n",scene->mNumAnimations); for (unsigned int i = 0; i < scene->mNumAnimations;++i) { aiAnimation* anim = scene->mAnimations[i]; // anim header ConvertName(name,anim->mName); ioprintf(io,"\t<Animation name=\"%s\" duration=\"%e\" tick_cnt=\"%e\">\n", name.data, anim->mDuration, anim->mTicksPerSecond); // write bone animation channels if (anim->mNumChannels) { ioprintf(io,"\t\t<NodeAnimList num=\"%i\">\n",anim->mNumChannels); for (unsigned int n = 0; n < anim->mNumChannels;++n) { aiNodeAnim* nd = anim->mChannels[n]; // node anim header ConvertName(name,nd->mNodeName); ioprintf(io,"\t\t\t<NodeAnim node=\"%s\">\n",name.data); if (!shortened) { // write position keys if (nd->mNumPositionKeys) { ioprintf(io,"\t\t\t\t<PositionKeyList num=\"%i\">\n",nd->mNumPositionKeys); for (unsigned int a = 0; a < nd->mNumPositionKeys;++a) { aiVectorKey* vc = nd->mPositionKeys+a; ioprintf(io,"\t\t\t\t\t<PositionKey time=\"%e\">\n" "\t\t\t\t\t\t%0 8f %0 8f %0 8f\n\t\t\t\t\t</PositionKey>\n", vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z); } ioprintf(io,"\t\t\t\t</PositionKeyList>\n"); } // write scaling keys if (nd->mNumScalingKeys) { ioprintf(io,"\t\t\t\t<ScalingKeyList num=\"%i\">\n",nd->mNumScalingKeys); for (unsigned int a = 0; a < nd->mNumScalingKeys;++a) { aiVectorKey* vc = nd->mScalingKeys+a; ioprintf(io,"\t\t\t\t\t<ScalingKey time=\"%e\">\n" "\t\t\t\t\t\t%0 8f %0 8f %0 8f\n\t\t\t\t\t</ScalingKey>\n", vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z); } ioprintf(io,"\t\t\t\t</ScalingKeyList>\n"); } // write rotation keys if (nd->mNumRotationKeys) { ioprintf(io,"\t\t\t\t<RotationKeyList num=\"%i\">\n",nd->mNumRotationKeys); for (unsigned int a = 0; a < nd->mNumRotationKeys;++a) { aiQuatKey* vc = nd->mRotationKeys+a; ioprintf(io,"\t\t\t\t\t<RotationKey time=\"%e\">\n" "\t\t\t\t\t\t%0 8f %0 8f %0 8f %0 8f\n\t\t\t\t\t</RotationKey>\n", vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z,vc->mValue.w); } ioprintf(io,"\t\t\t\t</RotationKeyList>\n"); } } ioprintf(io,"\t\t\t</NodeAnim>\n"); } ioprintf(io,"\t\t</NodeAnimList>\n"); } ioprintf(io,"\t</Animation>\n"); } ioprintf(io,"</AnimationList>\n"); } // write meshes if (scene->mNumMeshes) { ioprintf(io,"<MeshList num=\"%i\">\n",scene->mNumMeshes); for (unsigned int i = 0; i < scene->mNumMeshes;++i) { aiMesh* mesh = scene->mMeshes[i]; // const unsigned int width = (unsigned int)log10((double)mesh->mNumVertices)+1; // mesh header ioprintf(io,"\t<Mesh types=\"%s %s %s %s\" material_index=\"%i\">\n", (mesh->mPrimitiveTypes & aiPrimitiveType_POINT ? "points" : ""), (mesh->mPrimitiveTypes & aiPrimitiveType_LINE ? "lines" : ""), (mesh->mPrimitiveTypes & aiPrimitiveType_TRIANGLE ? "triangles" : ""), (mesh->mPrimitiveTypes & aiPrimitiveType_POLYGON ? "polygons" : ""), mesh->mMaterialIndex); // bones if (mesh->mNumBones) { ioprintf(io,"\t\t<BoneList num=\"%i\">\n",mesh->mNumBones); for (unsigned int n = 0; n < mesh->mNumBones;++n) { aiBone* bone = mesh->mBones[n]; ConvertName(name,bone->mName); // bone header ioprintf(io,"\t\t\t<Bone name=\"%s\">\n" "\t\t\t\t<Matrix4> \n" "\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n" "\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n" "\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n" "\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n" "\t\t\t\t</Matrix4> \n", name.data, bone->mOffsetMatrix.a1,bone->mOffsetMatrix.a2,bone->mOffsetMatrix.a3,bone->mOffsetMatrix.a4, bone->mOffsetMatrix.b1,bone->mOffsetMatrix.b2,bone->mOffsetMatrix.b3,bone->mOffsetMatrix.b4, bone->mOffsetMatrix.c1,bone->mOffsetMatrix.c2,bone->mOffsetMatrix.c3,bone->mOffsetMatrix.c4, bone->mOffsetMatrix.d1,bone->mOffsetMatrix.d2,bone->mOffsetMatrix.d3,bone->mOffsetMatrix.d4); if (!shortened && bone->mNumWeights) { ioprintf(io,"\t\t\t\t<WeightList num=\"%i\">\n",bone->mNumWeights); // bone weights for (unsigned int a = 0; a < bone->mNumWeights;++a) { aiVertexWeight* wght = bone->mWeights+a; ioprintf(io,"\t\t\t\t\t<Weight index=\"%i\">\n\t\t\t\t\t\t%f\n\t\t\t\t\t</Weight>\n", wght->mVertexId,wght->mWeight); } ioprintf(io,"\t\t\t\t</WeightList>\n"); } ioprintf(io,"\t\t\t</Bone>\n"); } ioprintf(io,"\t\t</BoneList>\n"); } // faces if (!shortened && mesh->mNumFaces) { ioprintf(io,"\t\t<FaceList num=\"%i\">\n",mesh->mNumFaces); for (unsigned int n = 0; n < mesh->mNumFaces; ++n) { aiFace& f = mesh->mFaces[n]; ioprintf(io,"\t\t\t<Face num=\"%i\">\n" "\t\t\t\t",f.mNumIndices); for (unsigned int j = 0; j < f.mNumIndices;++j) ioprintf(io,"%i ",f.mIndices[j]); ioprintf(io,"\n\t\t\t</Face>\n"); } ioprintf(io,"\t\t</FaceList>\n"); } // vertex positions if (mesh->HasPositions()) { ioprintf(io,"\t\t<Positions num=\"%i\" set=\"0\" num_components=\"3\"> \n",mesh->mNumVertices); if (!shortened) { for (unsigned int n = 0; n < mesh->mNumVertices; ++n) { ioprintf(io,"\t\t%0 8f %0 8f %0 8f\n", mesh->mVertices[n].x, mesh->mVertices[n].y, mesh->mVertices[n].z); } } ioprintf(io,"\t\t</Positions>\n"); } // vertex normals if (mesh->HasNormals()) { ioprintf(io,"\t\t<Normals num=\"%i\" set=\"0\" num_components=\"3\"> \n",mesh->mNumVertices); if (!shortened) { for (unsigned int n = 0; n < mesh->mNumVertices; ++n) { ioprintf(io,"\t\t%0 8f %0 8f %0 8f\n", mesh->mNormals[n].x, mesh->mNormals[n].y, mesh->mNormals[n].z); } } else { } ioprintf(io,"\t\t</Normals>\n"); } // vertex tangents and bitangents if (mesh->HasTangentsAndBitangents()) { ioprintf(io,"\t\t<Tangents num=\"%i\" set=\"0\" num_components=\"3\"> \n",mesh->mNumVertices); if (!shortened) { for (unsigned int n = 0; n < mesh->mNumVertices; ++n) { ioprintf(io,"\t\t%0 8f %0 8f %0 8f\n", mesh->mTangents[n].x, mesh->mTangents[n].y, mesh->mTangents[n].z); } } ioprintf(io,"\t\t</Tangents>\n"); ioprintf(io,"\t\t<Bitangents num=\"%i\" set=\"0\" num_components=\"3\"> \n",mesh->mNumVertices); if (!shortened) { for (unsigned int n = 0; n < mesh->mNumVertices; ++n) { ioprintf(io,"\t\t%0 8f %0 8f %0 8f\n", mesh->mBitangents[n].x, mesh->mBitangents[n].y, mesh->mBitangents[n].z); } } ioprintf(io,"\t\t</Bitangents>\n"); } // texture coordinates for (unsigned int a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) { if (!mesh->mTextureCoords[a]) break; ioprintf(io,"\t\t<TextureCoords num=\"%i\" set=\"%i\" num_components=\"%i\"> \n",mesh->mNumVertices, a,mesh->mNumUVComponents[a]); if (!shortened) { if (mesh->mNumUVComponents[a] == 3) { for (unsigned int n = 0; n < mesh->mNumVertices; ++n) { ioprintf(io,"\t\t%0 8f %0 8f %0 8f\n", mesh->mTextureCoords[a][n].x, mesh->mTextureCoords[a][n].y, mesh->mTextureCoords[a][n].z); } } else { for (unsigned int n = 0; n < mesh->mNumVertices; ++n) { ioprintf(io,"\t\t%0 8f %0 8f\n", mesh->mTextureCoords[a][n].x, mesh->mTextureCoords[a][n].y); } } } ioprintf(io,"\t\t</TextureCoords>\n"); } // vertex colors for (unsigned int a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a) { if (!mesh->mColors[a]) break; ioprintf(io,"\t\t<Colors num=\"%i\" set=\"%i\" num_components=\"4\"> \n",mesh->mNumVertices,a); if (!shortened) { for (unsigned int n = 0; n < mesh->mNumVertices; ++n) { ioprintf(io,"\t\t%0 8f %0 8f %0 8f %0 8f\n", mesh->mColors[a][n].r, mesh->mColors[a][n].g, mesh->mColors[a][n].b, mesh->mColors[a][n].a); } } ioprintf(io,"\t\t</Colors>\n"); } ioprintf(io,"\t</Mesh>\n"); } ioprintf(io,"</MeshList>\n"); } ioprintf(io,"</Scene>\n</ASSIMP>"); } } // end of namespace AssxmlExport void ExportSceneAssxml(const char* pFile, IOSystem* pIOSystem, const aiScene* pScene, const ExportProperties* pProperties) { IOStream * out = pIOSystem->Open( pFile, "wt" ); if (!out) return; bool shortened = false; AssxmlExport::WriteDump( pScene, out, shortened ); pIOSystem->Close( out ); } } // end of namespace Assimp #endif // ASSIMP_BUILD_NO_ASSXML_EXPORTER #endif // ASSIMP_BUILD_NO_EXPORT