/* * m3d.h * * Copyright (C) 2019 bzt (bztsrc@gitlab) * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, copy, * modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * @brief ANSI C89 / C++11 single header importer / exporter SDK for the Model 3D (.M3D) format * https://gitlab.com/bztsrc/model3d * * PNG decompressor included from (with minor modifications to make it C89 valid): * stb_image - v2.13 - public domain image loader - http://nothings.org/stb_image.h * * @version: 1.0.0 */ #ifndef _M3D_H_ #define _M3D_H_ #ifdef __cplusplus extern "C" { #endif #include /*** configuration ***/ #ifndef M3D_MALLOC # define M3D_MALLOC(sz) malloc(sz) #endif #ifndef M3D_REALLOC # define M3D_REALLOC(p,nsz) realloc(p,nsz) #endif #ifndef M3D_FREE # define M3D_FREE(p) free(p) #endif #ifndef M3D_LOG # define M3D_LOG(x) #endif #ifndef M3D_APIVERSION #define M3D_APIVERSION 0x0100 #ifndef M3D_DOUBLE typedef float M3D_FLOAT; #else typedef double M3D_FLOAT; #endif #if !defined(M3D_SMALLINDEX) typedef uint32_t M3D_INDEX; #define M3D_INDEXMAX 0xfffffffe #else typedef uint16_t M3D_INDEX; #define M3D_INDEXMAX 0xfffe #endif #ifndef M3D_NUMBONE #define M3D_NUMBONE 4 #endif #ifndef M3D_BONEMAXLEVEL #define M3D_BONEMAXLEVEL 8 #endif #ifndef _MSC_VER #define _inline __inline__ #define _pack __attribute__((packed)) #define _unused __attribute__((unused)) #else #define _inline #define _pack #define _unused #endif #ifndef __cplusplus #define _register register #define _register #endif /*** File format structures ***/ /** * M3D file format structure * 3DMO m3dchunk_t file header chunk, may followed by compressed data * HEAD m3dhdr_t model header chunk * n x m3dchunk_t more chunks follow * CMAP color map chunk (optional) * TMAP texture map chunk (optional) * VRTS vertex data chunk (optional if it's a material library) * BONE bind-pose skeleton, bone hierarchy chunk (optional) * n x m3db_t contains propably more, but at least one bone * MTRL* material chunk(s), can be more (optional) * n x m3dp_t each material contains propapbly more, but at least one property * the properties are configurable with a static array, see m3d_propertytypes * n x m3dchunk_t at least one, but maybe more face chunks * PROC* procedural face, or * MESH* triangle mesh (vertex index list) * ACTN* action chunk(s), animation-pose skeletons, can be more (optional) * n x m3dfr_t each action contains probably more, but at least one frame * n x m3dtr_t each frame contains probably more, but at least one transformation * ASET* inlined asset chunk(s), can be more (optional) * OMD3 end chunk */ typedef struct { char magic[4]; uint32_t length; float scale; /* deliberately not M3D_FLOAT */ uint32_t types; } _pack m3dhdr_t; typedef struct { char magic[4]; uint32_t length; } _pack m3dchunk_t; /*** in-memory model structure ***/ /* textmap entry */ typedef struct { M3D_FLOAT u; M3D_FLOAT v; } m3dti_t; /* texture */ typedef struct { char *name; /* texture name */ uint32_t *d; /* pixels data */ uint16_t w; /* width */ uint16_t h; /* height */ } _pack m3dtx_t; typedef struct { M3D_INDEX vertexid; M3D_FLOAT weight; } m3dw_t; /* bone entry */ typedef struct { M3D_INDEX parent; /* parent bone index */ char *name; /* name for this bone */ M3D_INDEX pos; /* vertex index position */ M3D_INDEX ori; /* vertex index orientation (quaternion) */ M3D_INDEX numweight; /* number of controlled vertices */ m3dw_t *weight; /* weights for those vertices */ M3D_FLOAT mat4[16]; /* transformation matrix */ } m3db_t; /* skin: bone per vertex entry */ typedef struct { M3D_INDEX boneid[M3D_NUMBONE]; M3D_FLOAT weight[M3D_NUMBONE]; } m3ds_t; /* vertex entry */ typedef struct { M3D_FLOAT x; /* 3D coordinates and weight */ M3D_FLOAT y; M3D_FLOAT z; M3D_FLOAT w; uint32_t color; /* default vertex color */ M3D_INDEX skinid; /* skin index */ } m3dv_t; /* material property formats */ enum { m3dpf_color, m3dpf_uint8, m3dpf_uint16, m3dpf_uint32, m3dpf_float, m3dpf_map }; typedef struct { uint8_t format; uint8_t id; #ifdef M3D_ASCII #define M3D_PROPERTYDEF(f,i,n) { (f), (i), (char*)(n) } char *key; #else #define M3D_PROPERTYDEF(f,i,n) { (f), (i) } #endif } m3dpd_t; /* material property types */ /* You shouldn't change the first 8 display and first 4 physical property. Assign the rest as you like. */ enum { m3dp_Kd = 0, /* scalar display properties */ m3dp_Ka, m3dp_Ks, m3dp_Ns, m3dp_Ke, m3dp_Tf, m3dp_Km, m3dp_d, m3dp_il, m3dp_Pr = 64, /* scalar physical properties */ m3dp_Pm, m3dp_Ps, m3dp_Ni, m3dp_map_Kd = 128, /* textured display map properties */ m3dp_map_Ka, m3dp_map_Ks, m3dp_map_Ns, m3dp_map_Ke, m3dp_map_Tf, m3dp_map_Km, /* bump map */ m3dp_map_D, m3dp_map_il, /* reflection map */ m3dp_map_Pr = 192, /* textured physical map properties */ m3dp_map_Pm, m3dp_map_Ps, m3dp_map_Ni }; enum { /* aliases */ m3dp_bump = m3dp_map_Km, m3dp_refl = m3dp_map_Pm }; /* material property */ typedef struct { uint8_t type; /* property type, see "m3dp_*" enumeration */ union { uint32_t color; /* if value is a color, m3dpf_color */ uint32_t num; /* if value is a number, m3dpf_uint8, m3pf_uint16, m3dpf_uint32 */ float fnum; /* if value is a floating point number, m3dpf_float */ M3D_INDEX textureid; /* if value is a texture, m3dpf_map */ } value; } m3dp_t; /* material entry */ typedef struct { char *name; /* name of the material */ uint8_t numprop; /* number of properties */ m3dp_t *prop; /* properties array */ } m3dm_t; /* face entry */ typedef struct { M3D_INDEX materialid; /* material index */ M3D_INDEX vertex[3]; /* 3D points of the triangle in CCW order */ M3D_INDEX normal[3]; /* normal vectors */ M3D_INDEX texcoord[3]; /* UV coordinates */ } m3df_t; /* frame transformations / working copy skeleton entry */ typedef struct { M3D_INDEX boneid; /* selects a node in bone hierarchy */ M3D_INDEX pos; /* vertex index new position */ M3D_INDEX ori; /* vertex index new orientation (quaternion) */ } m3dtr_t; /* animation frame entry */ typedef struct { uint32_t msec; /* frame's position on the timeline, timestamp */ M3D_INDEX numtransform; /* number of transformations in this frame */ m3dtr_t *transform; /* transformations */ } m3dfr_t; /* model action entry */ typedef struct { char *name; /* name of the action */ uint32_t durationmsec; /* duration in millisec (1/1000 sec) */ M3D_INDEX numframe; /* number of frames in this animation */ m3dfr_t *frame; /* frames array */ } m3da_t; /* inlined asset */ typedef struct { char *name; /* asset name (same pointer as in texture[].name) */ uint8_t *data; /* compressed asset data */ uint32_t length; /* compressed data length */ } m3di_t; /*** in-memory model structure ***/ #define M3D_FLG_FREERAW (1<<0) #define M3D_FLG_FREESTR (1<<1) #define M3D_FLG_MTLLIB (1<<2) typedef struct { m3dhdr_t *raw; /* pointer to raw data */ char flags; /* internal flags */ char errcode; /* returned error code */ char vc_s, vi_s, si_s, ci_s, ti_s, bi_s, nb_s, sk_s, fi_s; /* decoded sizes for types */ char *name; /* name of the model, like "Utah teapot" */ char *license; /* usage condition or license, like "MIT", "LGPL" or "BSD-3clause" */ char *author; /* nickname, email, homepage or github URL etc. */ char *desc; /* comments, descriptions. May contain '\n' newline character */ M3D_FLOAT scale; /* the model's bounding cube's size in SI meters */ M3D_INDEX numcmap; uint32_t *cmap; /* color map */ M3D_INDEX numtmap; m3dti_t *tmap; /* texture map indices */ M3D_INDEX numtexture; m3dtx_t *texture; /* uncompressed textures */ M3D_INDEX numbone; m3db_t *bone; /* bone hierarchy */ M3D_INDEX numvertex; m3dv_t *vertex; /* vertex data */ M3D_INDEX numskin; m3ds_t *skin; /* skin data */ M3D_INDEX nummaterial; m3dm_t *material; /* material list */ M3D_INDEX numface; m3df_t *face; /* model face, triangle mesh */ M3D_INDEX numaction; m3da_t *action; /* action animations */ M3D_INDEX numinlined; m3di_t *inlined; /* inlined assets */ M3D_INDEX numunknown; m3dchunk_t **unknown; /* unknown chunks, application / engine specific data probably */ } m3d_t; /*** export parameters ***/ #define M3D_EXP_INT8 0 #define M3D_EXP_INT16 1 #define M3D_EXP_FLOAT 2 #define M3D_EXP_DOUBLE 3 #define M3D_EXP_NOCMAP (1<<0) #define M3D_EXP_NOMATERIAL (1<<1) #define M3D_EXP_NOFACE (1<<2) #define M3D_EXP_NONORMAL (1<<3) #define M3D_EXP_NOTXTCRD (1<<4) #define M3D_EXP_FLIPTXTCRD (1<<5) #define M3D_EXP_NORECALC (1<<6) #define M3D_EXP_IDOSUCK (1<<7) #define M3D_EXP_NOBONE (1<<8) #define M3D_EXP_NOACTION (1<<9) #define M3D_EXP_INLINE (1<<10) #define M3D_EXP_EXTRA (1<<11) #define M3D_EXP_NOZLIB (1<<14) #define M3D_EXP_ASCII (1<<15) /*** error codes ***/ #define M3D_SUCCESS 0 #define M3D_ERR_ALLOC -1 #define M3D_ERR_BADFILE -2 #define M3D_ERR_UNIMPL -65 #define M3D_ERR_UNKPROP -66 #define M3D_ERR_UNKMESH -67 #define M3D_ERR_UNKIMG -68 #define M3D_ERR_UNKFRAME -69 #define M3D_ERR_TRUNC -70 #define M3D_ERR_CMAP -71 #define M3D_ERR_TMAP -72 #define M3D_ERR_VRTS -73 #define M3D_ERR_BONE -74 #define M3D_ERR_MTRL -75 #define M3D_ERR_ISFATAL(x) ((x) < 0 && (x) > -65) /* callbacks */ typedef unsigned char *(*m3dread_t)(char *filename, unsigned int *size); /* read file contents into buffer */ typedef void (*m3dfree_t)(void *buffer); /* free file contents buffer */ typedef int (*m3dtxsc_t)(const char *name, const void *script, uint32_t len, m3dtx_t *output); /* interpret texture script */ typedef int (*m3dprsc_t)(const char *name, const void *script, uint32_t len, m3d_t *model); /* interpret surface script */ #endif /* ifndef M3D_APIVERSION */ /*** C prototypes ***/ /* import / export */ m3d_t *m3d_load(unsigned char *data, m3dread_t readfilecb, m3dfree_t freecb, m3d_t *mtllib); unsigned char *m3d_save(m3d_t *model, int quality, int flags, unsigned int *size); void m3d_free(m3d_t *model); /* generate animation pose skeleton */ m3dtr_t *m3d_frame(m3d_t *model, M3D_INDEX actionid, M3D_INDEX frameid, m3dtr_t *skeleton); m3db_t *m3d_pose(m3d_t *model, M3D_INDEX actionid, uint32_t msec); /* private prototypes used by both importer and exporter */ m3ds_t *_m3d_addskin(m3ds_t *skin, uint32_t *numskin, m3ds_t *s, uint32_t *idx); m3dv_t *_m3d_addnorm(m3dv_t *vrtx, uint32_t *numvrtx, m3dv_t *v, uint32_t *idx); char *_m3d_safestr(char *in, int morelines); /*** C implementation ***/ #ifdef M3D_IMPLEMENTATION #if !defined(M3D_NOIMPORTER) || defined(M3D_EXPORTER) /* material property definitions */ static m3dpd_t m3d_propertytypes[] = { M3D_PROPERTYDEF(m3dpf_color, m3dp_Kd, "Kd"), /* diffuse color */ M3D_PROPERTYDEF(m3dpf_color, m3dp_Ka, "Ka"), /* ambient color */ M3D_PROPERTYDEF(m3dpf_color, m3dp_Ks, "Ks"), /* specular color */ M3D_PROPERTYDEF(m3dpf_float, m3dp_Ns, "Ns"), /* specular exponent */ M3D_PROPERTYDEF(m3dpf_color, m3dp_Ke, "Ke"), /* emissive (emitting light of this color) */ M3D_PROPERTYDEF(m3dpf_color, m3dp_Tf, "Tf"), /* transmission color */ M3D_PROPERTYDEF(m3dpf_float, m3dp_Km, "Km"), /* bump strength */ M3D_PROPERTYDEF(m3dpf_float, m3dp_d, "d"), /* dissolve (transparency) */ M3D_PROPERTYDEF(m3dpf_uint8, m3dp_il, "il"), /* illumination model (informational, ignored by PBR-shaders) */ M3D_PROPERTYDEF(m3dpf_float, m3dp_Pr, "Pr"), /* roughness */ M3D_PROPERTYDEF(m3dpf_float, m3dp_Pm, "Pm"), /* metallic, also reflection */ M3D_PROPERTYDEF(m3dpf_float, m3dp_Ps, "Ps"), /* sheen */ M3D_PROPERTYDEF(m3dpf_float, m3dp_Ni, "Ni"), /* index of refraction (optical density) */ /* aliases, note that "map_*" aliases are handled automatically */ M3D_PROPERTYDEF(m3dpf_map, m3dp_map_Km, "bump"), M3D_PROPERTYDEF(m3dpf_map, m3dp_map_Pm, "refl") }; #endif #include #include #if !defined(M3D_NOIMPORTER) && !defined(STBI_INCLUDE_STB_IMAGE_H) /* PNG decompressor from stb_image - v2.23 - public domain image loader - http://nothings.org/stb_image.h */ static const char *stbi__g_failure_reason; enum { STBI_default = 0, STBI_grey = 1, STBI_grey_alpha = 2, STBI_rgb = 3, STBI_rgb_alpha = 4 }; enum { STBI__SCAN_load=0, STBI__SCAN_type, STBI__SCAN_header }; typedef unsigned char stbi_uc; typedef unsigned short stbi_us; typedef uint16_t stbi__uint16; typedef int16_t stbi__int16; typedef uint32_t stbi__uint32; typedef int32_t stbi__int32; typedef struct { stbi__uint32 img_x, img_y; int img_n, img_out_n; void *io_user_data; int read_from_callbacks; int buflen; stbi_uc buffer_start[128]; stbi_uc *img_buffer, *img_buffer_end; stbi_uc *img_buffer_original, *img_buffer_original_end; } stbi__context; typedef struct { int bits_per_channel; int num_channels; int channel_order; } stbi__result_info; #define STBI_ASSERT(v) #define STBI_NOTUSED(v) (void)sizeof(v) #define STBI__BYTECAST(x) ((stbi_uc) ((x) & 255)) #define STBI_MALLOC(sz) M3D_MALLOC(sz) #define STBI_REALLOC(p,newsz) M3D_REALLOC(p,newsz) #define STBI_FREE(p) M3D_FREE(p) #define STBI_REALLOC_SIZED(p,oldsz,newsz) STBI_REALLOC(p,newsz) _inline static stbi_uc stbi__get8(stbi__context *s) { if (s->img_buffer < s->img_buffer_end) return *s->img_buffer++; return 0; } _inline static int stbi__at_eof(stbi__context *s) { return s->img_buffer >= s->img_buffer_end; } static void stbi__skip(stbi__context *s, int n) { if (n < 0) { s->img_buffer = s->img_buffer_end; return; } s->img_buffer += n; } static int stbi__getn(stbi__context *s, stbi_uc *buffer, int n) { if (s->img_buffer+n <= s->img_buffer_end) { memcpy(buffer, s->img_buffer, n); s->img_buffer += n; return 1; } else return 0; } static int stbi__get16be(stbi__context *s) { int z = stbi__get8(s); return (z << 8) + stbi__get8(s); } static stbi__uint32 stbi__get32be(stbi__context *s) { stbi__uint32 z = stbi__get16be(s); return (z << 16) + stbi__get16be(s); } #define stbi__err(x,y) stbi__errstr(y) static int stbi__errstr(const char *str) { stbi__g_failure_reason = str; return 0; } _inline static void *stbi__malloc(size_t size) { return STBI_MALLOC(size); } static int stbi__addsizes_valid(int a, int b) { if (b < 0) return 0; return a <= 2147483647 - b; } static int stbi__mul2sizes_valid(int a, int b) { if (a < 0 || b < 0) return 0; if (b == 0) return 1; return a <= 2147483647/b; } static int stbi__mad2sizes_valid(int a, int b, int add) { return stbi__mul2sizes_valid(a, b) && stbi__addsizes_valid(a*b, add); } static int stbi__mad3sizes_valid(int a, int b, int c, int add) { return stbi__mul2sizes_valid(a, b) && stbi__mul2sizes_valid(a*b, c) && stbi__addsizes_valid(a*b*c, add); } static void *stbi__malloc_mad2(int a, int b, int add) { if (!stbi__mad2sizes_valid(a, b, add)) return NULL; return stbi__malloc(a*b + add); } static void *stbi__malloc_mad3(int a, int b, int c, int add) { if (!stbi__mad3sizes_valid(a, b, c, add)) return NULL; return stbi__malloc(a*b*c + add); } static stbi_uc stbi__compute_y(int r, int g, int b) { return (stbi_uc) (((r*77) + (g*150) + (29*b)) >> 8); } static unsigned char *stbi__convert_format(unsigned char *data, int img_n, int req_comp, unsigned int x, unsigned int y) { int i,j; unsigned char *good; if (req_comp == img_n) return data; STBI_ASSERT(req_comp >= 1 && req_comp <= 4); good = (unsigned char *) stbi__malloc_mad3(req_comp, x, y, 0); if (good == NULL) { STBI_FREE(data); stbi__err("outofmem", "Out of memory"); return NULL; } for (j=0; j < (int) y; ++j) { unsigned char *src = data + j * x * img_n ; unsigned char *dest = good + j * x * req_comp; #define STBI__COMBO(a,b) ((a)*8+(b)) #define STBI__CASE(a,b) case STBI__COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b) switch (STBI__COMBO(img_n, req_comp)) { STBI__CASE(1,2) { dest[0]=src[0], dest[1]=255; } break; STBI__CASE(1,3) { dest[0]=dest[1]=dest[2]=src[0]; } break; STBI__CASE(1,4) { dest[0]=dest[1]=dest[2]=src[0], dest[3]=255; } break; STBI__CASE(2,1) { dest[0]=src[0]; } break; STBI__CASE(2,3) { dest[0]=dest[1]=dest[2]=src[0]; } break; STBI__CASE(2,4) { dest[0]=dest[1]=dest[2]=src[0], dest[3]=src[1]; } break; STBI__CASE(3,4) { dest[0]=src[0],dest[1]=src[1],dest[2]=src[2],dest[3]=255; } break; STBI__CASE(3,1) { dest[0]=stbi__compute_y(src[0],src[1],src[2]); } break; STBI__CASE(3,2) { dest[0]=stbi__compute_y(src[0],src[1],src[2]), dest[1] = 255; } break; STBI__CASE(4,1) { dest[0]=stbi__compute_y(src[0],src[1],src[2]); } break; STBI__CASE(4,2) { dest[0]=stbi__compute_y(src[0],src[1],src[2]), dest[1] = src[3]; } break; STBI__CASE(4,3) { dest[0]=src[0],dest[1]=src[1],dest[2]=src[2]; } break; default: STBI_ASSERT(0); } #undef STBI__CASE } STBI_FREE(data); return good; } static stbi__uint16 stbi__compute_y_16(int r, int g, int b) { return (stbi__uint16) (((r*77) + (g*150) + (29*b)) >> 8); } static stbi__uint16 *stbi__convert_format16(stbi__uint16 *data, int img_n, int req_comp, unsigned int x, unsigned int y) { int i,j; stbi__uint16 *good; if (req_comp == img_n) return data; STBI_ASSERT(req_comp >= 1 && req_comp <= 4); good = (stbi__uint16 *) stbi__malloc(req_comp * x * y * 2); if (good == NULL) { STBI_FREE(data); stbi__err("outofmem", "Out of memory"); return