/* --------------------------------------------------------------------------- Open Asset Import Library (ASSIMP) --------------------------------------------------------------------------- Copyright (c) 2006-2010, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file aiQuaterniont.inl * @brief Inline implementation of aiQuaterniont operators */ #ifndef AI_QUATERNION_INL_INC #define AI_QUATERNION_INL_INC #ifdef __cplusplus #include "aiQuaternion.h" // --------------------------------------------------------------------------- template bool aiQuaterniont::operator== (const aiQuaterniont& o) const { return x == o.x && y == o.y && z == o.z && w == o.w; } // --------------------------------------------------------------------------- template bool aiQuaterniont::operator!= (const aiQuaterniont& o) const { return !(*this == o); } // --------------------------------------------------------------------------- // Constructs a quaternion from a rotation matrix template inline aiQuaterniont::aiQuaterniont( const aiMatrix3x3t &pRotMatrix) { TReal t = 1 + pRotMatrix.a1 + pRotMatrix.b2 + pRotMatrix.c3; // large enough if( t > static_cast(0.001)) { TReal s = sqrt( t) * static_cast(2.0); x = (pRotMatrix.c2 - pRotMatrix.b3) / s; y = (pRotMatrix.a3 - pRotMatrix.c1) / s; z = (pRotMatrix.b1 - pRotMatrix.a2) / s; w = static_cast(0.25) * s; } // else we have to check several cases else if( pRotMatrix.a1 > pRotMatrix.b2 && pRotMatrix.a1 > pRotMatrix.c3 ) { // Column 0: TReal s = sqrt( static_cast(1.0) + pRotMatrix.a1 - pRotMatrix.b2 - pRotMatrix.c3) * static_cast(2.0); x = static_cast(0.25) * s; y = (pRotMatrix.b1 + pRotMatrix.a2) / s; z = (pRotMatrix.a3 + pRotMatrix.c1) / s; w = (pRotMatrix.c2 - pRotMatrix.b3) / s; } else if( pRotMatrix.b2 > pRotMatrix.c3) { // Column 1: TReal s = sqrt( static_cast(1.0) + pRotMatrix.b2 - pRotMatrix.a1 - pRotMatrix.c3) * static_cast(2.0); x = (pRotMatrix.b1 + pRotMatrix.a2) / s; y = static_cast(0.25) * s; z = (pRotMatrix.c2 + pRotMatrix.b3) / s; w = (pRotMatrix.a3 - pRotMatrix.c1) / s; } else { // Column 2: TReal s = sqrt( static_cast(1.0) + pRotMatrix.c3 - pRotMatrix.a1 - pRotMatrix.b2) * static_cast(2.0); x = (pRotMatrix.a3 + pRotMatrix.c1) / s; y = (pRotMatrix.c2 + pRotMatrix.b3) / s; z = static_cast(0.25) * s; w = (pRotMatrix.b1 - pRotMatrix.a2) / s; } } // --------------------------------------------------------------------------- // Construction from euler angles template inline aiQuaterniont::aiQuaterniont( TReal fPitch, TReal fYaw, TReal fRoll ) { const TReal fSinPitch(sin(fPitch*static_cast(0.5))); const TReal fCosPitch(cos(fPitch*static_cast(0.5))); const TReal fSinYaw(sin(fYaw*static_cast(0.5))); const TReal fCosYaw(cos(fYaw*static_cast(0.5))); const TReal fSinRoll(sin(fRoll*static_cast(0.5))); const TReal fCosRoll(cos(fRoll*static_cast(0.5))); const TReal fCosPitchCosYaw(fCosPitch*fCosYaw); const TReal fSinPitchSinYaw(fSinPitch*fSinYaw); x = fSinRoll * fCosPitchCosYaw - fCosRoll * fSinPitchSinYaw; y = fCosRoll * fSinPitch * fCosYaw + fSinRoll * fCosPitch * fSinYaw; z = fCosRoll * fCosPitch * fSinYaw - fSinRoll * fSinPitch * fCosYaw; w = fCosRoll * fCosPitchCosYaw + fSinRoll * fSinPitchSinYaw; } // --------------------------------------------------------------------------- // Returns a matrix representation of the quaternion template inline aiMatrix3x3t aiQuaterniont::GetMatrix() const { aiMatrix3x3t resMatrix; resMatrix.a1 = static_cast(1.0) - static_cast(2.0) * (y * y + z * z); resMatrix.a2 = static_cast(2.0) * (x * y - z * w); resMatrix.a3 = static_cast(2.0) * (x * z + y * w); resMatrix.b1 = static_cast(2.0) * (x * y + z * w); resMatrix.b2 = static_cast(1.0) - static_cast(2.0) * (x * x + z * z); resMatrix.b3 = static_cast(2.0) * (y * z - x * w); resMatrix.c1 = static_cast(2.0) * (x * z - y * w); resMatrix.c2 = static_cast(2.0) * (y * z + x * w); resMatrix.c3 = static_cast(1.0) - static_cast(2.0) * (x * x + y * y); return resMatrix; } // --------------------------------------------------------------------------- // Construction from an axis-angle pair template inline aiQuaterniont::aiQuaterniont( aiVector3t axis, TReal angle) { axis.Normalize(); const TReal sin_a = sin( angle / 2 ); const TReal cos_a = cos( angle / 2 ); x = axis.x * sin_a; y = axis.y * sin_a; z = axis.z * sin_a; w = cos_a; } // --------------------------------------------------------------------------- // Construction from am existing, normalized quaternion template inline aiQuaterniont::aiQuaterniont( aiVector3t normalized) { x = normalized.x; y = normalized.y; z = normalized.z; const TReal t = static_cast(1.0) - (x*x) - (y*y) - (z*z); if (t < static_cast(0.0)) { w = static_cast(0.0); } else w = sqrt (t); } // --------------------------------------------------------------------------- // Performs a spherical interpolation between two quaternions // Implementation adopted from the gmtl project. All others I found on the net fail in some cases. // Congrats, gmtl! template inline void aiQuaterniont::Interpolate( aiQuaterniont& pOut, const aiQuaterniont& pStart, const aiQuaterniont& pEnd, TReal pFactor) { // calc cosine theta TReal cosom = pStart.x * pEnd.x + pStart.y * pEnd.y + pStart.z * pEnd.z + pStart.w * pEnd.w; // adjust signs (if necessary) aiQuaterniont end = pEnd; if( cosom < static_cast(0.0)) { cosom = -cosom; end.x = -end.x; // Reverse all signs end.y = -end.y; end.z = -end.z; end.w = -end.w; } // Calculate coefficients TReal sclp, sclq; if( (static_cast(1.0) - cosom) > static_cast(0.0001)) // 0.0001 -> some epsillon { // Standard case (slerp) TReal omega, sinom; omega = acos( cosom); // extract theta from dot product's cos theta sinom = sin( omega); sclp = sin( (static_cast(1.0) - pFactor) * omega) / sinom; sclq = sin( pFactor * omega) / sinom; } else { // Very close, do linear interp (because it's faster) sclp = static_cast(1.0) - pFactor; sclq = pFactor; } pOut.x = sclp * pStart.x + sclq * end.x; pOut.y = sclp * pStart.y + sclq * end.y; pOut.z = sclp * pStart.z + sclq * end.z; pOut.w = sclp * pStart.w + sclq * end.w; } // --------------------------------------------------------------------------- template inline aiQuaterniont& aiQuaterniont::Normalize() { // compute the magnitude and divide through it const TReal mag = sqrt(x*x + y*y + z*z + w*w); if (mag) { const TReal invMag = static_cast(1.0)/mag; x *= invMag; y *= invMag; z *= invMag; w *= invMag; } return *this; } // --------------------------------------------------------------------------- template inline aiQuaterniont aiQuaterniont::operator* (const aiQuaterniont& t) const { return aiQuaterniont(w*t.w - x*t.x - y*t.y - z*t.z, w*t.x + x*t.w + y*t.z - z*t.y, w*t.y + y*t.w + z*t.x - x*t.z, w*t.z + z*t.w + x*t.y - y*t.x); } // --------------------------------------------------------------------------- template inline aiQuaterniont& aiQuaterniont::Conjugate () { x = -x; y = -y; z = -z; return *this; } // --------------------------------------------------------------------------- template inline aiVector3t aiQuaterniont::Rotate (const aiVector3t& v) { aiQuaterniont q2(0.f,v.x,v.y,v.z), q = *this, qinv = q; q.Conjugate(); q = q*q2*qinv; return aiVector3t(q.x,q.y,q.z); } #endif #endif