NULL; } for (j=0; j < (int) y; ++j) { stbi__uint16 *src = data + j * x * img_n ; stbi__uint16 *dest = good + j * x * req_comp; #define STBI__COMBO(a,b) ((a)*8+(b)) #define STBI__CASE(a,b) case STBI__COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b) switch (STBI__COMBO(img_n, req_comp)) { STBI__CASE(1,2) { dest[0]=src[0], dest[1]=0xffff; } break; STBI__CASE(1,3) { dest[0]=dest[1]=dest[2]=src[0]; } break; STBI__CASE(1,4) { dest[0]=dest[1]=dest[2]=src[0], dest[3]=0xffff; } break; STBI__CASE(2,1) { dest[0]=src[0]; } break; STBI__CASE(2,3) { dest[0]=dest[1]=dest[2]=src[0]; } break; STBI__CASE(2,4) { dest[0]=dest[1]=dest[2]=src[0], dest[3]=src[1]; } break; STBI__CASE(3,4) { dest[0]=src[0],dest[1]=src[1],dest[2]=src[2],dest[3]=0xffff; } break; STBI__CASE(3,1) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]); } break; STBI__CASE(3,2) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]), dest[1] = 0xffff; } break; STBI__CASE(4,1) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]); } break; STBI__CASE(4,2) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]), dest[1] = src[3]; } break; STBI__CASE(4,3) { dest[0]=src[0],dest[1]=src[1],dest[2]=src[2]; } break; default: STBI_ASSERT(0); } #undef STBI__CASE } STBI_FREE(data); return good; } #define STBI__ZFAST_BITS 9 #define STBI__ZFAST_MASK ((1 << STBI__ZFAST_BITS) - 1) typedef struct { stbi__uint16 fast[1 << STBI__ZFAST_BITS]; stbi__uint16 firstcode[16]; int maxcode[17]; stbi__uint16 firstsymbol[16]; stbi_uc size[288]; stbi__uint16 value[288]; } stbi__zhuffman; _inline static int stbi__bitreverse16(int n) { n = ((n & 0xAAAA) >> 1) | ((n & 0x5555) << 1); n = ((n & 0xCCCC) >> 2) | ((n & 0x3333) << 2); n = ((n & 0xF0F0) >> 4) | ((n & 0x0F0F) << 4); n = ((n & 0xFF00) >> 8) | ((n & 0x00FF) << 8); return n; } _inline static int stbi__bit_reverse(int v, int bits) { STBI_ASSERT(bits <= 16); return stbi__bitreverse16(v) >> (16-bits); } static int stbi__zbuild_huffman(stbi__zhuffman *z, stbi_uc *sizelist, int num) { int i,k=0; int code, next_code[16], sizes[17]; memset(sizes, 0, sizeof(sizes)); memset(z->fast, 0, sizeof(z->fast)); for (i=0; i < num; ++i) ++sizes[sizelist[i]]; sizes[0] = 0; for (i=1; i < 16; ++i) if (sizes[i] > (1 << i)) return stbi__err("bad sizes", "Corrupt PNG"); code = 0; for (i=1; i < 16; ++i) { next_code[i] = code; z->firstcode[i] = (stbi__uint16) code; z->firstsymbol[i] = (stbi__uint16) k; code = (code + sizes[i]); if (sizes[i]) if (code-1 >= (1 << i)) return stbi__err("bad codelengths","Corrupt PNG"); z->maxcode[i] = code << (16-i); code <<= 1; k += sizes[i]; } z->maxcode[16] = 0x10000; for (i=0; i < num; ++i) { int s = sizelist[i]; if (s) { int c = next_code[s] - z->firstcode[s] + z->firstsymbol[s]; stbi__uint16 fastv = (stbi__uint16) ((s << 9) | i); z->size [c] = (stbi_uc ) s; z->value[c] = (stbi__uint16) i; if (s <= STBI__ZFAST_BITS) { int j = stbi__bit_reverse(next_code[s],s); while (j < (1 << STBI__ZFAST_BITS)) { z->fast[j] = fastv; j += (1 << s); } } ++next_code[s]; } } return 1; } typedef struct { stbi_uc *zbuffer, *zbuffer_end; int num_bits; stbi__uint32 code_buffer; char *zout; char *zout_start; char *zout_end; int z_expandable; stbi__zhuffman z_length, z_distance; } stbi__zbuf; _inline static stbi_uc stbi__zget8(stbi__zbuf *z) { if (z->zbuffer >= z->zbuffer_end) return 0; return *z->zbuffer++; } static void stbi__fill_bits(stbi__zbuf *z) { do { STBI_ASSERT(z->code_buffer < (1U << z->num_bits)); z->code_buffer |= (unsigned int) stbi__zget8(z) << z->num_bits; z->num_bits += 8; } while (z->num_bits <= 24); } _inline static unsigned int stbi__zreceive(stbi__zbuf *z, int n) { unsigned int k; if (z->num_bits < n) stbi__fill_bits(z); k = z->code_buffer & ((1 << n) - 1); z->code_buffer >>= n; z->num_bits -= n; return k; } static int stbi__zhuffman_decode_slowpath(stbi__zbuf *a, stbi__zhuffman *z) { int b,s,k; k = stbi__bit_reverse(a->code_buffer, 16); for (s=STBI__ZFAST_BITS+1; ; ++s) if (k < z->maxcode[s]) break; if (s == 16) return -1; b = (k >> (16-s)) - z->firstcode[s] + z->firstsymbol[s]; STBI_ASSERT(z->size[b] == s); a->code_buffer >>= s; a->num_bits -= s; return z->value[b]; } _inline static int stbi__zhuffman_decode(stbi__zbuf *a, stbi__zhuffman *z) { int b,s; if (a->num_bits < 16) stbi__fill_bits(a); b = z->fast[a->code_buffer & STBI__ZFAST_MASK]; if (b) { s = b >> 9; a->code_buffer >>= s; a->num_bits -= s; return b & 511; } return stbi__zhuffman_decode_slowpath(a, z); } static int stbi__zexpand(stbi__zbuf *z, char *zout, int n) { char *q; int cur, limit, old_limit; z->zout = zout; if (!z->z_expandable) return stbi__err("output buffer limit","Corrupt PNG"); cur = (int) (z->zout - z->zout_start); limit = old_limit = (int) (z->zout_end - z->zout_start); while (cur + n > limit) limit *= 2; q = (char *) STBI_REALLOC_SIZED(z->zout_start, old_limit, limit); STBI_NOTUSED(old_limit); if (q == NULL) return stbi__err("outofmem", "Out of memory"); z->zout_start = q; z->zout = q + cur; z->zout_end = q + limit; return 1; } static int stbi__zlength_base[31] = { 3,4,5,6,7,8,9,10,11,13, 15,17,19,23,27,31,35,43,51,59, 67,83,99,115,131,163,195,227,258,0,0 }; static int stbi__zlength_extra[31]= { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 }; static int stbi__zdist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193, 257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0}; static int stbi__zdist_extra[32] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; static int stbi__parse_huffman_block(stbi__zbuf *a) { char *zout = a->zout; for(;;) { int z = stbi__zhuffman_decode(a, &a->z_length); if (z < 256) { if (z < 0) return stbi__err("bad huffman code","Corrupt PNG"); if (zout >= a->zout_end) { if (!stbi__zexpand(a, zout, 1)) return 0; zout = a->zout; } *zout++ = (char) z; } else { stbi_uc *p; int len,dist; if (z == 256) { a->zout = zout; return 1; } z -= 257; len = stbi__zlength_base[z]; if (stbi__zlength_extra[z]) len += stbi__zreceive(a, stbi__zlength_extra[z]); z = stbi__zhuffman_decode(a, &a->z_distance); if (z < 0) return stbi__err("bad huffman code","Corrupt PNG"); dist = stbi__zdist_base[z]; if (stbi__zdist_extra[z]) dist += stbi__zreceive(a, stbi__zdist_extra[z]); if (zout - a->zout_start < dist) return stbi__err("bad dist","Corrupt PNG"); if (zout + len > a->zout_end) { if (!stbi__zexpand(a, zout, len)) return 0; zout = a->zout; } p = (stbi_uc *) (zout - dist); if (dist == 1) { stbi_uc v = *p; if (len) { do *zout++ = v; while (--len); } } else { if (len) { do *zout++ = *p++; while (--len); } } } } } static int stbi__compute_huffman_codes(stbi__zbuf *a) { static stbi_uc length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 }; stbi__zhuffman z_codelength; stbi_uc lencodes[286+32+137]; stbi_uc codelength_sizes[19]; int i,n; int hlit = stbi__zreceive(a,5) + 257; int hdist = stbi__zreceive(a,5) + 1; int hclen = stbi__zreceive(a,4) + 4; int ntot = hlit + hdist; memset(codelength_sizes, 0, sizeof(codelength_sizes)); for (i=0; i < hclen; ++i) { int s = stbi__zreceive(a,3); codelength_sizes[length_dezigzag[i]] = (stbi_uc) s; } if (!stbi__zbuild_huffman(&z_codelength, codelength_sizes, 19)) return 0; n = 0; while (n < ntot) { int c = stbi__zhuffman_decode(a, &z_codelength); if (c < 0 || c >= 19) return stbi__err("bad codelengths", "Corrupt PNG"); if (c < 16) lencodes[n++] = (stbi_uc) c; else { stbi_uc fill = 0; if (c == 16) { c = stbi__zreceive(a,2)+3; if (n == 0) return stbi__err("bad codelengths", "Corrupt PNG"); fill = lencodes[n-1]; } else if (c == 17) c = stbi__zreceive(a,3)+3; else { STBI_ASSERT(c == 18); c = stbi__zreceive(a,7)+11; } if (ntot - n < c) return stbi__err("bad codelengths", "Corrupt PNG"); memset(lencodes+n, fill, c); n += c; } } if (n != ntot) return stbi__err("bad codelengths","Corrupt PNG"); if (!stbi__zbuild_huffman(&a->z_length, lencodes, hlit)) return 0; if (!stbi__zbuild_huffman(&a->z_distance, lencodes+hlit, hdist)) return 0; return 1; } _inline static int stbi__parse_uncompressed_block(stbi__zbuf *a) { stbi_uc header[4]; int len,nlen,k; if (a->num_bits & 7) stbi__zreceive(a, a->num_bits & 7); k = 0; while (a->num_bits > 0) { header[k++] = (stbi_uc) (a->code_buffer & 255); a->code_buffer >>= 8; a->num_bits -= 8; } STBI_ASSERT(a->num_bits == 0); while (k < 4) header[k++] = stbi__zget8(a); len = header[1] * 256 + header[0]; nlen = header[3] * 256 + header[2]; if (nlen != (len ^ 0xffff)) return stbi__err("zlib corrupt","Corrupt PNG"); if (a->zbuffer + len > a->zbuffer_end) return stbi__err("read past buffer","Corrupt PNG"); if (a->zout + len > a->zout_end) if (!stbi__zexpand(a, a->zout, len)) return 0; memcpy(a->zout, a->zbuffer, len); a->zbuffer += len; a->zout += len; return 1; } static int stbi__parse_zlib_header(stbi__zbuf *a) { int cmf = stbi__zget8(a); int cm = cmf & 15; /* int cinfo = cmf >> 4; */ int flg = stbi__zget8(a); if ((cmf*256+flg) % 31 != 0) return stbi__err("bad zlib header","Corrupt PNG"); if (flg & 32) return stbi__err("no preset dict","Corrupt PNG"); if (cm != 8) return stbi__err("bad compression","Corrupt PNG"); return 1; } static stbi_uc stbi__zdefault_length[288], stbi__zdefault_distance[32]; static void stbi__init_zdefaults(void) { int i; for (i=0; i <= 143; ++i) stbi__zdefault_length[i] = 8; for ( ; i <= 255; ++i) stbi__zdefault_length[i] = 9; for ( ; i <= 279; ++i) stbi__zdefault_length[i] = 7; for ( ; i <= 287; ++i) stbi__zdefault_length[i] = 8; for (i=0; i <= 31; ++i) stbi__zdefault_distance[i] = 5; } static int stbi__parse_zlib(stbi__zbuf *a, int parse_header) { int final, type; if (parse_header) if (!stbi__parse_zlib_header(a)) return 0; a->num_bits = 0; a->code_buffer = 0; do { final = stbi__zreceive(a,1); type = stbi__zreceive(a,2); if (type == 0) { if (!stbi__parse_uncompressed_block(a)) return 0; } else if (type == 3) { return 0; } else { if (type == 1) { if (!stbi__zdefault_distance[31]) stbi__init_zdefaults(); if (!stbi__zbuild_huffman(&a->z_length , stbi__zdefault_length , 288)) return 0; if (!stbi__zbuild_huffman(&a->z_distance, stbi__zdefault_distance, 32)) return 0; } else { if (!stbi__compute_huffman_codes(a)) return 0; } if (!stbi__parse_huffman_block(a)) return 0; } } while (!final); return 1; } static int stbi__do_zlib(stbi__zbuf *a, char *obuf, int olen, int exp, int parse_header) { a->zout_start = obuf; a->zout = obuf; a->zout_end = obuf + olen; a->z_expandable = exp; return stbi__parse_zlib(a, parse_header); } char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header) { stbi__zbuf a; char *p = (char *) stbi__malloc(initial_size); if (p == NULL) return NULL; a.zbuffer = (stbi_uc *) buffer; a.zbuffer_end = (stbi_uc *) buffer + len; if (stbi__do_zlib(&a, p, initial_size, 1, parse_header)) { if (outlen) *outlen = (int) (a.zout - a.zout_start); return a.zout_start; } else { STBI_FREE(a.zout_start); return NULL; } } typedef struct { stbi__uint32 length; stbi__uint32 type; } stbi__pngchunk; static stbi__pngchunk stbi__get_chunk_header(stbi__context *s) { stbi__pngchunk c; c.length = stbi__get32be(s); c.type = stbi__get32be(s); return c; } _inline static int stbi__check_png_header(stbi__context *s) { static stbi_uc png_sig[8] = { 137,80,78,71,13,10,26,10 }; int i; for (i=0; i < 8; ++i) if (stbi__get8(s) != png_sig[i]) return stbi__err("bad png sig","Not a PNG"); return 1; } typedef struct { stbi__context *s; stbi_uc *idata, *expanded, *out; int depth; } stbi__png; enum { STBI__F_none=0, STBI__F_sub=1, STBI__F_up=2, STBI__F_avg=3, STBI__F_paeth=4, STBI__F_avg_first, STBI__F_paeth_first }; static stbi_uc first_row_filter[5] = { STBI__F_none, STBI__F_sub, STBI__F_none, STBI__F_avg_first, STBI__F_paeth_first }; static int stbi__paeth(int a, int b, int c) { int p = a + b - c; int pa = abs(p-a); int pb = abs(p-b); int pc = abs(p-c); if (pa <= pb && pa <= pc) return a; if (pb <= pc) return b; return c; } static stbi_uc stbi__depth_scale_table[9] = { 0, 0xff, 0x55, 0, 0x11, 0,0,0, 0x01 }; static int stbi__create_png_image_raw(stbi__png *a, stbi_uc *raw, stbi__uint32 raw_len, int out_n, stbi__uint32 x, stbi__uint32 y, int depth, int color) { int bytes = (depth == 16? 2 : 1); stbi__context *s = a->s; stbi__uint32 i,j,stride = x*out_n*bytes; stbi__uint32 img_len, img_width_bytes; int k; int img_n = s->img_n; int output_bytes = out_n*bytes; int filter_bytes = img_n*bytes; int width = x; STBI_ASSERT(out_n == s->img_n || out_n == s->img_n+1); a->out = (stbi_uc *) stbi__malloc_mad3(x, y, output_bytes, 0); if (!a->out) return stbi__err("outofmem", "Out of memory"); img_width_bytes = (((img_n * x * depth) + 7) >> 3); img_len = (img_width_bytes + 1) * y; if (s->img_x == x && s->img_y == y) { if (raw_len != img_len) return stbi__err("not enough pixels","Corrupt PNG"); } else { if (raw_len < img_len) return stbi__err("not enough pixels","Corrupt PNG"); } for (j=0; j < y; ++j) { stbi_uc *cur = a->out + stride*j; stbi_uc *prior = cur - stride; int filter = *raw++; if (filter > 4) return stbi__err("invalid filter","Corrupt PNG"); if (depth < 8) { STBI_ASSERT(img_width_bytes <= x); cur += x*out_n - img_width_bytes; filter_bytes = 1; width = img_width_bytes; } if (j == 0) filter = first_row_filter[filter]; for (k=0; k < filter_bytes; ++k) { switch (filter) { case STBI__F_none : cur[k] = raw[k]; break; case STBI__F_sub : cur[k] = raw[k]; break; case STBI__F_up : cur[k] = STBI__BYTECAST(raw[k] + prior[k]); break; case STBI__F_avg : cur[k] = STBI__BYTECAST(raw[k] + (prior[k]>>1)); break; case STBI__F_paeth : cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(0,prior[k],0)); break; case STBI__F_avg_first : cur[k] = raw[k]; break; case STBI__F_paeth_first: cur[k] = raw[k]; break; } } if (depth == 8) { if (img_n != out_n) cur[img_n] = 255; raw += img_n; cur += out_n; prior += out_n; } else if (depth == 16) { if (img_n != out_n) { cur[filter_bytes] = 255; cur[filter_bytes+1] = 255; } raw += filter_bytes; cur += output_bytes; prior += output_bytes; } else { raw += 1; cur += 1; prior += 1; } if (depth < 8 || img_n == out_n) { int nk = (width - 1)*filter_bytes; #define STBI__CASE(f) \ case f: \ for (k=0; k < nk; ++k) switch (filter) { case STBI__F_none: memcpy(cur, raw, nk); break; STBI__CASE(STBI__F_sub) { cur[k] = STBI__BYTECAST(raw[k] + cur[k-filter_bytes]); } break; STBI__CASE(STBI__F_up) { cur[k] = STBI__BYTECAST(raw[k] + prior[k]); } break; STBI__CASE(STBI__F_avg) { cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k-filter_bytes])>>1)); } break; STBI__CASE(STBI__F_paeth) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-filter_bytes],prior[k],prior[k-filter_bytes])); } break; STBI__CASE(STBI__F_avg_first) { cur[k] = STBI__BYTECAST(raw[k] + (cur[k-filter_bytes] >> 1)); } break; STBI__CASE(STBI__F_paeth_first) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-filter_bytes],0,0)); } break; } #undef STBI__CASE raw += nk; } else { STBI_ASSERT(img_n+1 == out_n); #define STBI__CASE(f) \ case f: \ for (i=x-1; i >= 1; --i, cur[filter_bytes]=255,raw+=filter_bytes,cur+=output_bytes,prior+=output_bytes) \ for (k=0; k < filter_bytes; ++k) switch (filter) { STBI__CASE(STBI__F_none) { cur[k] = raw[k]; } break; STBI__CASE(STBI__F_sub) { cur[k] = STBI__BYTECAST(raw[k] + cur[k- output_bytes]); } break; STBI__CASE(STBI__F_up) { cur[k] = STBI__BYTECAST(raw[k] + prior[k]); } break; STBI__CASE(STBI__F_avg) { cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k- output_bytes])>>1)); } break; STBI__CASE(STBI__F_paeth) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k- output_bytes],prior[k],prior[k- output_bytes])); } break; STBI__CASE(STBI__F_avg_first) { cur[k] = STBI__BYTECAST(raw[k] + (cur[k- output_bytes] >> 1)); } break; STBI__CASE(STBI__F_paeth_first) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k- output_bytes],0,0)); } break; } #undef STBI__CASE if (depth == 16) { cur = a->out + stride*j; for (i=0; i < x; ++i,cur+=output_bytes) { cur[filter_bytes+1] = 255; } } } } if (depth < 8) { for (j=0; j < y; ++j) { stbi_uc *cur = a->out + stride*j; stbi_uc *in = a->out + stride*j + x*out_n - img_width_bytes; stbi_uc scale = (color == 0) ? stbi__depth_scale_table[depth] : 1; if (depth == 4) { for (k=x*img_n; k >= 2; k-=2, ++in) { *cur++ = scale * ((*in >> 4) ); *cur++ = scale * ((*in ) & 0x0f); } if (k > 0) *cur++ = scale * ((*in >> 4) ); } else if (depth == 2) { for (k=x*img_n; k >= 4; k-=4, ++in) { *cur++ = scale * ((*in >> 6) ); *cur++ = scale * ((*in >> 4) & 0x03); *cur++ = scale * ((*in >> 2) & 0x03); *cur++ = scale * ((*in ) & 0x03); } if (k > 0) *cur++ = scale * ((*in >> 6) ); if (k > 1) *cur++ = scale * ((*in >> 4) & 0x03); if (k > 2) *cur++ = scale * ((*in >> 2) & 0x03); } else if (depth == 1) { for (k=x*img_n; k >= 8; k-=8, ++in) { *cur++ = scale * ((*in >> 7) ); *cur++ = scale * ((*in >> 6) & 0x01); *cur++ = scale * ((*in >> 5) & 0x01); *cur++ = scale * ((*in >> 4) & 0x01); *cur++ = scale * ((*in >> 3) & 0x01); *cur++ = scale * ((*in >> 2) & 0x01); *cur++ = scale * ((*in >> 1) & 0x01); *cur++ = scale * ((*in ) & 0x01); } if (k > 0) *cur++ = scale * ((*in >> 7) ); if (k > 1) *cur++ = scale * ((*in >> 6) & 0x01); if (k > 2) *cur++ = scale * ((*in >> 5) & 0x01); if (k > 3) *cur++ = scale * ((*in >> 4) & 0x01); if (k > 4) *cur++ = scale * ((*in >> 3) & 0x01); if (k > 5) *cur++ = scale * ((*in >> 2) & 0x01); if (k > 6) *cur++ = scale * ((*in >> 1) & 0x01); } if (img_n != out_n) { int q; cur = a->out + stride*j; if (img_n == 1) { for (q=x-1; q >= 0; --q) { cur[q*2+1] = 255; cur[q*2+0] = cur[q]; } } else { STBI_ASSERT(img_n == 3); for (q=x-1; q >= 0; --q) { cur[q*4+3] = 255; cur[q*4+2] = cur[q*3+2]; cur[q*4+1] = cur[q*3+1]; cur[q*4+0] = cur[q*3+0]; } } } } } else if (depth == 16) { stbi_uc *cur = a->out; stbi__uint16 *cur16 = (stbi__uint16*)cur; for(i=0; i < x*y*out_n; ++i,cur16++,cur+=2) { *cur16 = (cur[0] << 8) | cur[1]; } } return 1; } static int stbi__create_png_image(stbi__png *a, stbi_uc *image_data, stbi__uint32 image_data_len, int out_n, int depth, int color, int interlaced) { int bytes = (depth == 16 ? 2 : 1); int out_bytes = out_n * bytes; stbi_uc *final; int p; if (!interlaced) return stbi__create_png_image_raw(a, image_data, image_data_len, out_n, a->s->img_x, a->s->img_y, depth, color); final = (stbi_uc *) stbi__malloc_mad3(a->s->img_x, a->s->img_y, out_bytes, 0); for (p=0; p < 7; ++p) { int xorig[] = { 0,4,0,2,0,1,0 }; int yorig[] = { 0,0,4,0,2,0,1 }; int xspc[] = { 8,8,4,4,2,2,1 }; int yspc[] = { 8,8,8,4,4,2,2 }; int i,j,x,y; x = (a->s->img_x - xorig[p] + xspc[p]-1) / xspc[p]; y = (a->s->img_y - yorig[p] + yspc[p]-1) / yspc[p]; if (x && y) { stbi__uint32 img_len = ((((a->s->img_n * x * depth) + 7) >> 3) + 1) * y; if (!stbi__create_png_image_raw(a, image_data, image_data_len, out_n, x, y, depth, color)) { STBI_FREE(final); return 0; } for (j=0; j < y; ++j) { for (i=0; i < x; ++i) { int out_y = j*yspc[p]+yorig[p]; int out_x = i*xspc[p]+xorig[p]; memcpy(final + out_y*a->s->img_x*out_bytes + out_x*out_bytes, a->out + (j*x+i)*out_bytes, out_bytes); } } STBI_FREE(a->out); image_data += img_len; image_data_len -= img_len; } } a->out = final; return 1; } static int stbi__compute_transparency(stbi__png *z, stbi_uc tc[3], int out_n) { stbi__context *s = z->s; stbi__uint32 i, pixel_count = s->img_x * s->img_y; stbi_uc *p = z->out; STBI_ASSERT(out_n == 2 || out_n == 4); if (out_n == 2) { for (i=0; i < pixel_count; ++i) { p[1] = (p[0] == tc[0] ? 0 : 255); p += 2; } } else { for (i=0; i < pixel_count; ++i) { if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2]) p[3] = 0; p += 4; } } return 1; } static int stbi__compute_transparency16(stbi__png *z, stbi__uint16 tc[3], int out_n) { stbi__context *s = z->s; stbi__uint32 i, pixel_count = s->img_x * s->img_y; stbi__uint16 *p = (stbi__uint16*) z->out; STBI_ASSERT(out_n == 2 || out_n == 4); if (out_n == 2) { for (i = 0; i < pixel_count; ++i) { p[1] = (p[0] == tc[0] ? 0 : 65535); p += 2; } } else { for (i = 0; i < pixel_count; ++i) { if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2]) p[3] = 0; p += 4; } } return 1; } static int stbi__expand_png_palette(stbi__png *a, stbi_uc *palette, int len, int pal_img_n) { stbi__uint32 i, pixel_count = a->s->img_x * a->s->img_y; stbi_uc *p, *temp_out, *orig = a->out; p = (stbi_uc *) stbi__malloc_mad2(pixel_count, pal_img_n, 0); if (p == NULL) return stbi__err("outofmem", "Out of memory"); temp_out = p; if (pal_img_n == 3) { for (i=0; i < pixel_count; ++i) { int n = orig[i]*4; p[0] = palette[n ]; p[1] = palette[n+1]; p[2] = palette[n+2]; p += 3; } } else { for (i=0; i < pixel_count; ++i) { int n = orig[i]*4; p[0] = palette[n ]; p[1] = palette[n+1]; p[2] = palette[n+2]; p[3] = palette[n+3]; p += 4; } } STBI_FREE(a->out); a->out = temp_out; STBI_NOTUSED(len); return 1; } static int stbi__unpremultiply_on_load = 0; static int stbi__de_iphone_flag = 0; void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply) { stbi__unpremultiply_on_load = flag_true_if_should_unpremultiply; } void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert) { stbi__de_iphone_flag = flag_true_if_should_convert; } static void stbi__de_iphone(stbi__png *z) { stbi__context *s = z->s; stbi__uint32 i, pixel_count = s->img_x * s->img_y; stbi_uc *p = z->out; if (s->img_out_n == 3) { for (i=0; i < pixel_count; ++i) { stbi_uc t = p[0]; p[0] = p[2]; p[2] = t; p += 3; } } else { STBI_ASSERT(s->img_out_n == 4); if (stbi__unpremultiply_on_load) { for (i=0; i < pixel_count; ++i) { stbi_uc a = p[3]; stbi_uc t = p[0]; if (a) { p[0] = p[2] * 255 / a; p[1] = p[1] * 255 / a; p[2] = t * 255 / a; } else { p[0] = p[2]; p[2] = t; } p += 4; } } else { for (i=0; i < pixel_count; ++i) { stbi_uc t = p[0]; p[0] = p[2]; p[2] = t; p += 4; } } } } #define STBI__PNG_TYPE(a,b,c,d) (((a) << 24) + ((b) << 16) + ((c) << 8) + (d)) static int stbi__parse_png_file(stbi__png *z, int scan, int req_comp) { stbi_uc palette[1024], pal_img_n=0; stbi_uc has_trans=0, tc[3]; stbi__uint16 tc16[3]; stbi__uint32 ioff=0, idata_limit=0, i, pal_len=0; int first=1,k,interlace=0, color=0, is_iphone=0; stbi__context *s = z->s; z->expanded = NULL; z->idata = NULL; z->out = NULL; if (!stbi__check_png_header(s)) return 0; if (scan == STBI__SCAN_type) return 1; for (;;) { stbi__pngchunk c = stbi__get_chunk_header(s); switch (c.type) { case STBI__PNG_TYPE('C','g','B','I'): is_iphone = 1; stbi__skip(s, c.length); break; case STBI__PNG_TYPE('I','H','D','R'): { int comp,filter; if (!first) return stbi__err("multiple IHDR","Corrupt PNG"); first = 0; if (c.length != 13) return stbi__err("bad IHDR len","Corrupt PNG"); s->img_x = stbi__get32be(s); if (s->img_x > (1 << 24)) return stbi__err("too large","Very large image (corrupt?)"); s->img_y = stbi__get32be(s); if (s->img_y > (1 << 24)) return stbi__err("too large","Very large image (corrupt?)"); z->depth = stbi__get8(s); if (z->depth != 1 && z->depth != 2 && z->depth != 4 && z->depth != 8 && z->depth != 16) return stbi__err("1/2/4/8/16-bit only","PNG not supported: 1/2/4/8/16-bit only"); color = stbi__get8(s); if (color > 6) return stbi__err("bad ctype","Corrupt PNG"); if (color == 3 && z->depth == 16) return stbi__err("bad ctype","Corrupt PNG"); if (color == 3) pal_img_n = 3; else if (color & 1) return stbi__err("bad ctype","Corrupt PNG"); comp = stbi__get8(s); if (comp) return stbi__err("bad comp method","Corrupt PNG"); filter= stbi__get8(s); if (filter) return stbi__err("bad filter method","Corrupt PNG"); interlace = stbi__get8(s); if (interlace>1) return stbi__err("bad interlace method","Corrupt PNG"); if (!s->img_x || !s->img_y) return stbi__err("0-pixel image","Corrupt PNG"); if (!pal_img_n) { s->img_n = (color & 2 ? 3 : 1) + (color & 4 ? 1 : 0); if ((1 << 30) / s->img_x / s->img_n < s->img_y) return stbi__err("too large", "Image too large to decode"); if (scan == STBI__SCAN_header) return 1; } else { s->img_n = 1; if ((1 << 30) / s->img_x / 4 < s->img_y) return stbi__err("too large","Corrupt PNG"); } break; } case STBI__PNG_TYPE('P','L','T','E'): { if (first) return stbi__err("first not IHDR", "Corrupt PNG"); if (c.length > 256*3) return stbi__err("invalid PLTE","Corrupt PNG"); pal_len = c.length / 3; if (pal_len * 3 != c.length) return stbi__err("invalid PLTE","Corrupt PNG"); for (i=0; i < pal_len; ++i) { palette[i*4+0] = stbi__get8(s); palette[i*4+1] = stbi__get8(s); palette[i*4+2] = stbi__get8(s); palette[i*4+3] = 255; } break; } case STBI__PNG_TYPE('t','R','N','S'): { if (first) return stbi__err("first not IHDR", "Corrupt PNG"); if (z->idata) return stbi__err("tRNS after IDAT","Corrupt PNG"); if (pal_img_n) { if (scan == STBI__SCAN_header) { s->img_n = 4; return 1; } if (pal_len == 0) return stbi__err("tRNS before PLTE","Corrupt PNG"); if (c.length > pal_len) return stbi__err("bad tRNS len","Corrupt PNG"); pal_img_n = 4; for (i=0; i < c.length; ++i) palette[i*4+3] = stbi__get8(s); } else { if (!(s->img_n & 1)) return stbi__err("tRNS with alpha","Corrupt PNG"); if (c.length != (stbi__uint32) s->img_n*2) return stbi__err("bad tRNS len","Corrupt PNG"); has_trans = 1; if (z->depth == 16) { for (k = 0; k < s->img_n; ++k) tc16[k] = (stbi__uint16)stbi__get16be(s); } else { for (k = 0; k < s->img_n; ++k) tc[k] = (stbi_uc)(stbi__get16be(s) & 255) * stbi__depth_scale_table[z->depth]; } } break; } case STBI__PNG_TYPE('I','D','A','T'): { if (first) return stbi__err("first not IHDR", "Corrupt PNG"); if (pal_img_n && !pal_len) return stbi__err("no PLTE","Corrupt PNG"); if (scan == STBI__SCAN_header) { s->img_n = pal_img_n; return 1; } if ((int)(ioff + c.length) < (int)ioff) return 0; if (ioff + c.length > idata_limit) { stbi__uint32 idata_limit_old = idata_limit; stbi_uc *p; if (idata_limit == 0) idata_limit = c.length > 4096 ? c.length : 4096; while (ioff + c.length > idata_limit) idata_limit *= 2; STBI_NOTUSED(idata_limit_old); p = (stbi_uc *) STBI_REALLOC_SIZED(z->idata, idata_limit_old, idata_limit); if (p == NULL) return stbi__err("outofmem", "Out of memory"); z->idata = p; } if (!stbi__getn(s, z->idata+ioff,c.length)) return stbi__err("outofdata","Corrupt PNG"); ioff += c.length; break; } case STBI__PNG_TYPE('I','E','N','D'): { stbi__uint32 raw_len, bpl; if (first) return stbi__err("first not IHDR", "Corrupt PNG"); if (scan != STBI__SCAN_load) return 1; if (z->idata == NULL) return stbi__err("no IDAT","Corrupt PNG"); bpl = (s->img_x * z->depth + 7) / 8; raw_len = bpl * s->img_y * s->img_n /* pixels */ + s->img_y /* filter mode per row */; z->expanded = (stbi_uc *) stbi_zlib_decode_malloc_guesssize_headerflag((char *) z->idata, ioff, raw_len, (int *) &raw_len, !is_iphone); if (z->expanded == NULL) return 0; STBI_FREE(z->idata); z->idata = NULL; if ((req_comp == s->img_n+1 && req_comp != 3 && !pal_img_n) || has_trans) s->img_out_n = s->img_n+1; else s->img_out_n = s->img_n; if (!stbi__create_png_image(z, z->expanded, raw_len, s->img_out_n, z->depth, color, interlace)) return 0; if (has_trans) { if (z->depth == 16) { if (!stbi__compute_transparency16(z, tc16, s->img_out_n)) return 0; } else { if (!stbi__compute_transparency(z, tc, s->img_out_n)) return 0; } } if (is_iphone && stbi__de_iphone_flag && s->img_out_n > 2) stbi__de_iphone(z); if (pal_img_n) { s->img_n = pal_img_n; s->img_out_n = pal_img_n; if (req_comp >= 3) s->img_out_n = req_comp; if (!stbi__expand_png_palette(z, palette, pal_len, s->img_out_n)) return 0; } STBI_FREE(z->expanded); z->expanded = NULL; return 1; } default: if (first) return stbi__err("first not IHDR", "Corrupt PNG"); if ((c.type & (1 << 29)) == 0) { return stbi__err("invalid_chunk", "PNG not supported: unknown PNG chunk type"); } stbi__skip(s, c.length); break; } stbi__get32be(s); } } static void *stbi__do_png(stbi__png *p, int *x, int *y, int *n, int req_comp, stbi__result_info *ri) { void *result=NULL; if (req_comp < 0 || req_comp > 4) { stbi__err("bad req_comp", "Internal error"); return NULL; } if (stbi__parse_png_file(p, STBI__SCAN_load, req_comp)) { ri->bits_per_channel = p->depth; result = p->out; p->out = NULL; if (req_comp && req_comp != p->s->img_out_n) { if (ri->bits_per_channel == 8) result = stbi__convert_format((unsigned char *) result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y); else result = stbi__convert_format16((stbi__uint16 *) result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y); p->s->img_out_n = req_comp; if (result == NULL) return result; } *x = p->s->img_x; *y = p->s->img_y; if (n) *n = p->s->img_n; } STBI_FREE(p->out); p->out = NULL; STBI_FREE(p->expanded); p->expanded = NULL; STBI_FREE(p->idata); p->idata = NULL; return result; } static void *stbi__png_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) { stbi__png p; p.s = s; return stbi__do_png(&p, x,y,comp,req_comp, ri); } #endif #if defined(M3D_EXPORTER) && !defined(INCLUDE_STB_IMAGE_WRITE_H) /* zlib_compressor from stb_image_write - v1.13 - public domain - http://nothings.org/stb/stb_image_write.h */ typedef unsigned char stbiw_uc; typedef unsigned short stbiw_us; typedef uint16_t stbiw_uint16; typedef int16_t stbiw_int16; typedef uint32_t stbiw_uint32; typedef int32_t stbiw_int32; #define STBIW_MALLOC(s) M3D_MALLOC(s) #define STBIW_REALLOC(p,ns) M3D_REALLOC(p,ns) #define STBIW_REALLOC_SIZED(p,oldsz,newsz) STBIW_REALLOC(p,newsz) #define STBIW_FREE M3D_FREE #define STBIW_MEMMOVE memmove #define STBIW_UCHAR (uint8_t) #define STBIW_ASSERT(x) #define stbiw__sbraw(a) ((int *) (a) - 2) #define stbiw__sbm(a) stbiw__sbraw(a)[0] #define stbiw__sbn(a) stbiw__sbraw(a)[1] #define stbiw__sbneedgrow(a,n) ((a)==0 || stbiw__sbn(a)+n >= stbiw__sbm(a)) #define stbiw__sbmaybegrow(a,n) (stbiw__sbneedgrow(a,(n)) ? stbiw__sbgrow(a,n) : 0) #define stbiw__sbgrow(a,n) stbiw__sbgrowf((void **) &(a), (n), sizeof(*(a))) #define stbiw__sbpush(a, v) (stbiw__sbmaybegrow(a,1), (a)[stbiw__sbn(a)++] = (v)) #define stbiw__sbcount(a) ((a) ? stbiw__sbn(a) : 0) #define stbiw__sbfree(a) ((a) ? STBIW_FREE(stbiw__sbraw(a)),0 : 0) static void *stbiw__sbgrowf(void **arr, int increment, int itemsize) { int m = *arr ? 2*stbiw__sbm(*arr)+increment : increment+1; void *p = STBIW_REALLOC_SIZED(*arr ? stbiw__sbraw(*arr) : 0, *arr ? (stbiw__sbm(*arr)*itemsize + sizeof(int)*2) : 0, itemsize * m + sizeof(int)*2); STBIW_ASSERT(p); if (p) { if (!*arr) ((int *) p)[1] = 0; *arr = (void *) ((int *) p + 2); stbiw__sbm(*arr) = m; } return *arr; } static unsigned char *stbiw__zlib_flushf(unsigned char *data, unsigned int *bitbuffer, int *bitcount) { while (*bitcount >= 8) { stbiw__sbpush(data, STBIW_UCHAR(*bitbuffer)); *bitbuffer >>= 8; *bitcount -= 8; } return data; } static int stbiw__zlib_bitrev(int code, int codebits) { int res=0; while (codebits--) { res = (res << 1) | (code & 1); code >>= 1; } return res; } static unsigned int stbiw__zlib_countm(unsigned char *a, unsigned char *b, int limit) { int i; for (i=0; i < limit && i < 258; ++i) if (a[i] != b[i]) break; return i; } static unsigned int stbiw__zhash(unsigned char *data) { stbiw_uint32 hash = data[0] + (data[1] << 8) + (data[2] << 16); hash ^= hash << 3; hash += hash >> 5; hash ^= hash << 4; hash += hash >> 17; hash ^= hash << 25; hash += hash >> 6; return hash; } #define stbiw__zlib_flush() (out = stbiw__zlib_flushf(out, &bitbuf, &bitcount)) #define stbiw__zlib_add(code,codebits) \ (bitbuf |= (code) << bitcount, bitcount += (codebits), stbiw__zlib_flush()) #define stbiw__zlib_huffa(b,c) stbiw__zlib_add(stbiw__zlib_bitrev(b,c),c) #define stbiw__zlib_huff1(n) stbiw__zlib_huffa(0x30 + (n), 8) #define stbiw__zlib_huff2(n) stbiw__zlib_huffa(0x190 + (n)-144, 9) #define stbiw__zlib_huff3(n) stbiw__zlib_huffa(0 + (n)-256,7) #define stbiw__zlib_huff4(n) stbiw__zlib_huffa(0xc0 + (n)-280,8) #define stbiw__zlib_huff(n) ((n) <= 143 ? stbiw__zlib_huff1(n) : (n) <= 255 ? stbiw__zlib_huff2(n) : (n) <= 279 ? stbiw__zlib_huff3(n) : stbiw__zlib_huff4(n)) #define stbiw__zlib_huffb(n) ((n) <= 143 ? stbiw__zlib_huff1(n) : stbiw__zlib_huff2(n)) #define stbiw__ZHASH 16384 unsigned char * stbi_zlib_compress(unsigned char *data, int data_len, int *out_len, int quality) { static unsigned short lengthc[] = { 3,4,5,6,7,8,9,10,11,13,15,17,19,23,27,31,35,43,51,59,67,83,99,115,131,163,195,227,258, 259 }; static unsigned char lengtheb[]= { 0,0,0,0,0,0,0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0 }; static unsigned short distc[] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577, 32768 }; static unsigned char disteb[] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13 }; unsigned int bitbuf=0; int i,j, bitcount=0; unsigned char *out = NULL; unsigned char ***hash_table = (unsigned char***) STBIW_MALLOC(stbiw__ZHASH * sizeof(char**)); if (quality < 5) quality = 5; stbiw__sbpush(out, 0x78); stbiw__sbpush(out, 0x5e); stbiw__zlib_add(1,1); stbiw__zlib_add(1,2); for (i=0; i < stbiw__ZHASH; ++i) hash_table[i] = NULL; i=0; while (i < data_len-3) { int h = stbiw__zhash(data+i)&(stbiw__ZHASH-1), best=3; unsigned char *bestloc = 0; unsigned char **hlist = hash_table[h]; int n = stbiw__sbcount(hlist); for (j=0; j < n; ++j) { if (hlist[j]-data > i-32768) { int d = stbiw__zlib_countm(hlist[j], data+i, data_len-i); if (d >= best) best=d,bestloc=hlist[j]; } } if (hash_table[h] && stbiw__sbn(hash_table[h]) == 2*quality) { STBIW_MEMMOVE(hash_table[h], hash_table[h]+quality, sizeof(hash_table[h][0])*quality); stbiw__sbn(hash_table[h]) = quality; } stbiw__sbpush(hash_table[h],data+i); if (bestloc) { h = stbiw__zhash(data+i+1)&(stbiw__ZHASH-1); hlist = hash_table[h]; n = stbiw__sbcount(hlist); for (j=0; j < n; ++j) { if (hlist[j]-data > i-32767) { int e = stbiw__zlib_countm(hlist[j], data+i+1, data_len-i-1); if (e > best) { bestloc = NULL; break; } } } } if (bestloc) { int d = (int) (data+i - bestloc); STBIW_ASSERT(d <= 32767 && best <= 258); for (j=0; best > lengthc[j+1]-1; ++j); stbiw__zlib_huff(j+257); if (lengtheb[j]) stbiw__zlib_add(best - lengthc[j], lengtheb[j]); for (j=0; d > distc[j+1]-1; ++j); stbiw__zlib_add(stbiw__zlib_bitrev(j,5),5); if (disteb[j]) stbiw__zlib_add(d - distc[j], disteb[j]); i += best; } else { stbiw__zlib_huffb(data[i]); ++i; } } for (;i < data_len; ++i) stbiw__zlib_huffb(data[i]); stbiw__zlib_huff(256); while (bitcount) stbiw__zlib_add(0,1); for (i=0; i < stbiw__ZHASH; ++i) (void) stbiw__sbfree(hash_table[i]); STBIW_FREE(hash_table); { unsigned int s1=1, s2=0; int blocklen = (int) (data_len % 5552); j=0; while (j < data_len) { for (i=0; i < blocklen; ++i) s1 += data[j+i], s2 += s1; s1 %= 65521, s2 %= 65521; j += blocklen; blocklen = 5552; } stbiw__sbpush(out, STBIW_UCHAR(s2 >> 8)); stbiw__sbpush(out, STBIW_UCHAR(s2)); stbiw__sbpush(out, STBIW_UCHAR(s1 >> 8)); stbiw__sbpush(out, STBIW_UCHAR(s1)); } *out_len = stbiw__sbn(out); STBIW_MEMMOVE(stbiw__sbraw(out), out, *out_len); return (unsigned char *) stbiw__sbraw(out); } #endif #define M3D_CHUNKMAGIC(m, a,b,c,d) ((m)[0]==(a) && (m)[1]==(b) && (m)[2]==(c) && (m)[3]==(d)) #ifdef M3D_ASCII #include /* get sprintf */ #include /* sprintf and strtod cares about number locale */ #endif #if !defined(M3D_NOIMPORTER) && defined(M3D_ASCII) /* helper functions for the ASCII parser */ static char *_m3d_findarg(char *s) { while(s && *s && *s != ' ' && *s != '\t' && *s != '\r' && *s != '\n') s++; while(s && *s && (*s == ' ' || *s == '\t')) s++; return s; } static char *_m3d_findnl(char *s) { while(s && *s && *s != '\r' && *s != '\n') s++; if(*s == '\r') s++; if(*s == '\n') s++; return s; } static char *_m3d_gethex(char *s, uint32_t *ret) { if(*s == '#') s++; *ret = 0; for(; *s; s++) { if(*s >= '0' && *s <= '9') { *ret <<= 4; *ret += (uint32_t)(*s-'0'); } else if(*s >= 'a' && *s <= 'f') { *ret <<= 4; *ret += (uint32_t)(*s-'a'+10); } else if(*s >= 'A' && *s <= 'F') { *ret <<= 4; *ret += (uint32_t)(*s-'A'+10); } else break; } return _m3d_findarg(s); } static char *_m3d_getint(char *s, uint32_t *ret) { char *e = s; if(!s || !*s) return s; for(; *e >= '0' && *e <= '9'; e++); *ret = atoi(s); return e; } static char *_m3d_getfloat(char *s, M3D_FLOAT *ret) { char *e = s; if(!s || !*s) return s; for(; *e == '-' || *e == '+' || *e == '.' || (*e >= '0' && *e <= '9') || *e == 'e' || *e == 'E'; e++); *ret = (M3D_FLOAT)strtod(s, NULL); return _m3d_findarg(e); } #endif #if !defined(M3D_NODUP) && (defined(M3D_ASCII) || defined(M3D_EXPORTER)) m3ds_t *_m3d_addskin(m3ds_t *skin, uint32_t *numskin, m3ds_t *s, uint32_t *idx) { uint32_t i; M3D_FLOAT w = (M3D_FLOAT)0.0; for(i = 0; i < M3D_NUMBONE && s->weight[i] > (M3D_FLOAT)0.0; i++) w += s->weight[i]; if(w != (M3D_FLOAT)1.0 && w != (M3D_FLOAT)0.0) for(i = 0; i < M3D_NUMBONE && s->weight[i] > (M3D_FLOAT)0.0; i++) s->weight[i] /= w; if(skin) { for(i = 0; i < *numskin; i++) if(!memcmp(&skin[i], s, sizeof(m3ds_t))) { *idx = i; return skin; } } skin = (m3ds_t*)M3D_REALLOC(skin, ((*numskin) + 1) * sizeof(m3ds_t)); memcpy(&skin[*numskin], s, sizeof(m3ds_t)); *idx = *numskin; (*numskin)++; return skin; } /* add vertex to list, only compare x,y,z */ m3dv_t *_m3d_addnorm(m3dv_t *vrtx, uint32_t *numvrtx, m3dv_t *v, uint32_t *idx) { uint32_t i; if(v->x == (M3D_FLOAT)-0.0) v->x = (M3D_FLOAT)0.0; if(v->y == (M3D_FLOAT)-0.0) v->y = (M3D_FLOAT)0.0; if(v->z == (M3D_FLOAT)-0.0) v->z = (M3D_FLOAT)0.0; if(v->w == (M3D_FLOAT)-0.0) v->w = (M3D_FLOAT)0.0; if(vrtx) { for(i = 0; i < *numvrtx; i++) if(vrtx[i].x == v->x && vrtx[i].y == v->y && vrtx[i].z == v->z) { *idx = i; return vrtx; } } vrtx = (m3dv_t*)M3D_REALLOC(vrtx, ((*numvrtx) + 1) * sizeof(m3dv_t)); memcpy(&vrtx[*numvrtx], v, sizeof(m3dv_t)); vrtx[*numvrtx].color = 0; vrtx[*numvrtx].w = (M3D_FLOAT)1.0; *idx = *numvrtx; (*numvrtx)++; return vrtx; } /* helper function to create safe strings */ char *_m3d_safestr(char *in, int morelines) { char *out, *o, *i = in; int l; if(!in || !*in) { out = (char*)M3D_MALLOC(1); if(!out) return NULL; out[0] =0; } else { for(o = in, l = 0; *o && ((morelines & 1) || (*o != '\r' && *o != '\n')) && l < 256; o++, l++); out = o = (char*)M3D_MALLOC(l+1); if(!out) return NULL; while(*i == ' ' || *i == '\t' || *i == '\r' || (morelines && *i == '\n')) i++; for(; *i && (morelines || (*i != '\r' && *i != '\n')); i++) { if(*i == '\r') continue; if(*i == '\n') { if(morelines >= 3 && o > out && *(o-1) == '\n') break; if(i > in && *(i-1) == '\n') continue; if(morelines & 1) { if(morelines == 1) *o++ = '\r'; *o++ = '\n'; } else break; } else if(*i == ' ' || *i == '\t') { *o++ = morelines? ' ' : '_'; } else *o++ = !morelines && (*i == '/' || *i == '\\') ? '_' : *i; } for(; o > out && (*(o-1) == ' ' || *(o-1) == '\t' || *(o-1) == '\r' || *(o-1) == '\n'); o--); *o = 0; out = (char*)M3D_REALLOC(out, (uint64_t)o - (uint64_t)out + 1); } return out; } #endif #ifndef M3D_NOIMPORTER /* helper function to load and decode/generate a texture */ M3D_INDEX _m3d_gettx(m3d_t *model, m3dread_t readfilecb, m3dfree_t freecb, char *fn) { unsigned int i, len = 0, w, h; unsigned char *buff = NULL; char *fn2; stbi__context s; stbi__result_info ri; for(i = 0; i < model->numtexture; i++) if(!strcmp(fn, model->texture[i].name)) return i; if(readfilecb) { i = strlen(fn); if(i < 5 || fn[i - 4] != '.') { fn2 = (char*)M3D_MALLOC(i + 5); if(!fn2) { model->errcode = M3D_ERR_ALLOC; return (M3D_INDEX)-1U; } memcpy(fn2, fn, i); memcpy(fn2+i, ".png", 5); buff = (*readfilecb)(fn2, &len); M3D_FREE(fn2); } if(!buff) buff = (*readfilecb)(fn, &len); } if(!buff && model->inlined) { for(i = 0; i < model->numinlined; i++) if(!strcmp(fn, model->inlined[i].name)) { buff = model->inlined[i].data; len = model->inlined[i].length; freecb = NULL; break; } } if(!buff) return (M3D_INDEX)-1U; i = model->numtexture++; model->texture = (m3dtx_t*)M3D_REALLOC(model->texture, model->numtexture * sizeof(m3dtx_t)); if(!model->texture) { if(freecb) (*freecb)(buff); model->errcode = M3D_ERR_ALLOC; return (M3D_INDEX)-1U; } model->texture[i].w = model->texture[i].h = 0; model->texture[i].d = NULL; if(buff[0] == 0x89 && buff[1] == 'P' && buff[2] == 'N' && buff[3] == 'G') { s.read_from_callbacks = 0; s.img_buffer = s.img_buffer_original = (stbi_uc *) buff; s.img_buffer_end = s.img_buffer_original_end = (stbi_uc *) buff+len; /* don't use model->texture[i].w directly, it's a uint16_t */ w = h = 0; model->texture[i].d = (uint32_t*)stbi__png_load(&s, (int*)&w, (int*)&h, (int*)&len, STBI_rgb_alpha, &ri); model->texture[i].w = w; model->texture[i].h = h; } else { #ifdef M3D_TX_INTERP if((model->errcode = M3D_TX_INTERP(fn, buff, len, &model->texture[i])) != M3D_SUCCESS) { M3D_LOG("Unable to generate texture"); M3D_LOG(fn); } #else M3D_LOG("Unimplemented interpreter"); M3D_LOG(fn); #endif } if(freecb) (*freecb)(buff); if(!model->texture[i].d) { M3D_FREE(model->texture[i].d); model->errcode = M3D_ERR_UNKIMG; model->numtexture--; return (M3D_INDEX)-1U; } model->texture[i].name = fn; return i; } /* helper function to load and generate a procedural surface */ void _m3d_getpr(m3d_t *model, _unused m3dread_t readfilecb, _unused m3dfree_t freecb, _unused char *fn) { #ifdef M3D_PR_INTERP unsigned int i, len = 0; unsigned char *buff = readfilecb ? (*readfilecb)(fn, &len) : NULL; if(!buff && model->inlined) { for(i = 0; i < model->numinlined; i++) if(!strcmp(fn, model->inlined[i].name)) { buff = model->inlined[i].data; len = model->inlined[i].length; freecb = NULL; break; } } if(!buff || !len || (model->errcode = M3D_PR_INTERP(fn, buff, len, model)) != M3D_SUCCESS) { M3D_LOG("Unable to generate procedural surface"); M3D_LOG(fn); model->errcode = M3D_ERR_UNKIMG; } if(freecb && buff) (*freecb)(buff); #else M3D_LOG("Unimplemented interpreter"); M3D_LOG(fn); model->errcode = M3D_ERR_UNIMPL; #endif } /* helpers to read indices from data stream */ #define M3D_GETSTR(x) do{offs=0;data=_m3d_getidx(data,model->si_s,&offs);x=offs?((char*)model->raw+16+offs):NULL;}while(0) _inline static unsigned char *_m3d_getidx(unsigned char *data, char type, M3D_INDEX *idx) { switch(type) { case 1: *idx = data[0] > 253 ? (int8_t)data[0] : data[0]; data++; break; case 2: *idx = *((uint16_t*)data) > 65533 ? *((int16_t*)data) : *((uint16_t*)data); data += 2; break; case 4: *idx = *((int32_t*)data); data += 4; break; } return data; } /* fast inverse square root calculation. returns 1/sqrt(x) */ static M3D_FLOAT _m3d_rsq(M3D_FLOAT x) { #ifdef M3D_DOUBLE return ((M3D_FLOAT)15.0/(M3D_FLOAT)8.0) + ((M3D_FLOAT)-5.0/(M3D_FLOAT)4.0)*x + ((M3D_FLOAT)3.0/(M3D_FLOAT)8.0)*x*x; #else /* John Carmack's */ float x2 = x * 0.5f; *((uint32_t*)&x) = (0x5f3759df - (*((uint32_t*)&x) >> 1)); return x * (1.5f - (x2 * x * x)); #endif } #ifndef M3D_NOANIMATION /* multiply 4 x 4 matrices. Do not use float *r[16] as argument, because some compilers misinterpret that as * 16 pointers each pointing to a float, but we need a single pointer to 16 floats. */ void _m3d_mul(M3D_FLOAT *r, M3D_FLOAT *a, M3D_FLOAT *b) { r[ 0] = b[ 0] * a[ 0] + b[ 4] * a[ 1] + b[ 8] * a[ 2] + b[12] * a[ 3]; r[ 1] = b[ 1] * a[ 0] + b[ 5] * a[ 1] + b[ 9] * a[ 2] + b[13] * a[ 3]; r[ 2] = b[ 2] * a[ 0] + b[ 6] * a[ 1] + b[10] * a[ 2] + b[14] * a[ 3]; r[ 3] = b[ 3] * a[ 0] + b[ 7] * a[ 1] + b[11] * a[ 2] + b[15] * a[ 3]; r[ 4] = b[ 0] * a[ 4] + b[ 4] * a[ 5] + b[ 8] * a[ 6] + b[12] * a[ 7]; r[ 5] = b[ 1] * a[ 4] + b[ 5] * a[ 5] + b[ 9] * a[ 6] + b[13] * a[ 7]; r[ 6] = b[ 2] * a[ 4] + b[ 6] * a[ 5] + b[10] * a[ 6] + b[14] * a[ 7]; r[ 7] = b[ 3] * a[ 4] + b[ 7] * a[ 5] + b[11] * a[ 6] + b[15] * a[ 7]; r[ 8] = b[ 0] * a[ 8] + b[ 4] * a[ 9] + b[ 8] * a[10] + b[12] * a[11]; r[ 9] = b[ 1] * a[ 8] + b[ 5] * a[ 9] + b[ 9] * a[10] + b[13] * a[11]; r[10] = b[ 2] * a[ 8] + b[ 6] * a[ 9] + b[10] * a[10] + b[14] * a[11]; r[11] = b[ 3] * a[ 8] + b[ 7] * a[ 9] + b[11] * a[10] + b[15] * a[11]; r[12] = b[ 0] * a[12] + b[ 4] * a[13] + b[ 8] * a[14] + b[12] * a[15]; r[13] = b[ 1] * a[12] + b[ 5] * a[13] + b[ 9] * a[14] + b[13] * a[15]; r[14] = b[ 2] * a[12] + b[ 6] * a[13] + b[10] * a[14] + b[14] * a[15]; r[15] = b[ 3] * a[12] + b[ 7] * a[13] + b[11] * a[14] + b[15] * a[15]; } /* calculate 4 x 4 matrix inverse */ void _m3d_inv(M3D_FLOAT *m) { M3D_FLOAT r[16]; M3D_FLOAT det = m[ 0]*m[ 5]*m[10]*m[15] - m[ 0]*m[ 5]*m[11]*m[14] + m[ 0]*m[ 6]*m[11]*m[13] - m[ 0]*m[ 6]*m[ 9]*m[15] + m[ 0]*m[ 7]*m[ 9]*m[14] - m[ 0]*m[ 7]*m[10]*m[13] - m[ 1]*m[ 6]*m[11]*m[12] + m[ 1]*m[ 6]*m[ 8]*m[15] - m[ 1]*m[ 7]*m[ 8]*m[14] + m[ 1]*m[ 7]*m[10]*m[12] - m[ 1]*m[ 4]*m[10]*m[15] + m[ 1]*m[ 4]*m[11]*m[14] + m[ 2]*m[ 7]*m[ 8]*m[13] - m[ 2]*m[ 7]*m[ 9]*m[12] + m[ 2]*m[ 4]*m[ 9]*m[15] - m[ 2]*m[ 4]*m[11]*m[13] + m[ 2]*m[ 5]*m[11]*m[12] - m[ 2]*m[ 5]*m[ 8]*m[15] - m[ 3]*m[ 4]*m[ 9]*m[14] + m[ 3]*m[ 4]*m[10]*m[13] - m[ 3]*m[ 5]*m[10]*m[12] + m[ 3]*m[ 5]*m[ 8]*m[14] - m[ 3]*m[ 6]*m[ 8]*m[13] + m[ 3]*m[ 6]*m[ 9]*m[12]; if(det == (M3D_FLOAT)0.0 || det == (M3D_FLOAT)-0.0) det = (M3D_FLOAT)1.0; else det = (M3D_FLOAT)1.0 / det; r[ 0] = det *(m[ 5]*(m[10]*m[15] - m[11]*m[14]) + m[ 6]*(m[11]*m[13] - m[ 9]*m[15]) + m[ 7]*(m[ 9]*m[14] - m[10]*m[13])); r[ 1] = -det*(m[ 1]*(m[10]*m[15] - m[11]*m[14]) + m[ 2]*(m[11]*m[13] - m[ 9]*m[15]) + m[ 3]*(m[ 9]*m[14] - m[10]*m[13])); r[ 2] = det *(m[ 1]*(m[ 6]*m[15] - m[ 7]*m[14]) + m[ 2]*(m[ 7]*m[13] - m[ 5]*m[15]) + m[ 3]*(m[ 5]*m[14] - m[ 6]*m[13])); r[ 3] = -det*(m[ 1]*(m[ 6]*m[11] - m[ 7]*m[10]) + m[ 2]*(m[ 7]*m[ 9] - m[ 5]*m[11]) + m[ 3]*(m[ 5]*m[10] - m[ 6]*m[ 9])); r[ 4] = -det*(m[ 4]*(m[10]*m[15] - m[11]*m[14]) + m[ 6]*(m[11]*m[12] - m[ 8]*m[15]) + m[ 7]*(m[ 8]*m[14] - m[10]*m[12])); r[ 5] = det *(m[ 0]*(m[10]*m[15] - m[11]*m[14]) + m[ 2]*(m[11]*m[12] - m[ 8]*m[15]) + m[ 3]*(m[ 8]*m[14] - m[10]*m[12])); r[ 6] = -det*(m[ 0]*(m[ 6]*m[15] - m[ 7]*m[14]) + m[ 2]*(m[ 7]*m[12] - m[ 4]*m[15]) + m[ 3]*(m[ 4]*m[14] - m[ 6]*m[12])); r[ 7] = det *(m[ 0]*(m[ 6]*m[11] - m[ 7]*m[10]) + m[ 2]*(m[ 7]*m[ 8] - m[ 4]*m[11]) + m[ 3]*(m[ 4]*m[10] - m[ 6]*m[ 8])); r[ 8] = det *(m[ 4]*(m[ 9]*m[15] - m[11]*m[13]) + m[ 5]*(m[11]*m[12] - m[ 8]*m[15]) + m[ 7]*(m[ 8]*m[13] - m[ 9]*m[12])); r[ 9] = -det*(m[ 0]*(m[ 9]*m[15] - m[11]*m[13]) + m[ 1]*(m[11]*m[12] - m[ 8]*m[15]) + m[ 3]*(m[ 8]*m[13] - m[ 9]*m[12])); r[10] = det *(m[ 0]*(m[ 5]*m[15] - m[ 7]*m[13]) + m[ 1]*(m[ 7]*m[12] - m[ 4]*m[15]) + m[ 3]*(m[ 4]*m[13] - m[ 5]*m[12])); r[11] = -det*(m[ 0]*(m[ 5]*m[11] - m[ 7]*m[ 9]) + m[ 1]*(m[ 7]*m[ 8] - m[ 4]*m[11]) + m[ 3]*(m[ 4]*m[ 9] - m[ 5]*m[ 8])); r[12] = -det*(m[ 4]*(m[ 9]*m[14] - m[10]*m[13]) + m[ 5]*(m[10]*m[12] - m[ 8]*m[14]) + m[ 6]*(m[ 8]*m[13] - m[ 9]*m[12])); r[13] = det *(m[ 0]*(m[ 9]*m[14] - m[10]*m[13]) + m[ 1]*(m[10]*m[12] - m[ 8]*m[14]) + m[ 2]*(m[ 8]*m[13] - m[ 9]*m[12])); r[14] = -det*(m[ 0]*(m[ 5]*m[14] - m[ 6]*m[13]) + m[ 1]*(m[ 6]*m[12] - m[ 4]*m[14]) + m[ 2]*(m[ 4]*m[13] - m[ 5]*m[12])); r[15] = det *(m[ 0]*(m[ 5]*m[10] - m[ 6]*m[ 9]) + m[ 1]*(m[ 6]*m[ 8] - m[ 4]*m[10]) + m[ 2]*(m[ 4]*m[ 9] - m[ 5]*m[ 8])); memcpy(m, &r, sizeof(r)); } /* compose a coloumn major 4 x 4 matrix from vec3 position and vec4 orientation/rotation quaternion */ void _m3d_mat(M3D_FLOAT *r, m3dv_t *p, m3dv_t *q) { if(q->x == (M3D_FLOAT)0.0 && q->y == (M3D_FLOAT)0.0 && q->z >=(M3D_FLOAT) 0.7071065 && q->z <= (M3D_FLOAT)0.7071075 && q->w == (M3D_FLOAT)0.0) { r[ 1] = r[ 2] = r[ 4] = r[ 6] = r[ 8] = r[ 9] = (M3D_FLOAT)0.0; r[ 0] = r[ 5] = r[10] = (M3D_FLOAT)-1.0; } else { r[ 0] = 1 - 2 * (q->y * q->y + q->z * q->z); if(r[ 0]>(M3D_FLOAT)-1e-7 && r[ 0]<(M3D_FLOAT)1e-7) r[ 0]=(M3D_FLOAT)0.0; r[ 1] = 2 * (q->x * q->y - q->z * q->w); if(r[ 1]>(M3D_FLOAT)-1e-7 && r[ 1]<(M3D_FLOAT)1e-7) r[ 1]=(M3D_FLOAT)0.0; r[ 2] = 2 * (q->x * q->z + q->y * q->w); if(r[ 2]>(M3D_FLOAT)-1e-7 && r[ 2]<(M3D_FLOAT)1e-7) r[ 2]=(M3D_FLOAT)0.0; r[ 4] = 2 * (q->x * q->y + q->z * q->w); if(r[ 4]>(M3D_FLOAT)-1e-7 && r[ 4]<(M3D_FLOAT)1e-7) r[ 4]=(M3D_FLOAT)0.0; r[ 5] = 1 - 2 * (q->x * q->x + q->z * q->z); if(r[ 5]>(M3D_FLOAT)-1e-7 && r[ 5]<(M3D_FLOAT)1e-7) r[ 5]=(M3D_FLOAT)0.0; r[ 6] = 2 * (q->y * q->z - q->x * q->w); if(r[ 6]>(M3D_FLOAT)-1e-7 && r[ 6]<(M3D_FLOAT)1e-7) r[ 6]=(M3D_FLOAT)0.0; r[ 8] = 2 * (q->x * q->z - q->y * q->w); if(r[ 8]>(M3D_FLOAT)-1e-7 && r[ 8]<(M3D_FLOAT)1e-7) r[ 8]=(M3D_FLOAT)0.0; r[ 9] = 2 * (q->y * q->z + q->x * q->w); if(r[ 9]>(M3D_FLOAT)-1e-7 && r[ 9]<(M3D_FLOAT)1e-7) r[ 9]=(M3D_FLOAT)0.0; r[10] = 1 - 2 * (q->x * q->x + q->y * q->y); if(r[10]>(M3D_FLOAT)-1e-7 && r[10]<(M3D_FLOAT)1e-7) r[10]=(M3D_FLOAT)0.0; } r[ 3] = p->x; r[ 7] = p->y; r[11] = p->z; r[12] = 0; r[13] = 0; r[14] = 0; r[15] = 1; } #endif /** * Function to decode a Model 3D into in-memory format */ m3d_t *m3d_load(unsigned char *data, m3dread_t readfilecb, m3dfree_t freecb, m3d_t *mtllib) { unsigned char *end, *chunk, *buff, weights[8]; unsigned int i, j, k, n, am, len = 0, reclen, offs, numnorm = 0; char *material; m3dv_t *norm = NULL, *v0, *v1, *v2, va, vb, vn; m3d_t *model; M3D_INDEX mi, *ni = NULL, *vi = NULL; M3D_FLOAT w, r[16]; m3dtx_t *tx; m3dm_t *m; m3da_t *a; m3db_t *b; m3di_t *t; m3ds_t *sk; #ifdef M3D_ASCII m3ds_t s; M3D_INDEX bi[M3D_BONEMAXLEVEL+1], level; const char *ol; char *ptr, *pe; #endif if(!data || (!M3D_CHUNKMAGIC(data, '3','D','M','O') #ifdef M3D_ASCII && !M3D_CHUNKMAGIC(data, '3','d','m','o') #endif )) return NULL; model = (m3d_t*)M3D_MALLOC(sizeof(m3d_t)); if(!model) { M3D_LOG("Out of memory"); return NULL; } memset(model, 0, sizeof(m3d_t)); if(mtllib) { model->nummaterial = mtllib->nummaterial; model->material = mtllib->material; model->numtexture = mtllib->numtexture; model->texture = mtllib->texture; model->flags |= M3D_FLG_MTLLIB; } #ifdef M3D_ASCII /* ASCII variant? */ if(M3D_CHUNKMAGIC(data, '3','d','m','o')) { model->errcode = M3D_ERR_BADFILE; model->flags |= M3D_FLG_FREESTR; model->raw = (m3dhdr_t*)data; ptr = (char*)data; ol = setlocale(LC_NUMERIC, NULL); setlocale(LC_NUMERIC, "C"); /* parse header. Don't use sscanf, that's incredibly slow */ ptr = _m3d_findarg(ptr); if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend; pe = _m3d_findnl(ptr); model->scale = (float)strtod(ptr, NULL); ptr = pe; if(model->scale <= (M3D_FLOAT)0.0) model->scale = (M3D_FLOAT)1.0; model->name = _m3d_safestr(ptr, 0); ptr = _m3d_findnl(ptr); if(!*ptr) goto asciiend; model->license = _m3d_safestr(ptr, 2); ptr = _m3d_findnl(ptr); if(!*ptr) goto asciiend; model->author = _m3d_safestr(ptr, 2); ptr = _m3d_findnl(ptr); if(!*ptr) goto asciiend; model->desc = _m3d_safestr(ptr, 3); while(*ptr) { while(*ptr && *ptr!='\n') ptr++; ptr++; if(*ptr=='\r') ptr++; if(*ptr == '\n') break; } /* the main chunk reader loop */ while(*ptr) { while(*ptr && (*ptr == '\r' || *ptr == '\n')) ptr++; if(!*ptr || (ptr[0]=='E' && ptr[1]=='n' && ptr[2]=='d')) break; /* make sure there's at least one data row */ pe = ptr; ptr = _m3d_findnl(ptr); if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend; /* texture map chunk */ if(!memcmp(pe, "Textmap", 7)) { if(model->tmap) { M3D_LOG("More texture map chunks, should be unique"); goto asciiend; } while(*ptr && *ptr != '\r' && *ptr != '\n') { i = model->numtmap++; model->tmap = (m3dti_t*)M3D_REALLOC(model->tmap, model->numtmap * sizeof(m3dti_t)); if(!model->tmap) goto memerr; ptr = _m3d_getfloat(ptr, &model->tmap[i].u); if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend; ptr = _m3d_getfloat(ptr, &model->tmap[i].v); if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend; ptr = _m3d_findnl(ptr); } } else /* vertex chunk */ if(!memcmp(pe, "Vertex", 6)) { if(model->vertex) { M3D_LOG("More vertex chunks, should be unique"); goto asciiend; } while(*ptr && *ptr != '\r' && *ptr != '\n') { i = model->numvertex++; model->vertex = (m3dv_t*)M3D_REALLOC(model->vertex, model->numvertex * sizeof(m3dv_t)); if(!model->vertex) goto memerr; model->vertex[i].skinid = (M3D_INDEX)-1U; model->vertex[i].color = 0; ptr = _m3d_getfloat(ptr, &model->vertex[i].x); if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend; ptr = _m3d_getfloat(ptr, &model->vertex[i].y); if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend; ptr = _m3d_getfloat(ptr, &model->vertex[i].z); if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend; ptr = _m3d_getfloat(ptr, &model->vertex[i].w); if(model->vertex[i].w != 1.0) model->vertex[i].skinid = (M3D_INDEX)-2U; if(!*ptr) goto asciiend; if(*ptr == '#') { ptr = _m3d_gethex(ptr, &model->vertex[i].color); if(!*ptr) goto asciiend; } /* parse skin */ memset(&s, 0, sizeof(m3ds_t)); for(j = 0; j < M3D_NUMBONE && *ptr && *ptr != '\r' && *ptr != '\n'; j++) { ptr = _m3d_findarg(ptr); if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend; ptr = _m3d_getint(ptr, &k); s.boneid[j] = (M3D_INDEX)k; if(*ptr == ':') { ptr++; ptr = _m3d_getfloat(ptr, &s.weight[j]); } else if(!j) s.weight[j] = (M3D_FLOAT)1.0; if(!*ptr) goto asciiend; } if(s.boneid[0] != (M3D_INDEX)-1U && s.weight[0] > (M3D_FLOAT)0.0) { model->skin = _m3d_addskin(model->skin, &model->numskin, &s, &k); model->vertex[i].skinid = (M3D_INDEX)k; } ptr = _m3d_findnl(ptr); } } else /* Skeleton, bone hierarchy */ if(!memcmp(pe, "Bones", 5)) { if(model->bone) { M3D_LOG("More bones chunks, should be unique"); goto asciiend; } bi[0] = (M3D_INDEX)-1U; while(*ptr && *ptr != '\r' && *ptr != '\n') { i = model->numbone++; model->bone = (m3db_t*)M3D_REALLOC(model->bone, model->numbone * sizeof(m3db_t)); if(!model->bone) goto memerr; for(level = 0; *ptr == '/'; ptr++, level++); if(level > M3D_BONEMAXLEVEL || !*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend; bi[level+1] = i; model->bone[i].numweight = 0; model->bone[i].weight = NULL; model->bone[i].parent = bi[level]; ptr = _m3d_getint(ptr, &k); ptr = _m3d_findarg(ptr); if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend; model->bone[i].pos = (M3D_INDEX)k; ptr = _m3d_getint(ptr, &k); ptr = _m3d_findarg(ptr); if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend; model->bone[i].ori = (M3D_INDEX)k; pe = _m3d_safestr(ptr, 0); if(!pe || !*pe) goto asciiend; model->bone[i].name = pe; ptr = _m3d_findnl(ptr); } } else /* material chunk */ if(!memcmp(pe, "Material", 8)) { pe = _m3d_findarg(pe); if(!*pe || *pe == '\r' || *pe == '\n') goto asciiend; pe = _m3d_safestr(pe, 0); if(!pe || !*pe) goto asciiend; for(i = 0; i < model->nummaterial; i++) if(!strcmp(pe, model->material[i].name)) { M3D_LOG("Multiple definitions for material"); M3D_LOG(pe); M3D_FREE(pe); pe = NULL; while(*ptr && *ptr != '\r' && *ptr != '\n') ptr = _m3d_findnl(ptr); break; } if(!pe) continue; i = model->nummaterial++; if(model->flags & M3D_FLG_MTLLIB) { m = model->material; model->material = (m3dm_t*)M3D_MALLOC(model->nummaterial * sizeof(m3dm_t)); if(!model->material) goto memerr; memcpy(model->material, m, (model->nummaterial - 1) * sizeof(m3dm_t)); if(model->texture) { tx = model->texture; model->texture = (m3dtx_t*)M3D_MALLOC(model->numtexture * sizeof(m3dtx_t)); if(!model->texture) goto memerr; memcpy(model->texture, tx, model->numtexture * sizeof(m3dm_t)); } model->flags &= ~M3D_FLG_MTLLIB; } else { model->material = (m3dm_t*)M3D_REALLOC(model->material, model->nummaterial * sizeof(m3dm_t)); if(!model->material) goto memerr; } m = &model->material[i]; m->name = pe; m->numprop = 0; m->prop = NULL; while(*ptr && *ptr != '\r' && *ptr != '\n') { k = n = 256; if(*ptr == 'm' && *(ptr+1) == 'a' && *(ptr+2) == 'p' && *(ptr+3) == '_') { k = m3dpf_map; ptr += 4; } for(j = 0; j < sizeof(m3d_propertytypes)/sizeof(m3d_propertytypes[0]); j++) if(!memcmp(ptr, m3d_propertytypes[j].key, strlen(m3d_propertytypes[j].key))) { n = m3d_propertytypes[j].id; if(k != m3dpf_map) k = m3d_propertytypes[j].format; break; } if(n != 256 && k != 256) { ptr = _m3d_findarg(ptr); if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend; j = m->numprop++; m->prop = (m3dp_t*)M3D_REALLOC(m->prop, m->numprop * sizeof(m3dp_t)); if(!m->prop) goto memerr; m->prop[j].type = n; switch(k) { case m3dpf_color: ptr = _m3d_gethex(ptr, &m->prop[j].value.color); break; case m3dpf_uint8: case m3dpf_uint16: case m3dpf_uint32: ptr = _m3d_getint(ptr, &m->prop[j].value.num); break; case m3dpf_float: ptr = _m3d_getfloat(ptr, &m->prop[j].value.fnum); break; case m3dpf_map: pe = _m3d_safestr(ptr, 0); if(!pe || !*pe) goto asciiend; m->prop[j].value.textureid = _m3d_gettx(model, readfilecb, freecb, pe); if(model->errcode == M3D_ERR_ALLOC) { M3D_FREE(pe); goto memerr; } if(m->prop[j].value.textureid == (M3D_INDEX)-1U) { M3D_LOG("Texture not found"); M3D_LOG(pe); m->numprop--; } M3D_FREE(pe); break; } } else { M3D_LOG("Unknown material property in"); M3D_LOG(m->name); model->errcode = M3D_ERR_UNKPROP; } ptr = _m3d_findnl(ptr); } if(!m->numprop) model->nummaterial--; } else /* procedural, not implemented yet, skip chunk */ if(!memcmp(pe, "Procedural", 10)) { pe = _m3d_safestr(ptr, 0); _m3d_getpr(model, readfilecb, freecb, pe); M3D_FREE(pe); while(*ptr && *ptr != '\r' && *ptr != '\n') ptr = _m3d_findnl(ptr); } else /* mesh */ if(!memcmp(pe, "Mesh", 4)) { mi = (M3D_INDEX)-1U; while(*ptr && *ptr != '\r' && *ptr != '\n') { if(*ptr == 'u') { ptr = _m3d_findarg(ptr); if(!*ptr) goto asciiend; mi = (M3D_INDEX)-1U; if(*ptr != '\r' && *ptr != '\n') { pe = _m3d_safestr(ptr, 0); if(!pe || !*pe) goto asciiend; for(j = 0; j < model->nummaterial; j++) if(!strcmp(pe, model->material[j].name)) { mi = (M3D_INDEX)j; break; } M3D_FREE(pe); } } else { i = model->numface++; model->face = (m3df_t*)M3D_REALLOC(model->face, model->numface * sizeof(m3df_t)); if(!model->face) goto memerr; memset(&model->face[i], 255, sizeof(m3df_t)); /* set all index to -1 by default */ model->face[i].materialid = mi; /* hardcoded triangles. */ for(j = 0; j < 3; j++) { /* vertex */ ptr = _m3d_getint(ptr, &k); model->face[i].vertex[j] = (M3D_INDEX)k; if(!*ptr) goto asciiend; if(*ptr == '/') { ptr++; if(*ptr != '/') { /* texcoord */ ptr = _m3d_getint(ptr, &k); model->face[i].texcoord[j] = (M3D_INDEX)k; if(!*ptr) goto asciiend; } if(*ptr == '/') { ptr++; /* normal */ ptr = _m3d_getint(ptr, &k); model->face[i].normal[j] = (M3D_INDEX)k; if(!*ptr) goto asciiend; } } ptr = _m3d_findarg(ptr); } } ptr = _m3d_findnl(ptr); } } else /* action */ if(!memcmp(pe, "Action", 6)) { pe = _m3d_findarg(pe); if(!*pe || *pe == '\r' || *pe == '\n') goto asciiend; pe = _m3d_getint(pe, &k); pe = _m3d_findarg(pe); if(!*pe || *pe == '\r' || *pe == '\n') goto asciiend; pe = _m3d_safestr(pe, 0); if(!pe || !*pe) goto asciiend; i = model->numaction++; model->action = (m3da_t*)M3D_REALLOC(model->action, model->numaction * sizeof(m3da_t)); if(!model->action) goto memerr; a = &model->action[i]; a->name = pe; a->durationmsec = k; /* skip the first frame marker as there's always at least one frame */ a->numframe = 1; a->frame = (m3dfr_t*)M3D_MALLOC(sizeof(m3dfr_t)); if(!a->frame) goto memerr; a->frame[0].msec = 0; a->frame[0].numtransform = 0; a->frame[0].transform = NULL; i = 0; if(*ptr == 'f') ptr = _m3d_findnl(ptr); while(*ptr && *ptr != '\r' && *ptr != '\n') { if(*ptr == 'f') { i = a->numframe++; a->frame = (m3dfr_t*)M3D_REALLOC(a->frame, a->numframe * sizeof(m3dfr_t)); if(!a->frame) goto memerr; ptr = _m3d_findarg(ptr); ptr = _m3d_getint(ptr, &a->frame[i].msec); a->frame[i].numtransform = 0; a->frame[i].transform = NULL; } else { j = a->frame[i].numtransform++; a->frame[i].transform = (m3dtr_t*)M3D_REALLOC(a->frame[i].transform, a->frame[i].numtransform * sizeof(m3dtr_t)); if(!a->frame[i].transform) goto memerr; ptr = _m3d_getint(ptr, &k); ptr = _m3d_findarg(ptr); if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend; a->frame[i].transform[j].boneid = (M3D_INDEX)k; ptr = _m3d_getint(ptr, &k); ptr = _m3d_findarg(ptr); if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend; a->frame[i].transform[j].pos = (M3D_INDEX)k; ptr = _m3d_getint(ptr, &k); if(!*ptr || *ptr == '\r' || *ptr == '\n') goto asciiend; a->frame[i].transform[j].ori = (M3D_INDEX)k; } ptr = _m3d_findnl(ptr); } } else /* extra chunks */ if(!memcmp(pe, "Extra", 5)) { pe = _m3d_findarg(pe); if(!*pe || *pe == '\r' || *pe == '\n') goto asciiend; buff = (unsigned char*)_m3d_findnl(ptr); k = ((uint32_t)((uint64_t)buff - (uint64_t)ptr) / 3) + 1; i = model->numunknown++; model->unknown = (m3dchunk_t**)M3D_REALLOC(model->unknown, model->numunknown * sizeof(m3dchunk_t*)); if(!model->unknown) goto memerr; model->unknown[i] = (m3dchunk_t*)M3D_MALLOC(k + sizeof(m3dchunk_t)); if(!model->unknown[i]) goto memerr; memcpy(&model->unknown[i]->magic, pe, 4); model->unknown[i]->length = sizeof(m3dchunk_t); pe = (char*)model->unknown[i] + sizeof(m3dchunk_t); while(*ptr && *ptr != '\r' && *ptr != '\n') { ptr = _m3d_gethex(ptr, &k); *pe++ = (uint8_t)k; model->unknown[i]->length++; } } else goto asciiend; } model->errcode = M3D_SUCCESS; asciiend: setlocale(LC_NUMERIC, ol); goto postprocess; } /* Binary variant */ #endif if(!M3D_CHUNKMAGIC(data + 8, 'H','E','A','D')) { stbi__g_failure_reason = "Corrupt file"; buff = (unsigned char *)stbi_zlib_decode_malloc_guesssize_headerflag((const char*)data+8, ((m3dchunk_t*)data)->length-8, 4096, (int*)&len, 1); if(!buff || !len || !M3D_CHUNKMAGIC(buff, 'H','E','A','D')) { M3D_LOG(stbi__g_failure_reason); if(buff) M3D_FREE(buff); M3D_FREE(model); return NULL; } buff = (unsigned char*)M3D_REALLOC(buff, len); model->flags |= M3D_FLG_FREERAW; /* mark that we have to free the raw buffer */ data = buff; } else { len = ((m3dhdr_t*)data)->length; data += 8; } model->raw = (m3dhdr_t*)data; end = data + len; /* parse header */ data += sizeof(m3dhdr_t); M3D_LOG(data); model->name = (char*)data; for(; data < end && *data; data++) {}; data++; model->license = (char*)data; for(; data < end && *data; data++) {}; data++; model->author = (char*)data; for(; data < end && *data; data++) {}; data++; model->desc = (char*)data; chunk = (unsigned char*)model->raw + model->raw->length; model->scale = (M3D_FLOAT)model->raw->scale; if(model->scale <= (M3D_FLOAT)0.0) model->scale = (M3D_FLOAT)1.0; model->vc_s = 1 << ((model->raw->types >> 0) & 3); /* vertex coordinate size */ model->vi_s = 1 << ((model->raw->types >> 2) & 3); /* vertex index size */ model->si_s = 1 << ((model->raw->types >> 4) & 3); /* string offset size */ model->ci_s = 1 << ((model->raw->types >> 6) & 3); /* color index size */ model->ti_s = 1 << ((model->raw->types >> 8) & 3); /* tmap index size */ model->bi_s = 1 << ((model->raw->types >>10) & 3); /* bone index size */ model->nb_s = 1 << ((model->raw->types >>12) & 3); /* number of bones per vertex */ model->sk_s = 1 << ((model->raw->types >>14) & 3); /* skin index size */ model->fi_s = 1 << ((model->raw->types >>16) & 3); /* frame counter size */ if(model->ci_s == 8) model->ci_s = 0; /* optional indices */ if(model->ti_s == 8) model->ti_s = 0; if(model->bi_s == 8) model->bi_s = 0; if(model->sk_s == 8) model->sk_s = 0; if(model->fi_s == 8) model->fi_s = 0; /* variable limit checks */ if(sizeof(M3D_FLOAT) == 4 && model->vc_s > 4) { M3D_LOG("Double precision coordinates not supported, truncating to float..."); model->errcode = M3D_ERR_TRUNC; } if(sizeof(M3D_INDEX) == 2 && (model->vi_s > 2 || model->si_s > 2 || model->ci_s > 2 || model->ti_s > 2 || model->bi_s > 2 || model->sk_s > 2 || model->fi_s > 2)) { M3D_LOG("32 bit indices not supported, unable to load model"); M3D_FREE(model); return NULL; } if(model->vi_s > 4 || model->si_s > 4) { M3D_LOG("Invalid index size, unable to load model"); M3D_FREE(model); return NULL; } if(model->nb_s > M3D_NUMBONE) { M3D_LOG("Model has more bones per vertex than importer supports"); model->errcode = M3D_ERR_TRUNC; } /* look for inlined assets in advance, material and procedural chunks may need them */ buff = chunk; while(buff < end && !M3D_CHUNKMAGIC(buff, 'O','M','D','3')) { data = buff; len = ((m3dchunk_t*)data)->length; if(len < sizeof(m3dchunk_t)) { M3D_LOG("Invalid chunk size"); break; } buff += len; len -= sizeof(m3dchunk_t) + model->si_s; /* inlined assets */ if(M3D_CHUNKMAGIC(data, 'A','S','E','T') && len > 0) { M3D_LOG("Inlined asset"); i = model->numinlined++; model->inlined = (m3di_t*)M3D_REALLOC(model->inlined, model->numinlined * sizeof(m3di_t)); if(!model->inlined) { memerr: M3D_LOG("Out of memory"); model->errcode = M3D_ERR_ALLOC; return model; } data += sizeof(m3dchunk_t); t = &model->inlined[i]; M3D_GETSTR(t->name); M3D_LOG(t->name); t->data = (uint8_t*)data; t->length = len; } } /* parse chunks */ while(chunk < end && !M3D_CHUNKMAGIC(chunk, 'O','M','D','3')) { data = chunk; len = ((m3dchunk_t*)chunk)->length; if(len < sizeof(m3dchunk_t)) { M3D_LOG("Invalid chunk size"); break; } chunk += len; len -= sizeof(m3dchunk_t); /* color map */ if(M3D_CHUNKMAGIC(data, 'C','M','A','P')) { M3D_LOG("Color map"); if(model->cmap) { M3D_LOG("More color map chunks, should be unique"); model->errcode = M3D_ERR_CMAP; continue; } if(!model->ci_s) { M3D_LOG("Color map chunk, shouldn't be any"); model->errcode = M3D_ERR_CMAP; continue; } model->numcmap = len / sizeof(uint32_t); model->cmap = (uint32_t*)(data + sizeof(m3dchunk_t)); } else /* texture map */ if(M3D_CHUNKMAGIC(data, 'T','M','A','P')) { M3D_LOG("Texture map"); if(model->tmap) { M3D_LOG("More texture map chunks, should be unique"); model->errcode = M3D_ERR_TMAP; continue; } if(!model->ti_s) { M3D_LOG("Texture map chunk, shouldn't be any"); model->errcode = M3D_ERR_TMAP; continue; } reclen = model->vc_s + model->vc_s; model->numtmap = len / reclen; model->tmap = (m3dti_t*)M3D_MALLOC(model->numtmap * sizeof(m3dti_t)); if(!model->tmap) goto memerr; for(i = 0, data += sizeof(m3dchunk_t); data < chunk; i++) { switch(model->vc_s) { case 1: model->tmap[i].u = (M3D_FLOAT)(data[0]) / 255; model->tmap[i].v = (M3D_FLOAT)(data[1]) / 255; break; case 2: model->tmap[i].u = (M3D_FLOAT)(*((int16_t*)(data+0))) / 65535; model->tmap[i].v = (M3D_FLOAT)(*((int16_t*)(data+2))) / 65535; break; case 4: model->tmap[i].u = (M3D_FLOAT)(*((float*)(data+0))); model->tmap[i].v = (M3D_FLOAT)(*((float*)(data+4))); break; case 8: model->tmap[i].u = (M3D_FLOAT)(*((double*)(data+0))); model->tmap[i].v = (M3D_FLOAT)(*((double*)(data+8))); break; } data += reclen; } } else /* vertex list */ if(M3D_CHUNKMAGIC(data, 'V','R','T','S')) { M3D_LOG("Vertex list"); if(model->vertex) { M3D_LOG("More vertex chunks, should be unique"); model->errcode = M3D_ERR_VRTS; continue; } if(model->ci_s && model->ci_s < 4 && !model->cmap) model->errcode = M3D_ERR_CMAP; reclen = model->ci_s + model->sk_s + 4 * model->vc_s; model->numvertex = len / reclen; model->vertex = (m3dv_t*)M3D_MALLOC(model->numvertex * sizeof(m3dv_t)); if(!model->vertex) goto memerr; memset(model->vertex, 0, model->numvertex * sizeof(m3dv_t)); for(i = 0, data += sizeof(m3dchunk_t); data < chunk && i < model->numvertex; i++) { switch(model->vc_s) { case 1: model->vertex[i].x = (M3D_FLOAT)((int8_t)data[0]) / 127; model->vertex[i].y = (M3D_FLOAT)((int8_t)data[1]) / 127; model->vertex[i].z = (M3D_FLOAT)((int8_t)data[2]) / 127; model->vertex[i].w = (M3D_FLOAT)((int8_t)data[3]) / 127; data += 4; break; case 2: model->vertex[i].x = (M3D_FLOAT)(*((int16_t*)(data+0))) / 32767; model->vertex[i].y = (M3D_FLOAT)(*((int16_t*)(data+2))) / 32767; model->vertex[i].z = (M3D_FLOAT)(*((int16_t*)(data+4))) / 32767; model->vertex[i].w = (M3D_FLOAT)(*((int16_t*)(data+6))) / 32767; data += 8; break; case 4: model->vertex[i].x = (M3D_FLOAT)(*((float*)(data+0))); model->vertex[i].y = (M3D_FLOAT)(*((float*)(data+4))); model->vertex[i].z = (M3D_FLOAT)(*((float*)(data+8))); model->vertex[i].w = (M3D_FLOAT)(*((float*)(data+12))); data += 16; break; case 8: model->vertex[i].x = (M3D_FLOAT)(*((double*)(data+0))); model->vertex[i].y = (M3D_FLOAT)(*((double*)(data+8))); model->vertex[i].z = (M3D_FLOAT)(*((double*)(data+16))); model->vertex[i].w = (M3D_FLOAT)(*((double*)(data+24))); data += 32; break; } switch(model->ci_s) { case 1: model->vertex[i].color = model->cmap ? model->cmap[data[0]] : 0; data++; break; case 2: model->vertex[i].color = model->cmap ? model->cmap[*((uint16_t*)data)] : 0; data += 2; break; case 4: model->vertex[i].color = *((uint32_t*)data); data += 4; break; /* case 8: break; */ } model->vertex[i].skinid = (M3D_INDEX)-1U; data = _m3d_getidx(data, model->sk_s, &model->vertex[i].skinid); } } else /* skeleton: bone hierarchy and skin */ if(M3D_CHUNKMAGIC(data, 'B','O','N','E')) { M3D_LOG("Skeleton"); if(model->bone) { M3D_LOG("More bone chunks, should be unique"); model->errcode = M3D_ERR_BONE; continue; } if(!model->bi_s) { M3D_LOG("Bone chunk, shouldn't be any"); model->errcode=M3D_ERR_BONE; continue; } if(!model->vertex) { M3D_LOG("No vertex chunk before bones"); model->errcode = M3D_ERR_VRTS; break; } data += sizeof(m3dchunk_t); model->numbone = 0; data = _m3d_getidx(data, model->bi_s, &model->numbone); if(model->numbone) { model->bone = (m3db_t*)M3D_MALLOC(model->numbone * sizeof(m3db_t)); if(!model->bone) goto memerr; } model->numskin = 0; data = _m3d_getidx(data, model->sk_s, &model->numskin); if(model->numskin) { model->skin = (m3ds_t*)M3D_MALLOC(model->numskin * sizeof(m3ds_t)); if(!model->skin) goto memerr; for(i = 0; i < model->numskin; i++) for(j = 0; j < M3D_NUMBONE; j++) { model->skin[i].boneid[j] = (M3D_INDEX)-1U; model->skin[i].weight[j] = (M3D_FLOAT)0.0; } } /* read bone hierarchy */ for(i = 0; i < model->numbone; i++) { data = _m3d_getidx(data, model->bi_s, &model->bone[i].parent); M3D_GETSTR(model->bone[i].name); data = _m3d_getidx(data, model->vi_s, &model->bone[i].pos); data = _m3d_getidx(data, model->vi_s, &model->bone[i].ori); model->bone[i].numweight = 0; model->bone[i].weight = NULL; } /* read skin definitions */ for(i = 0; data < chunk && i < model->numskin; i++) { memset(&weights, 0, sizeof(weights)); if(model->nb_s == 1) weights[0] = 255; else { memcpy(&weights, data, model->nb_s); data += model->nb_s; } for(j = 0; j < (unsigned int)model->nb_s; j++) { if(weights[j]) { if(j >= M3D_NUMBONE) data += model->bi_s; else { model->skin[i].weight[j] = (M3D_FLOAT)(weights[j]) / 255; data = _m3d_getidx(data, model->bi_s, &model->skin[i].boneid[j]); } } } } } else /* material */ if(M3D_CHUNKMAGIC(data, 'M','T','R','L')) { data += sizeof(m3dchunk_t); M3D_GETSTR(material); M3D_LOG("Material"); M3D_LOG(material); if(model->ci_s < 4 && !model->numcmap) model->errcode = M3D_ERR_CMAP; for(i = 0; i < model->nummaterial; i++) if(!strcmp(material, model->material[i].name)) { model->errcode = M3D_ERR_MTRL; M3D_LOG("Multiple definitions for material"); M3D_LOG(material); material = NULL; break; } if(material) { i = model->nummaterial++; if(model->flags & M3D_FLG_MTLLIB) { m = model->material; model->material = (m3dm_t*)M3D_MALLOC(model->nummaterial * sizeof(m3dm_t)); if(!model->material) goto memerr; memcpy(model->material, m, (model->nummaterial - 1) * sizeof(m3dm_t)); if(model->texture) { tx = model->texture; model->texture = (m3dtx_t*)M3D_MALLOC(model->numtexture * sizeof(m3dtx_t)); if(!model->texture) goto memerr; memcpy(model->texture, tx, model->numtexture * sizeof(m3dm_t)); } model->flags &= ~M3D_FLG_MTLLIB; } else { model->material = (m3dm_t*)M3D_REALLOC(model->material, model->nummaterial * sizeof(m3dm_t)); if(!model->material) goto memerr; } m = &model->material[i]; m->numprop = 0; m->prop = NULL; m->name = material; m->prop = (m3dp_t*)M3D_REALLOC(m->prop, (len / 2) * sizeof(m3dp_t)); if(!m->prop) goto memerr; while(data < chunk) { i = m->numprop++; m->prop[i].type = *data++; m->prop[i].value.num = 0; if(m->prop[i].type >= 128) k = m3dpf_map; else { for(k = 256, j = 0; j < sizeof(m3d_propertytypes)/sizeof(m3d_propertytypes[0]); j++) if(m->prop[i].type == m3d_propertytypes[j].id) { k = m3d_propertytypes[j].format; break; } } switch(k) { case m3dpf_color: switch(model->ci_s) { case 1: m->prop[i].value.color = model->cmap ? model->cmap[data[0]] : 0; data++; break; case 2: m->prop[i].value.color = model->cmap ? model->cmap[*((uint16_t*)data)] : 0; data += 2; break; case 4: m->prop[i].value.color = *((uint32_t*)data); data += 4; break; } break; case m3dpf_uint8: m->prop[i].value.num = *data++; break; case m3dpf_uint16:m->prop[i].value.num = *((uint16_t*)data); data += 2; break; case m3dpf_uint32:m->prop[i].value.num = *((uint32_t*)data); data += 4; break; case m3dpf_float: m->prop[i].value.fnum = *((float*)data); data += 4; break; case m3dpf_map: M3D_GETSTR(material); m->prop[i].value.textureid = _m3d_gettx(model, readfilecb, freecb, material); if(model->errcode == M3D_ERR_ALLOC) goto memerr; if(m->prop[i].value.textureid == (M3D_INDEX)-1U) { M3D_LOG("Texture not found"); M3D_LOG(material); m->numprop--; } break; default: M3D_LOG("Unknown material property in"); M3D_LOG(m->name); model->errcode = M3D_ERR_UNKPROP; data = chunk; break; } } m->prop = (m3dp_t*)M3D_REALLOC(m->prop, m->numprop * sizeof(m3dp_t)); if(!m->prop) goto memerr; } } else /* face */ if(M3D_CHUNKMAGIC(data, 'P','R','O','C')) { /* procedural surface */ M3D_GETSTR(material); M3D_LOG("Procedural surface"); M3D_LOG(material); _m3d_getpr(model, readfilecb, freecb, material); } else if(M3D_CHUNKMAGIC(data, 'M','E','S','H')) { M3D_LOG("Mesh data"); /* mesh */ data += sizeof(m3dchunk_t); mi = (M3D_INDEX)-1U; am = model->numface; while(data < chunk) { k = *data++; n = k >> 4; k &= 15; if(!n) { /* use material */ mi = (M3D_INDEX)-1U; M3D_GETSTR(material); if(material) { for(j = 0; j < model->nummaterial; j++) if(!strcmp(material, model->material[j].name)) { mi = (M3D_INDEX)j; break; } if(mi == (M3D_INDEX)-1U) model->errcode = M3D_ERR_MTRL; } continue; } if(n != 3) { M3D_LOG("Only triangle mesh supported for now"); model->errcode = M3D_ERR_UNKMESH; return model; } i = model->numface++; if(model->numface > am) { am = model->numface + 4095; model->face = (m3df_t*)M3D_REALLOC(model->face, am * sizeof(m3df_t)); if(!model->face) goto memerr; } memset(&model->face[i], 255, sizeof(m3df_t)); /* set all index to -1 by default */ model->face[i].materialid = mi; for(j = 0; j < n; j++) { /* vertex */ data = _m3d_getidx(data, model->vi_s, &model->face[i].vertex[j]); /* texcoord */ if(k & 1) data = _m3d_getidx(data, model->ti_s, &model->face[i].texcoord[j]); /* normal */ if(k & 2) data = _m3d_getidx(data, model->vi_s, &model->face[i].normal[j]); } } model->face = (m3df_t*)M3D_REALLOC(model->face, model->numface * sizeof(m3df_t)); } else /* action */ if(M3D_CHUNKMAGIC(data, 'A','C','T','N')) { M3D_LOG("Action"); i = model->numaction++; model->action = (m3da_t*)M3D_REALLOC(model->action, model->numaction * sizeof(m3da_t)); if(!model->action) goto memerr; a = &model->action[i]; data += sizeof(m3dchunk_t); M3D_GETSTR(a->name); M3D_LOG(a->name); a->numframe = *((uint16_t*)data); data += 2; if(a->numframe < 1) { model->numaction--; } else { a->durationmsec = *((uint32_t*)data); data += 4; a->frame = (m3dfr_t*)M3D_MALLOC(a->numframe * sizeof(m3dfr_t)); if(!a->frame) goto memerr; for(i = 0; data < chunk && i < a->numframe; i++) { a->frame[i].msec = *((uint32_t*)data); data += 4; a->frame[i].numtransform = 0; a->frame[i].transform = NULL; data = _m3d_getidx(data, model->fi_s, &a->frame[i].numtransform); if(a->frame[i].numtransform > 0) { a->frame[i].transform = (m3dtr_t*)M3D_MALLOC(a->frame[i].numtransform * sizeof(m3dtr_t)); for(j = 0; j < a->frame[i].numtransform; j++) { data = _m3d_getidx(data, model->bi_s, &a->frame[i].transform[j].boneid); data = _m3d_getidx(data, model->vi_s, &a->frame[i].transform[j].pos); data = _m3d_getidx(data, model->vi_s, &a->frame[i].transform[j].ori); } } } } } else { i = model->numunknown++; model->unknown = (m3dchunk_t**)M3D_REALLOC(model->unknown, model->numunknown * sizeof(m3dchunk_t*)); if(!model->unknown) goto memerr; model->unknown[i] = (m3dchunk_t*)data; } } /* calculate normals, normalize skin weights, create bone/vertex cross-references and calculate transform matrices */ postprocess: if(model) { if(model->numface && model->face) { memset(&vn, 0, sizeof(m3dv_t)); /* if they are missing, calculate triangle normals into a temporary buffer */ for(i = numnorm = 0; i < model->numface; i++) if(model->face[i].normal[0] == -1U) { v0 = &model->vertex[model->face[i].vertex[0]]; v1 = &model->vertex[model->face[i].vertex[1]]; v2 = &model->vertex[model->face[i].vertex[2]]; va.x = v1->x - v0->x; va.y = v1->y - v0->y; va.z = v1->z - v0->z; vb.x = v2->x - v0->x; vb.y = v2->y - v0->y; vb.z = v2->z - v0->z; vn.x = (va.y * vb.z) - (va.z * vb.y); vn.y = (va.z * vb.x) - (va.x * vb.z); vn.z = (va.x * vb.y) - (va.y * vb.x); w = _m3d_rsq((vn.x * vn.x) + (vn.y * vn.y) + (vn.z * vn.z)); vn.x *= w; vn.y *= w; vn.z *= w; norm = _m3d_addnorm(norm, &numnorm, &vn, &j); if(!ni) { ni = (M3D_INDEX*)M3D_MALLOC(model->numface * sizeof(M3D_INDEX)); if(!ni) goto memerr; } ni[i] = j; } if(ni && norm) { vi = (M3D_INDEX*)M3D_MALLOC(model->numvertex * sizeof(M3D_INDEX)); if(!vi) goto memerr; /* for each vertex, take the average of the temporary normals and use that */ for(i = 0, n = model->numvertex; i < n; i++) { memset(&vn, 0, sizeof(m3dv_t)); for(j = 0; j < model->numface; j++) for(k = 0; k < 3; k++) if(model->face[j].vertex[k] == i) { vn.x += norm[ni[j]].x; vn.y += norm[ni[j]].y; vn.z += norm[ni[j]].z; } w = _m3d_rsq((vn.x * vn.x) + (vn.y * vn.y) + (vn.z * vn.z)); vn.x *= w; vn.y *= w; vn.z *= w; vn.skinid = -1U; model->vertex = _m3d_addnorm(model->vertex, &model->numvertex, &vn, &vi[i]); } for(j = 0; j < model->numface; j++) for(k = 0; k < 3; k++) model->face[j].normal[k] = vi[model->face[j].vertex[k]]; M3D_FREE(norm); M3D_FREE(ni); M3D_FREE(vi); } } if(model->numbone && model->bone && model->numskin && model->skin && model->numvertex && model->vertex) { for(i = 0; i < model->numvertex; i++) { if(model->vertex[i].skinid < M3D_INDEXMAX) { sk = &model->skin[model->vertex[i].skinid]; w = (M3D_FLOAT)0.0; for(j = 0; j < M3D_NUMBONE && sk->boneid[j] != (M3D_INDEX)-1U && sk->weight[j] > (M3D_FLOAT)0.0; j++) w += sk->weight[j]; for(j = 0; j < M3D_NUMBONE && sk->boneid[j] != (M3D_INDEX)-1U && sk->weight[j] > (M3D_FLOAT)0.0; j++) { sk->weight[j] /= w; b = &model->bone[sk->boneid[j]]; k = b->numweight++; b->weight = (m3dw_t*)M3D_REALLOC(b->weight, b->numweight * sizeof(m3da_t)); if(!b->weight) goto memerr; b->weight[k].vertexid = i; b->weight[k].weight = sk->weight[j]; } } } #ifndef M3D_NOANIMATION for(i = 0; i < model->numbone; i++) { b = &model->bone[i]; if(model->bone[i].parent == (M3D_INDEX)-1U) { _m3d_mat((M3D_FLOAT*)&b->mat4, &model->vertex[b->pos], &model->vertex[b->ori]); } else { _m3d_mat((M3D_FLOAT*)&r, &model->vertex[b->pos], &model->vertex[b->ori]); _m3d_mul((M3D_FLOAT*)&b->mat4, (M3D_FLOAT*)&model->bone[b->parent].mat4, (M3D_FLOAT*)&r); } } for(i = 0; i < model->numbone; i++) _m3d_inv((M3D_FLOAT*)&model->bone[i].mat4); #endif } } return model; } /** * Calculates skeletons for animation frames, returns a working copy (should be freed after use) */ m3dtr_t *m3d_frame(m3d_t *model, M3D_INDEX actionid, M3D_INDEX frameid, m3dtr_t *skeleton) { unsigned int i; M3D_INDEX s = frameid; m3dfr_t *fr; if(!model || !model->numbone || !model->bone || (actionid != (M3D_INDEX)-1U && (!model->action || actionid >= model->numaction || frameid >= model->action[actionid].numframe))) { model->errcode = M3D_ERR_UNKFRAME; return skeleton; } model->errcode = M3D_SUCCESS; if(!skeleton) { skeleton = (m3dtr_t*)M3D_MALLOC(model->numbone * sizeof(m3dtr_t)); if(!skeleton) { model->errcode = M3D_ERR_ALLOC; return NULL; } goto gen; } if(actionid == (M3D_INDEX)-1U || !frameid) { gen: s = 0; for(i = 0; i < model->numbone; i++) { skeleton[i].boneid = i; skeleton[i].pos = model->bone[i].pos; skeleton[i].ori = model->bone[i].ori; } } if(actionid < model->numaction && (frameid || !model->action[actionid].frame[0].msec)) { for(; s <= frameid; s++) { fr = &model->action[actionid].frame[s]; for(i = 0; i < fr->numtransform; i++) { skeleton[fr->transform[i].boneid].pos = fr->transform[i].pos; skeleton[fr->transform[i].boneid].ori = fr->transform[i].ori; } } } return skeleton; } #ifndef M3D_NOANIMATION /** * Returns interpolated animation-pose, a working copy (should be freed after use) */ m3db_t *m3d_pose(m3d_t *model, M3D_INDEX actionid, uint32_t msec) { unsigned int i, j, l; M3D_FLOAT r[16], t, d; m3db_t *ret; m3dv_t *v, *p, *f; m3dtr_t *tmp; m3dfr_t *fr; if(!model || !model->numbone || !model->bone) { model->errcode = M3D_ERR_UNKFRAME; return NULL; } ret = (m3db_t*)M3D_MALLOC(model->numbone * sizeof(m3db_t)); if(!ret) { model->errcode = M3D_ERR_ALLOC; return NULL; } memcpy(ret, model->bone, model->numbone * sizeof(m3db_t)); for(i = 0; i < model->numbone; i++) _m3d_inv((M3D_FLOAT*)&ret[i].mat4); if(!model->action || actionid >= model->numaction) { model->errcode = M3D_ERR_UNKFRAME; return ret; } msec %= model->action[actionid].durationmsec; model->errcode = M3D_SUCCESS; fr = &model->action[actionid].frame[0]; for(j = l = 0; j < model->action[actionid].numframe && model->action[actionid].frame[j].msec <= msec; j++) { fr = &model->action[actionid].frame[j]; l = fr->msec; for(i = 0; i < fr->numtransform; i++) { ret[fr->transform[i].boneid].pos = fr->transform[i].pos; ret[fr->transform[i].boneid].ori = fr->transform[i].ori; } } if(l != msec) { model->vertex = (m3dv_t*)M3D_REALLOC(model->vertex, (model->numvertex + 2 * model->numbone) * sizeof(m3dv_t)); if(!model->vertex) { free(ret); model->errcode = M3D_ERR_ALLOC; return NULL; } tmp = (m3dtr_t*)M3D_MALLOC(model->numbone * sizeof(m3dtr_t)); if(tmp) { for(i = 0; i < model->numbone; i++) { tmp[i].pos = ret[i].pos; tmp[i].ori = ret[i].ori; } fr = &model->action[actionid].frame[j % model->action[actionid].numframe]; t = l >= fr->msec ? (M3D_FLOAT)1.0 : (M3D_FLOAT)(msec - l) / (M3D_FLOAT)(fr->msec - l); for(i = 0; i < fr->numtransform; i++) { tmp[fr->transform[i].boneid].pos = fr->transform[i].pos; tmp[fr->transform[i].boneid].ori = fr->transform[i].ori; } for(i = 0, j = model->numvertex; i < model->numbone; i++) { /* LERP interpolation of position */ if(ret[i].pos != tmp[i].pos) { p = &model->vertex[ret[i].pos]; f = &model->vertex[tmp[i].pos]; v = &model->vertex[j]; v->x = p->x + t * (f->x - p->x); v->y = p->y + t * (f->y - p->y); v->z = p->z + t * (f->z - p->z); ret[i].pos = j++; } /* NLERP interpolation of orientation (could have used SLERP, that's nicer, but slower) */ if(ret[i].ori != tmp[i].ori) { p = &model->vertex[ret[i].ori]; f = &model->vertex[tmp[i].ori]; v = &model->vertex[j]; d = (p->w * f->w + p->x * f->x + p->y * f->y + p->z * f->z < 0) ? (M3D_FLOAT)-1.0 : (M3D_FLOAT)1.0; v->x = p->x + t * (d*f->x - p->x); v->y = p->y + t * (d*f->y - p->y); v->z = p->z + t * (d*f->z - p->z); v->w = p->w + t * (d*f->w - p->w); d = _m3d_rsq(v->w * v->w + v->x * v->x + v->y * v->y + v->z * v->z); v->x *= d; v->y *= d; v->z *= d; v->w *= d; ret[i].ori = j++; } } M3D_FREE(tmp); } } for(i = 0; i < model->numbone; i++) { if(ret[i].parent == (M3D_INDEX)-1U) { _m3d_mat((M3D_FLOAT*)&ret[i].mat4, &model->vertex[ret[i].pos], &model->vertex[ret[i].ori]); } else { _m3d_mat((M3D_FLOAT*)&r, &model->vertex[ret[i].pos], &model->vertex[ret[i].ori]); _m3d_mul((M3D_FLOAT*)&ret[i].mat4, (M3D_FLOAT*)&ret[ret[i].parent].mat4, (M3D_FLOAT*)&r); } } return ret; } #endif /* M3D_NOANIMATION */ #endif /* M3D_IMPLEMENTATION */ #if !defined(M3D_NODUP) && (!defined(M3D_NOIMPORTER) || defined(M3D_EXPORTER)) /** * Free the in-memory model */ void m3d_free(m3d_t *model) { unsigned int i, j; if(!model) return; #ifdef M3D_ASCII /* if model imported from ASCII, we have to free all strings as well */ if(model->flags & M3D_FLG_FREESTR) { if(model->name) M3D_FREE(model->name); if(model->license) M3D_FREE(model->license); if(model->author) M3D_FREE(model->author); if(model->desc) M3D_FREE(model->desc); if(model->bone) for(i = 0; i < model->numbone; i++) if(model->bone[i].name) M3D_FREE(model->bone[i].name); if(model->material) for(i = 0; i < model->nummaterial; i++) if(model->material[i].name) M3D_FREE(model->material[i].name); if(model->action) for(i = 0; i < model->numaction; i++) if(model->action[i].name) M3D_FREE(model->action[i].name); if(model->texture) for(i = 0; i < model->numtexture; i++) if(model->texture[i].name) M3D_FREE(model->texture[i].name); if(model->unknown) for(i = 0; i < model->numunknown; i++) if(model->unknown[i]) M3D_FREE(model->unknown[i]); } #endif if(model->flags & M3D_FLG_FREERAW) M3D_FREE(model->raw); if(model->tmap) M3D_FREE(model->tmap); if(model->bone) { for(i = 0; i < model->numbone; i++) if(model->bone[i].weight) M3D_FREE(model->bone[i].weight); M3D_FREE(model->bone); } if(model->skin) M3D_FREE(model->skin); if(model->vertex) M3D_FREE(model->vertex); if(model->face) M3D_FREE(model->face); if(model->material && !(model->flags & M3D_FLG_MTLLIB)) { for(i = 0; i < model->nummaterial; i++) if(model->material[i].prop) M3D_FREE(model->material[i].prop); M3D_FREE(model->material); } if(model->texture) { for(i = 0; i < model->numtexture; i++) if(model->texture[i].d) M3D_FREE(model->texture[i].d); M3D_FREE(model->texture); } if(model->action) { for(i = 0; i < model->numaction; i++) { if(model->action[i].frame) { for(j = 0; j < model->action[i].numframe; j++) if(model->action[i].frame[j].transform) M3D_FREE(model->action[i].frame[j].transform); M3D_FREE(model->action[i].frame); } } M3D_FREE(model->action); } if(model->inlined) M3D_FREE(model->inlined); if(model->unknown) M3D_FREE(model->unknown); free(model); } #endif #ifdef M3D_EXPORTER typedef struct { char *str; uint32_t offs; } m3dstr_t; /* create unique list of strings */ static m3dstr_t *_m3d_addstr(m3dstr_t *str, uint32_t *numstr, char *s) { uint32_t i; if(!s || !*s) return str; if(str) { for(i = 0; i < *numstr; i++) if(str[i].str == s || !strcmp(str[i].str, s)) return str; } str = (m3dstr_t*)M3D_REALLOC(str, ((*numstr) + 1) * sizeof(m3dstr_t)); str[*numstr].str = s; str[*numstr].offs = 0; (*numstr)++; return str; } /* add strings to header */ m3dhdr_t *_m3d_addhdr(m3dhdr_t *h, m3dstr_t *s) { int i; char *safe = _m3d_safestr(s->str, 0); i = strlen(safe); h = (m3dhdr_t*)M3D_REALLOC(h, h->length + i+1); if(!h) { M3D_FREE(safe); return NULL; } memcpy((uint8_t*)h + h->length, safe, i+1); s->offs = h->length - 16; h->length += i+1; M3D_FREE(safe); return h; } /* return offset of string */ static uint32_t _m3d_stridx(m3dstr_t *str, uint32_t numstr, char *s) { uint32_t i; char *safe; if(!s || !*s) return 0; if(str) { safe = _m3d_safestr(s, 0); if(!safe) return 0; if(!*safe) { free(safe); return 0; } for(i = 0; i < numstr; i++) if(!strcmp(str[i].str, s)) { free(safe); return str[i].offs; } free(safe); } return 0; } /* compare two colors by HSV value */ _inline static int _m3d_cmapcmp(const void *a, const void *b) { uint8_t *A = (uint8_t*)a, *B = (uint8_t*)b; _register int m, vA, vB; /* get HSV value for A */ m = A[2] < A[1]? A[2] : A[1]; if(A[0] < m) m = A[0]; vA = A[2] > A[1]? A[2] : A[1]; if(A[0] > vA) vA = A[0]; /* get HSV value for B */ m = B[2] < B[1]? B[2] : B[1]; if(B[0] < m) m = B[0]; vB = B[2] > B[1]? B[2] : B[1]; if(B[0] > vB) vB = B[0]; return vA - vB; } /* create sorted list of colors */ static uint32_t *_m3d_addcmap(uint32_t *cmap, uint32_t *numcmap, uint32_t color) { uint32_t i; if(cmap) { for(i = 0; i < *numcmap; i++) if(cmap[i] == color) return cmap; } cmap = (uint32_t*)M3D_REALLOC(cmap, ((*numcmap) + 1) * sizeof(uint32_t)); for(i = 0; i < *numcmap && _m3d_cmapcmp(&color, &cmap[i]) > 0; i++); if(i < *numcmap) memmove(&cmap[i+1], &cmap[i], ((*numcmap) - i)*sizeof(uint32_t)); cmap[i] = color; (*numcmap)++; return cmap; } /* look up a color and return its index */ static uint32_t _m3d_cmapidx(uint32_t *cmap, uint32_t numcmap, uint32_t color) { uint32_t i; for(i = 0; i < numcmap; i++) if(cmap[i] == color) return i; return 0; } /* add vertex to list */ static m3dv_t *_m3d_addvrtx(m3dv_t *vrtx, uint32_t *numvrtx, m3dv_t *v, uint32_t *idx) { uint32_t i; if(v->x == (M3D_FLOAT)-0.0) v->x = (M3D_FLOAT)0.0; if(v->y == (M3D_FLOAT)-0.0) v->y = (M3D_FLOAT)0.0; if(v->z == (M3D_FLOAT)-0.0) v->z = (M3D_FLOAT)0.0; if(v->w == (M3D_FLOAT)-0.0) v->w = (M3D_FLOAT)0.0; if(vrtx) { for(i = 0; i < *numvrtx; i++) if(!memcmp(&vrtx[i], v, sizeof(m3dv_t))) { *idx = i; return vrtx; } } vrtx = (m3dv_t*)M3D_REALLOC(vrtx, ((*numvrtx) + 1) * sizeof(m3dv_t)); memcpy(&vrtx[*numvrtx], v, sizeof(m3dv_t)); *idx = *numvrtx; (*numvrtx)++; return vrtx; } /* add texture map to list */ static m3dti_t *_m3d_addtmap(m3dti_t *tmap, uint32_t *numtmap, m3dti_t *t, uint32_t *idx) { uint32_t i; if(tmap) { for(i = 0; i < *numtmap; i++) if(!memcmp(&tmap[i], t, sizeof(m3dti_t))) { *idx = i; return tmap; } } tmap = (m3dti_t*)M3D_REALLOC(tmap, ((*numtmap) + 1) * sizeof(m3dti_t)); memcpy(&tmap[*numtmap], t, sizeof(m3dti_t)); *idx = *numtmap; (*numtmap)++; return tmap; } /* add material to list */ static m3dm_t **_m3d_addmtrl(m3dm_t **mtrl, uint32_t *nummtrl, m3dm_t *m, uint32_t *idx) { uint32_t i; if(mtrl) { for(i = 0; i < *nummtrl; i++) if(mtrl[i]->name == m->name || !strcmp(mtrl[i]->name, m->name)) { *idx = i; return mtrl; } } mtrl = (m3dm_t**)M3D_REALLOC(mtrl, ((*nummtrl) + 1) * sizeof(m3dm_t*)); mtrl[*nummtrl] = m; *idx = *nummtrl; (*nummtrl)++; return mtrl; } /* add index to output */ static unsigned char *_m3d_addidx(unsigned char *out, char type, uint32_t idx) { switch(type) { case 1: *out++ = (uint8_t)(idx); break; case 2: *((uint16_t*)out) = (uint16_t)(idx); out += 2; break; case 4: *((uint32_t*)out) = (uint32_t)(idx); out += 4; break; /* case 0: case 8: break; */ } return out; } /* round a vertex position */ static void _m3d_round(int quality, m3dv_t *src, m3dv_t *dst) { _register int t; /* copy additional attributes */ if(src != dst) memcpy(dst, src, sizeof(m3dv_t)); /* round according to quality */ switch(quality) { case M3D_EXP_INT8: t = src->x * 127; dst->x = (M3D_FLOAT)t / 127; t = src->y * 127; dst->y = (M3D_FLOAT)t / 127; t = src->z * 127; dst->z = (M3D_FLOAT)t / 127; t = src->w * 127; dst->w = (M3D_FLOAT)t / 127; break; case M3D_EXP_INT16: t = src->x * 32767; dst->x = (M3D_FLOAT)t / 32767; t = src->y * 32767; dst->y = (M3D_FLOAT)t / 32767; t = src->z * 32767; dst->z = (M3D_FLOAT)t / 32767; t = src->w * 32767; dst->w = (M3D_FLOAT)t / 32767; break; } } #ifdef M3D_ASCII /* add a bone to ascii output */ static char *_m3d_prtbone(char *ptr, m3db_t *bone, M3D_INDEX numbone, M3D_INDEX parent, uint32_t level) { uint32_t i, j; char *sn; if(level > M3D_BONEMAXLEVEL || !bone) return ptr; for(i = 0; i < numbone; i++) { if(bone[i].parent == parent) { for(j = 0; j < level; j++) *ptr++ = '/'; sn = _m3d_safestr(bone[i].name, 0); ptr += sprintf(ptr, "%d %d %s\r\n", bone[i].pos, bone[i].ori, sn); M3D_FREE(sn); ptr = _m3d_prtbone(ptr, bone, numbone, i, level + 1); } } return ptr; } #endif /** * Function to encode an in-memory model into on storage Model 3D format */ unsigned char *m3d_save(m3d_t *model, int quality, int flags, unsigned int *size) { #ifdef M3D_ASCII const char *ol; char *ptr; #endif char vc_s, vi_s, si_s, ci_s, ti_s, bi_s, nb_s, sk_s, fi_s; char *sn = NULL, *sl = NULL, *sa = NULL, *sd = NULL; unsigned char *out = NULL, *z = NULL, weights[M3D_NUMBONE]; unsigned int i, j, k, l, len, chunklen, *length; float scale = 0.0f, min_x, max_x, min_y, max_y, min_z, max_z; uint32_t idx, numcmap = 0, *cmap = NULL, numvrtx = 0, numtmap = 0, numbone = 0; uint32_t numskin = 0, numactn = 0, *actn = NULL, numstr = 0, nummtrl = 0, maxt = 0; m3dstr_t *str = NULL; m3dv_t *vrtx = NULL, vertex; m3dti_t *tmap = NULL, tcoord; m3db_t *bone = NULL; m3ds_t *skin = NULL; m3df_t *face = NULL; m3dhdr_t *h = NULL; m3dm_t *m, **mtrl = NULL; m3da_t *a; M3D_INDEX last; if(!model) { if(size) *size = 0; return NULL; } model->errcode = M3D_SUCCESS; #ifdef M3D_ASCII if(flags & M3D_EXP_ASCII) quality = M3D_EXP_DOUBLE; #endif /* collect array elements that are actually referenced */ if(model->numface && model->face && !(flags & M3D_EXP_NOFACE)) { face = (m3df_t*)M3D_MALLOC(model->numface * sizeof(m3df_t)); if(!face) goto memerr; memset(face, 255, model->numface * sizeof(m3df_t)); last = (M3D_INDEX)-1U; for(i = 0; i < model->numface; i++) { face[i].materialid = (M3D_INDEX)-1U; if(!(flags & M3D_EXP_NOMATERIAL) && model->face[i].materialid != last) { last = model->face[i].materialid; if(last < model->nummaterial) { mtrl = _m3d_addmtrl(mtrl, &nummtrl, &model->material[last], &face[i].materialid); if(!mtrl) goto memerr; } } for(j = 0; j < 3; j++) { k = model->face[i].vertex[j]; if(quality < M3D_EXP_FLOAT) { _m3d_round(quality, &model->vertex[k], &vertex); vrtx = _m3d_addvrtx(vrtx, &numvrtx, &vertex, &idx); } else vrtx = _m3d_addvrtx(vrtx, &numvrtx, &model->vertex[k], &idx); if(!vrtx) goto memerr; face[i].vertex[j] = (M3D_INDEX)idx; if(!(flags & M3D_EXP_NOCMAP)) { cmap = _m3d_addcmap(cmap, &numcmap, model->vertex[k].color); if(!cmap) goto memerr; } k = model->face[i].normal[j]; if(k < model->numvertex && !(flags & M3D_EXP_NONORMAL)) { if(quality < M3D_EXP_FLOAT) { _m3d_round(quality, &model->vertex[k], &vertex); vrtx = _m3d_addnorm(vrtx, &numvrtx, &vertex, &idx); } else vrtx = _m3d_addnorm(vrtx, &numvrtx, &model->vertex[k], &idx); if(!vrtx) goto memerr; face[i].normal[j] = (M3D_INDEX)idx; } k = model->face[i].texcoord[j]; if(k < model->numtmap) { switch(quality) { case M3D_EXP_INT8: l = model->tmap[k].u * 255; tcoord.u = (M3D_FLOAT)l / 255; l = model->tmap[k].v * 255; tcoord.v = (M3D_FLOAT)l / 255; break; case M3D_EXP_INT16: l = model->tmap[k].u * 65535; tcoord.u = (M3D_FLOAT)l / 65535; l = model->tmap[k].v * 65535; tcoord.v = (M3D_FLOAT)l / 65535; break; default: tcoord.u = model->tmap[k].u; tcoord.v = model->tmap[k].v; break; } if(flags & M3D_EXP_FLIPTXTCRD) tcoord.v = (M3D_FLOAT)1.0 - tcoord.v; tmap = _m3d_addtmap(tmap, &numtmap, &tcoord, &idx); if(!tmap) goto memerr; face[i].texcoord[j] = (M3D_INDEX)idx; } } /* convert from CW to CCW */ if(flags & M3D_EXP_IDOSUCK) { j = face[i].vertex[1]; face[i].vertex[1] = face[i].vertex[2]; face[i].vertex[2] = face[i].vertex[1]; j = face[i].normal[1]; face[i].normal[1] = face[i].normal[2]; face[i].normal[2] = face[i].normal[1]; j = face[i].texcoord[1]; face[i].texcoord[1] = face[i].texcoord[2]; face[i].texcoord[2] = face[i].texcoord[1]; } } } else if(!(flags & M3D_EXP_NOMATERIAL)) { /* without a face, simply add all materials, because it can be an mtllib */ nummtrl = model->nummaterial; } /* add colors to color map and texture names to string table */ for(i = 0; i < nummtrl; i++) { m = !mtrl ? &model->material[i] : mtrl[i]; str = _m3d_addstr(str, &numstr, m->name); if(!str) goto memerr; for(j = 0; j < mtrl[i]->numprop; j++) { if(!(flags & M3D_EXP_NOCMAP) && m->prop[j].type < 128) { for(l = 0; l < sizeof(m3d_propertytypes)/sizeof(m3d_propertytypes[0]); l++) { if(m->prop[j].type == m3d_propertytypes[l].id && m3d_propertytypes[l].format == m3dpf_color) { cmap = _m3d_addcmap(cmap, &numcmap, m->prop[j].value.color); if(!cmap) goto memerr; break; } } } if(m->prop[j].type >= 128 && m->prop[j].value.textureid < model->numtexture && model->texture[m->prop[j].value.textureid].name) { str = _m3d_addstr(str, &numstr, model->texture[m->prop[j].value.textureid].name); if(!str) goto memerr; } } } /* get bind-pose skeleton and skin */ if(model->numbone && model->bone && !(flags & M3D_EXP_NOBONE)) { numbone = model->numbone; bone = (m3db_t*)M3D_MALLOC(model->numbone * sizeof(m3db_t)); if(!bone) goto memerr; memset(bone, 0, model->numbone * sizeof(m3db_t)); for(i = 0; i < model->numbone; i++) { bone[i].parent = model->bone[i].parent; bone[i].name = model->bone[i].name; str = _m3d_addstr(str, &numstr, bone[i].name); if(!str) goto memerr; if(quality < M3D_EXP_FLOAT) { _m3d_round(quality, &model->vertex[model->bone[i].pos], &vertex); vrtx = _m3d_addvrtx(vrtx, &numvrtx, &vertex, &k); } else vrtx = _m3d_addvrtx(vrtx, &numvrtx, &model->vertex[model->bone[i].pos], &k); if(!vrtx) goto memerr; bone[i].pos = (M3D_INDEX)k; if(quality < M3D_EXP_FLOAT) { _m3d_round(quality, &model->vertex[model->bone[i].ori], &vertex); vrtx = _m3d_addvrtx(vrtx, &numvrtx, &vertex, &k); } else vrtx = _m3d_addvrtx(vrtx, &numvrtx, &model->vertex[model->bone[i].ori], &k); if(!vrtx) goto memerr; bone[i].ori = (M3D_INDEX)k; } } /* actions, animated skeleton poses */ if(model->numaction && model->action && !(flags & M3D_EXP_NOACTION)) { for(j = 0; j < model->numaction; j++) { a = &model->action[j]; str = _m3d_addstr(str, &numstr, a->name); if(!str) goto memerr; if(a->numframe > 65535) a->numframe = 65535; for(i = 0; i < a->numframe; i++) { l = numactn; numactn += (a->frame[i].numtransform * 2); if(a->frame[i].numtransform > maxt) maxt = a->frame[i].numtransform; actn = (uint32_t*)M3D_REALLOC(actn, numactn * sizeof(uint32_t)); if(!actn) goto memerr; for(k = 0; k < a->frame[i].numtransform; k++) { if(quality < M3D_EXP_FLOAT) { _m3d_round(quality, &model->vertex[a->frame[i].transform[k].pos], &vertex); vrtx = _m3d_addvrtx(vrtx, &numvrtx, &vertex, &actn[l++]); if(!vrtx) goto memerr; _m3d_round(quality, &model->vertex[a->frame[i].transform[k].ori], &vertex); vrtx = _m3d_addvrtx(vrtx, &numvrtx, &vertex, &actn[l++]); } else { vrtx = _m3d_addvrtx(vrtx, &numvrtx, &model->vertex[a->frame[i].transform[k].pos], &actn[l++]); if(!vrtx) goto memerr; vrtx = _m3d_addvrtx(vrtx, &numvrtx, &model->vertex[a->frame[i].transform[k].ori], &actn[l++]); } if(!vrtx) goto memerr; } } } } /* normalize bounding cube and collect referenced skin records */ if(numvrtx) { min_x = min_y = min_z = 1e10; max_x = max_y = max_z = -1e10; j = model->numskin && model->skin && !(flags & M3D_EXP_NOBONE); for(i = 0; i < numvrtx; i++) { if(j && model->numskin && model->skin && vrtx[i].skinid < M3D_INDEXMAX) { skin = _m3d_addskin(skin, &numskin, &model->skin[vrtx[i].skinid], &idx); if(!skin) goto memerr; vrtx[i].skinid = idx; } if(vrtx[i].skinid == (M3D_INDEX)-2U) continue; if(vrtx[i].x > max_x) max_x = vrtx[i].x; if(vrtx[i].x < min_x) min_x = vrtx[i].x; if(vrtx[i].y > max_y) max_y = vrtx[i].y; if(vrtx[i].y < min_y) min_y = vrtx[i].y; if(vrtx[i].z > max_z) max_z = vrtx[i].z; if(vrtx[i].z < min_z) min_z = vrtx[i].z; } if(min_x < 0.0f) min_x = -min_x; if(max_x < 0.0f) max_x = -max_x; if(min_y < 0.0f) min_y = -min_y; if(max_y < 0.0f) max_y = -max_y; if(min_z < 0.0f) min_z = -min_z; if(max_z < 0.0f) max_z = -max_z; scale = min_x; if(max_x > scale) scale = max_x; if(min_y > scale) scale = min_y; if(max_y > scale) scale = max_y; if(min_z > scale) scale = min_z; if(max_z > scale) scale = max_z; if(scale == 0.0f) scale = 1.0f; if(scale != 1.0f && !(flags & M3D_EXP_NORECALC)) { for(i = 0; i < numvrtx; i++) { if(vrtx[i].skinid == (M3D_INDEX)-2U) continue; vrtx[i].x /= scale; vrtx[i].y /= scale; vrtx[i].z /= scale; } } } /* if there's only one black color, don't store it */ if(numcmap == 1 && cmap && !cmap[0]) numcmap = 0; /* at least 3 UV coordinate required for texture mapping */ if(numtmap < 3 && tmap) numtmap = 0; /* meta info */ sn = _m3d_safestr(model->name && *model->name ? model->name : (char*)"(noname)", 2); sl = _m3d_safestr(model->license ? model->license : (char*)"MIT", 2); sa = _m3d_safestr(model->author ? model->author : getenv("LOGNAME"), 2); if(!sn || !sl || !sa) { memerr: if(face) M3D_FREE(face); if(cmap) M3D_FREE(cmap); if(tmap) M3D_FREE(tmap); if(mtrl) M3D_FREE(mtrl); if(vrtx) M3D_FREE(vrtx); if(bone) M3D_FREE(bone); if(skin) M3D_FREE(skin); if(actn) M3D_FREE(actn); if(sn) M3D_FREE(sn); if(sl) M3D_FREE(sl); if(sa) M3D_FREE(sa); if(sd) M3D_FREE(sd); if(out) M3D_FREE(out); if(str) M3D_FREE(str); if(h) M3D_FREE(h); M3D_LOG("Out of memory"); model->errcode = M3D_ERR_ALLOC; return NULL; } if(model->scale > (M3D_FLOAT)0.0) scale = (float)model->scale; if(scale <= 0.0f) scale = 1.0f; #ifdef M3D_ASCII if(flags & M3D_EXP_ASCII) { /* use CRLF to make model creators on Win happy... */ sd = _m3d_safestr(model->desc, 1); if(!sd) goto memerr; ol = setlocale(LC_NUMERIC, NULL); setlocale(LC_NUMERIC, "C"); /* header */ len = 64 + strlen(sn) + strlen(sl) + strlen(sa) + strlen(sd); out = (unsigned char*)M3D_MALLOC(len); if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; } ptr = (char*)out; ptr += sprintf(ptr, "3dmodel %g\r\n%s\r\n%s\r\n%s\r\n%s\r\n\r\n", scale, sn, sl, sa, sd); M3D_FREE(sn); M3D_FREE(sl); M3D_FREE(sa); M3D_FREE(sd); sn = sl = sa = sd = NULL; /* texture map */ if(numtmap && tmap && !(flags & M3D_EXP_NOTXTCRD) && !(flags & M3D_EXP_NOFACE)) { ptr -= (uint64_t)out; len = (uint64_t)ptr + numtmap * 32 + 12; out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uint64_t)out; if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; } ptr += sprintf(ptr, "Textmap\r\n"); for(i = 0; i < numtmap; i++) ptr += sprintf(ptr, "%g %g\r\n", tmap[i].u, tmap[i].v); ptr += sprintf(ptr, "\r\n"); } /* vertex chunk */ if(numvrtx && vrtx && !(flags & M3D_EXP_NOFACE)) { ptr -= (uint64_t)out; len = (uint64_t)ptr + numvrtx * 128 + 10; out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uint64_t)out; if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; } ptr += sprintf(ptr, "Vertex\r\n"); for(i = 0; i < numvrtx; i++) { ptr += sprintf(ptr, "%g %g %g %g", vrtx[i].x, vrtx[i].y, vrtx[i].z, vrtx[i].w); if(!(flags & M3D_EXP_NOCMAP) && vrtx[i].color) ptr += sprintf(ptr, " #%08x", vrtx[i].color); if(!(flags & M3D_EXP_NOBONE) && numbone && numskin && vrtx[i].skinid != (M3D_INDEX)-1U && vrtx[i].skinid != (M3D_INDEX)-2U) { if(skin[vrtx[i].skinid].weight[0] == (M3D_FLOAT)1.0) ptr += sprintf(ptr, " %d", skin[vrtx[i].skinid].boneid[0]); else for(j = 0; j < M3D_NUMBONE && skin[vrtx[i].skinid].boneid[j] != (M3D_INDEX)-1U && skin[vrtx[i].skinid].weight[j] > (M3D_FLOAT)0.0; j++) ptr += sprintf(ptr, " %d:%g", skin[vrtx[i].skinid].boneid[j], skin[vrtx[i].skinid].weight[j]); } ptr += sprintf(ptr, "\r\n"); } ptr += sprintf(ptr, "\r\n"); } /* bones chunk */ if(numbone && bone && !(flags & M3D_EXP_NOBONE)) { ptr -= (uint64_t)out; len = (uint64_t)ptr + 9; for(i = 0; i < numbone; i++) { len += strlen(bone[i].name) + 128; } out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uint64_t)out; if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; } ptr += sprintf(ptr, "Bones\r\n"); ptr = _m3d_prtbone(ptr, bone, numbone, (M3D_INDEX)-1U, 0); ptr += sprintf(ptr, "\r\n"); } /* materials */ if(nummtrl && !(flags & M3D_EXP_NOMATERIAL)) { for(j = 0; j < nummtrl; j++) { m = !mtrl ? &model->material[j] : mtrl[j]; sn = _m3d_safestr(m->name, 0); if(!sn) { setlocale(LC_NUMERIC, ol); goto memerr; } ptr -= (uint64_t)out; len = (uint64_t)ptr + strlen(sn) + 12; for(i = 0; i < m->numprop; i++) { if(m->prop[i].type < 128) len += 32; else if(m->prop[i].value.textureid < model->numtexture && model->texture[m->prop[i].value.textureid].name) len += strlen(model->texture[m->prop[i].value.textureid].name) + 16; } out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uint64_t)out; if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; } ptr += sprintf(ptr, "Material %s\r\n", sn); M3D_FREE(sn); sn = NULL; for(i = 0; i < m->numprop; i++) { k = 256; if(m->prop[i].type >= 128) { for(l = 0; l < sizeof(m3d_propertytypes)/sizeof(m3d_propertytypes[0]); l++) if(m->prop[i].type == m3d_propertytypes[l].id) { sn = m3d_propertytypes[l].key; break; } if(!sn) for(l = 0; l < sizeof(m3d_propertytypes)/sizeof(m3d_propertytypes[0]); l++) if(m->prop[i].type - 128 == m3d_propertytypes[l].id) { sn = m3d_propertytypes[l].key; break; } k = sn ? m3dpf_map : 256; } else { for(l = 0; l < sizeof(m3d_propertytypes)/sizeof(m3d_propertytypes[0]); l++) if(m->prop[i].type == m3d_propertytypes[l].id) { sn = m3d_propertytypes[l].key; k = m3d_propertytypes[l].format; break; } } switch(k) { case m3dpf_color: ptr += sprintf(ptr, "%s #%08x\r\n", sn, m->prop[i].value.color); break; case m3dpf_uint8: case m3dpf_uint16: case m3dpf_uint32: ptr += sprintf(ptr, "%s %d\r\n", sn, m->prop[i].value.num); break; case m3dpf_float: ptr += sprintf(ptr, "%s %g\r\n", sn, m->prop[i].value.fnum); break; case m3dpf_map: if(m->prop[i].value.textureid < model->numtexture && model->texture[m->prop[i].value.textureid].name) { sl = _m3d_safestr(model->texture[m->prop[i].value.textureid].name, 0); if(!sl) { setlocale(LC_NUMERIC, ol); goto memerr; } if(*sl) ptr += sprintf(ptr, "map_%s %s\r\n", sn, sl); M3D_FREE(sn); M3D_FREE(sl); sl = NULL; } break; } sn = NULL; } ptr += sprintf(ptr, "\r\n"); } } /* mesh face */ if(model->numface && face && !(flags & M3D_EXP_NOFACE)) { ptr -= (uint64_t)out; len = (uint64_t)ptr + model->numface * 128 + 6; last = (M3D_INDEX)-1U; if(!(flags & M3D_EXP_NOMATERIAL)) for(i = 0; i < model->numface; i++) { if(face[i].materialid != last) { last = face[i].materialid; if(last < nummtrl) len += strlen(mtrl[last]->name); len += 6; } } out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uint64_t)out; if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; } ptr += sprintf(ptr, "Mesh\r\n"); last = (M3D_INDEX)-1U; for(i = 0; i < model->numface; i++) { if(!(flags & M3D_EXP_NOMATERIAL) && face[i].materialid != last) { last = face[i].materialid; if(last < nummtrl) { sn = _m3d_safestr(mtrl[last]->name, 0); if(!sn) { setlocale(LC_NUMERIC, ol); goto memerr; } ptr += sprintf(ptr, "use %s\r\n", sn); M3D_FREE(sn); sn = NULL; } else ptr += sprintf(ptr, "use\r\n"); } /* hardcoded triangles. Should be repeated as many times as the number of edges in polygon */ for(j = 0; j < 3; j++) { ptr += sprintf(ptr, "%s%d", j?" ":"", face[i].vertex[j]); if(!(flags & M3D_EXP_NOTXTCRD) && (face[i].texcoord[j] != (M3D_INDEX)-1U)) ptr += sprintf(ptr, "/%d", face[i].texcoord[j]); if(!(flags & M3D_EXP_NONORMAL) && (face[i].normal[j] != (M3D_INDEX)-1U)) ptr += sprintf(ptr, "%s/%d", (flags & M3D_EXP_NOTXTCRD) || (face[i].texcoord[j] == (M3D_INDEX)-1U)? "/" : "", face[i].normal[j]); } ptr += sprintf(ptr, "\r\n"); } ptr += sprintf(ptr, "\r\n"); } /* actions */ if(model->numaction && model->action && numactn && actn && !(flags & M3D_EXP_NOACTION)) { l = 0; for(j = 0; j < model->numaction; j++) { a = &model->action[j]; sn = _m3d_safestr(a->name, 0); if(!sn) { setlocale(LC_NUMERIC, ol); goto memerr; } ptr -= (uint64_t)out; len = (uint64_t)ptr + strlen(sn) + 48; for(i = 0; i < a->numframe; i++) len += a->frame[i].numtransform * 128 + 8; out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uint64_t)out; if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; } ptr += sprintf(ptr, "Action %d %s\r\n", a->durationmsec, sn); M3D_FREE(sn); sn = NULL; if(a->numframe > 65535) a->numframe = 65535; for(i = 0; i < a->numframe; i++) { ptr += sprintf(ptr, "frame %d\r\n", a->frame[i].msec); for(k = 0; k < a->frame[i].numtransform; k++) { ptr += sprintf(ptr, "%d %d %d\r\n", a->frame[i].transform[k].boneid, actn[l], actn[l + 1]); l += 2; } } ptr += sprintf(ptr, "\r\n"); } } /* extra info */ if(model->numunknown && (flags & M3D_EXP_EXTRA)) { for(i = 0; i < model->numunknown; i++) { if(model->unknown[i]->length < 9) continue; ptr -= (uint64_t)out; len = (uint64_t)ptr + 17 + model->unknown[i]->length * 3; out = (unsigned char*)M3D_REALLOC(out, len); ptr += (uint64_t)out; if(!out) { setlocale(LC_NUMERIC, ol); goto memerr; } ptr += sprintf(ptr, "Extra %c%c%c%c\r\n", model->unknown[i]->magic[0] > ' ' ? model->unknown[i]->magic[0] : '_', model->unknown[i]->magic[1] > ' ' ? model->unknown[i]->magic[1] : '_', model->unknown[i]->magic[2] > ' ' ? model->unknown[i]->magic[2] : '_', model->unknown[i]->magic[3] > ' ' ? model->unknown[i]->magic[3] : '_'); for(j = 0; j < model->unknown[i]->length; j++) ptr += sprintf(ptr, "%02x ", *((unsigned char *)model->unknown + sizeof(m3dchunk_t) + j)); ptr--; ptr += sprintf(ptr, "\r\n\r\n"); } } setlocale(LC_NUMERIC, ol); len = (uint64_t)ptr - (uint64_t)out; out = (unsigned char*)M3D_REALLOC(out, len + 1); if(!out) goto memerr; out[len] = 0; } else #endif { /* stricly only use LF (newline) in binary */ sd = _m3d_safestr(model->desc, 3); if(!sd) goto memerr; /* header */ h = (m3dhdr_t*)M3D_MALLOC(sizeof(m3dhdr_t) + strlen(sn) + strlen(sl) + strlen(sa) + strlen(sd) + 4); if(!h) goto memerr; memcpy((uint8_t*)h, "HEAD", 4); h->length = sizeof(m3dhdr_t); h->scale = scale; i = strlen(sn); memcpy((uint8_t*)h + h->length, sn, i+1); h->length += i+1; M3D_FREE(sn); i = strlen(sl); memcpy((uint8_t*)h + h->length, sl, i+1); h->length += i+1; M3D_FREE(sl); i = strlen(sa); memcpy((uint8_t*)h + h->length, sa, i+1); h->length += i+1; M3D_FREE(sa); i = strlen(sd); memcpy((uint8_t*)h + h->length, sd, i+1); h->length += i+1; M3D_FREE(sd); sn = sl = sa = sd = NULL; len = 0; if(!bone) numbone = 0; if(skin) for(i = 0; i < numskin; i++) { for(j = k = 0; j < M3D_NUMBONE; j++) if(skin[i].boneid[j] != (M3D_INDEX)-1U && skin[i].weight[j] > (M3D_FLOAT)0.0) k++; if(k > len) len = k; } else numskin = 0; if(model->inlined) for(i = 0; i < model->numinlined; i++) { if(model->inlined[i].name && *model->inlined[i].name && model->inlined[i].length > 0) { str = _m3d_addstr(str, &numstr, model->inlined[i].name); if(!str) goto memerr; } } if(str) for(i = 0; i < numstr; i++) { h = _m3d_addhdr(h, &str[i]); if(!h) goto memerr; } vc_s = quality == M3D_EXP_INT8? 1 : (quality == M3D_EXP_INT16? 2 : (quality == M3D_EXP_DOUBLE? 8 : 4)); vi_s = numvrtx < 254 ? 1 : (numvrtx < 65534 ? 2 : 4); si_s = h->length - 16 < 254 ? 1 : (h->length - 16 < 65534 ? 2 : 4); ci_s = !numcmap || !cmap ? 0 : (numcmap < 254 ? 1 : (numcmap < 65534 ? 2 : 4)); ti_s = !numtmap || !tmap ? 0 : (numtmap < 254 ? 1 : (numtmap < 65534 ? 2 : 4)); bi_s = !numbone || !bone ? 0 : (numbone < 254 ? 1 : (numbone < 65534 ? 2 : 4)); nb_s = len < 2 ? 1 : (len == 2 ? 2 : (len <= 4 ? 4 : 8)); sk_s = !numbone || !numskin ? 0 : (numskin < 254 ? 1 : (numskin < 65534 ? 2 : 4)); fi_s = maxt < 254 ? 1 : (maxt < 65534 ? 2 : 4); h->types = (vc_s == 8 ? (3<<0) : (vc_s == 2 ? (1<<0) : (vc_s == 1 ? (0<<0) : (2<<0)))) | (vi_s == 2 ? (1<<2) : (vi_s == 1 ? (0<<2) : (2<<2))) | (si_s == 2 ? (1<<4) : (si_s == 1 ? (0<<4) : (2<<4))) | (ci_s == 2 ? (1<<6) : (ci_s == 1 ? (0<<6) : (ci_s == 4 ? (2<<6) : (3<<6)))) | (ti_s == 2 ? (1<<8) : (ti_s == 1 ? (0<<8) : (ti_s == 4 ? (2<<8) : (3<<8)))) | (bi_s == 2 ? (1<<10): (bi_s == 1 ? (0<<10): (bi_s == 4 ? (2<<10) : (3<<10)))) | (nb_s == 2 ? (1<<12): (nb_s == 1 ? (0<<12): (2<<12))) | (sk_s == 2 ? (1<<14): (sk_s == 1 ? (0<<14): (sk_s == 4 ? (2<<14) : (3<<14)))) | (fi_s == 2 ? (1<<16): (fi_s == 1 ? (0<<16): (2<<16))) ; len = h->length; /* color map */ if(numcmap && cmap && ci_s < 4 && !(flags & M3D_EXP_NOCMAP)) { chunklen = 8 + numcmap * sizeof(uint32_t); h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen); if(!h) goto memerr; memcpy((uint8_t*)h + len, "CMAP", 4); *((uint32_t*)((uint8_t*)h + len + 4)) = chunklen; memcpy((uint8_t*)h + len + 8, cmap, chunklen - 8); len += chunklen; } else numcmap = 0; /* texture map */ if(numtmap && tmap && !(flags & M3D_EXP_NOTXTCRD) && !(flags & M3D_EXP_NOFACE)) { chunklen = 8 + numtmap * vc_s * 2; h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen); if(!h) goto memerr; memcpy((uint8_t*)h + len, "TMAP", 4); *((uint32_t*)((uint8_t*)h + len + 4)) = chunklen; out = (uint8_t*)h + len + 8; for(i = 0; i < numtmap; i++) { switch(vc_s) { case 1: *out++ = (uint8_t)(tmap[i].u * 255); *out++ = (uint8_t)(tmap[i].v * 255); break; case 2: *((uint16_t*)out) = (uint16_t)(tmap[i].u * 65535); out += 2; *((uint16_t*)out) = (uint16_t)(tmap[i].v * 65535); out += 2; break; case 4: *((float*)out) = tmap[i].u; out += 4; *((float*)out) = tmap[i].v; out += 4; break; case 8: *((double*)out) = tmap[i].u; out += 8; *((double*)out) = tmap[i].v; out += 8; break; } } out = NULL; len += chunklen; } /* vertex */ if(numvrtx && vrtx) { chunklen = 8 + numvrtx * (ci_s + sk_s + 4 * vc_s); h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen); if(!h) goto memerr; memcpy((uint8_t*)h + len, "VRTS", 4); *((uint32_t*)((uint8_t*)h + len + 4)) = chunklen; out = (uint8_t*)h + len + 8; for(i = 0; i < numvrtx; i++) { switch(vc_s) { case 1: *out++ = (int8_t)(vrtx[i].x * 127); *out++ = (int8_t)(vrtx[i].y * 127); *out++ = (int8_t)(vrtx[i].z * 127); *out++ = (int8_t)(vrtx[i].w * 127); break; case 2: *((int16_t*)out) = (int16_t)(vrtx[i].x * 32767); out += 2; *((int16_t*)out) = (int16_t)(vrtx[i].y * 32767); out += 2; *((int16_t*)out) = (int16_t)(vrtx[i].z * 32767); out += 2; *((int16_t*)out) = (int16_t)(vrtx[i].w * 32767); out += 2; break; case 4: *((float*)out) = vrtx[i].x; out += 4; *((float*)out) = vrtx[i].y; out += 4; *((float*)out) = vrtx[i].z; out += 4; *((float*)out) = vrtx[i].w; out += 4; break; case 8: *((double*)out) = vrtx[i].x; out += 8; *((double*)out) = vrtx[i].y; out += 8; *((double*)out) = vrtx[i].z; out += 8; *((double*)out) = vrtx[i].w; out += 8; break; } idx = _m3d_cmapidx(cmap, numcmap, vrtx[i].color); switch(ci_s) { case 1: *out++ = (uint8_t)(idx); break; case 2: *((uint16_t*)out) = (uint16_t)(idx); out += 2; break; case 4: *((uint32_t*)out) = vrtx[i].color; out += 4; break; } out = _m3d_addidx(out, sk_s, numbone && numskin ? vrtx[i].skinid : -1U); } out = NULL; len += chunklen; } /* bones chunk */ if(numbone && bone && !(flags & M3D_EXP_NOBONE)) { i = 8 + bi_s + sk_s + numbone * (bi_s + si_s + 2*vi_s); chunklen = i + numskin * nb_s * (bi_s + 1); h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen); if(!h) goto memerr; memcpy((uint8_t*)h + len, "BONE", 4); length = (uint32_t*)((uint8_t*)h + len + 4); out = (uint8_t*)h + len + 8; out = _m3d_addidx(out, bi_s, numbone); out = _m3d_addidx(out, sk_s, numskin); for(i = 0; i < numbone; i++) { out = _m3d_addidx(out, bi_s, bone[i].parent); out = _m3d_addidx(out, si_s, _m3d_stridx(str, numstr, bone[i].name)); out = _m3d_addidx(out, vi_s, bone[i].pos); out = _m3d_addidx(out, vi_s, bone[i].ori); } if(numskin && skin && sk_s) { for(i = 0; i < numskin; i++) { memset(&weights, 0, nb_s); for(j = 0; j < (uint32_t)nb_s && skin[i].boneid[j] != (M3D_INDEX)-1U && skin[i].weight[j] > (M3D_FLOAT)0.0; j++) weights[j] = (uint8_t)(skin[i].weight[j] * 255); switch(nb_s) { case 1: weights[0] = 255; break; case 2: *((uint16_t*)out) = *((uint16_t*)&weights[0]); out += 2; break; case 4: *((uint32_t*)out) = *((uint32_t*)&weights[0]); out += 4; break; case 8: *((uint64_t*)out) = *((uint64_t*)&weights[0]); out += 8; break; } for(j = 0; j < (uint32_t)nb_s && skin[i].boneid[j] != (M3D_INDEX)-1U && skin[i].weight[j] > (M3D_FLOAT)0.0; j++) { out = _m3d_addidx(out, bi_s, skin[i].boneid[j]); *length += bi_s; } } } *length = (uint64_t)out - (uint64_t)((uint8_t*)h + len); out = NULL; len += *length; } /* materials */ if(nummtrl && !(flags & M3D_EXP_NOMATERIAL)) { for(j = 0; j < nummtrl; j++) { m = !mtrl ? &model->material[j] : mtrl[j]; chunklen = 12 + si_s + m->numprop * 5; h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen); if(!h) goto memerr; memcpy((uint8_t*)h + len, "MTRL", 4); length = (uint32_t*)((uint8_t*)h + len + 4); out = (uint8_t*)h + len + 8; out = _m3d_addidx(out, si_s, _m3d_stridx(str, numstr, m->name)); for(i = 0; i < m->numprop; i++) { if(m->prop[i].type >= 128) { if(m->prop[i].value.textureid >= model->numtexture || !model->texture[m->prop[i].value.textureid].name) continue; k = m3dpf_map; } else { for(k = 256, l = 0; l < sizeof(m3d_propertytypes)/sizeof(m3d_propertytypes[0]); l++) if(m->prop[i].type == m3d_propertytypes[l].id) { k = m3d_propertytypes[l].format; break; } } if(k == 256) continue; *out++ = m->prop[i].type; switch(k) { case m3dpf_color: if(!(flags & M3D_EXP_NOCMAP)) { idx = _m3d_cmapidx(cmap, numcmap, m->prop[i].value.color); switch(ci_s) { case 1: *out++ = (uint8_t)(idx); break; case 2: *((uint16_t*)out) = (uint16_t)(idx); out += 2; break; case 4: *((uint32_t*)out) = (uint32_t)(m->prop[i].value.color); out += 4; break; } } else out--; break; case m3dpf_uint8: *out++ = m->prop[i].value.num; break; case m3dpf_uint16: *((uint16_t*)out) = m->prop[i].value.num; out += 2; break; case m3dpf_uint32: *((uint32_t*)out) = m->prop[i].value.num; out += 4; break; case m3dpf_float: *((float*)out) = m->prop[i].value.fnum; out += 4; break; case m3dpf_map: idx = _m3d_stridx(str, numstr, model->texture[m->prop[i].value.textureid].name); out = _m3d_addidx(out, si_s, idx); break; } } *length = (uint64_t)out - (uint64_t)((uint8_t*)h + len); len += *length; out = NULL; } } /* mesh face */ if(model->numface && face && !(flags & M3D_EXP_NOFACE)) { chunklen = 8 + si_s + model->numface * (6 * vi_s + 3 * ti_s + si_s + 1); h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen); if(!h) goto memerr; memcpy((uint8_t*)h + len, "MESH", 4); length = (uint32_t*)((uint8_t*)h + len + 4); out = (uint8_t*)h + len + 8; last = (M3D_INDEX)-1U; for(i = 0; i < model->numface; i++) { if(!(flags & M3D_EXP_NOMATERIAL) && face[i].materialid != last) { last = face[i].materialid; if(last < nummtrl) { idx = _m3d_stridx(str, numstr, !mtrl ? model->material[last].name : mtrl[last]->name); if(idx) { *out++ = 0; out = _m3d_addidx(out, si_s, idx); } } } /* hardcoded triangles. */ k = (3 << 4) | (((flags & M3D_EXP_NOTXTCRD) || ti_s == 8 || (face[i].texcoord[0] == (M3D_INDEX)-1U && face[i].texcoord[1] == (M3D_INDEX)-1U && face[i].texcoord[2] == (M3D_INDEX)-1U)) ? 0 : 1) | (((flags & M3D_EXP_NONORMAL) || (face[i].normal[0] == (M3D_INDEX)-1U && face[i].normal[1] == (M3D_INDEX)-1U && face[i].normal[2] == (M3D_INDEX)-1U)) ? 0 : 2); *out++ = k; for(j = 0; j < 3; j++) { out = _m3d_addidx(out, vi_s, face[i].vertex[j]); if(k & 1) out = _m3d_addidx(out, ti_s, face[i].texcoord[j]); if(k & 2) out = _m3d_addidx(out, vi_s, face[i].normal[j]); } } *length = (uint64_t)out - (uint64_t)((uint8_t*)h + len); len += *length; out = NULL; } /* actions */ if(model->numaction && model->action && numactn && actn && numbone && bone && !(flags & M3D_EXP_NOACTION)) { l = 0; for(j = 0; j < model->numaction; j++) { a = &model->action[j]; chunklen = 14 + si_s + a->numframe * (4 + fi_s + maxt * (bi_s + 2 * vi_s)); h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen); if(!h) goto memerr; memcpy((uint8_t*)h + len, "ACTN", 4); length = (uint32_t*)((uint8_t*)h + len + 4); out = (uint8_t*)h + len + 8; out = _m3d_addidx(out, si_s, _m3d_stridx(str, numstr, a->name)); *((uint16_t*)out) = (uint16_t)(a->numframe); out += 2; *((uint32_t*)out) = (uint32_t)(a->durationmsec); out += 4; for(i = 0; i < a->numframe; i++) { *((uint32_t*)out) = (uint32_t)(a->frame[i].msec); out += 4; out = _m3d_addidx(out, fi_s, a->frame[i].numtransform); for(k = 0; k < a->frame[i].numtransform; k++) { out = _m3d_addidx(out, bi_s, a->frame[i].transform[k].boneid); out = _m3d_addidx(out, vi_s, actn[l++]); out = _m3d_addidx(out, vi_s, actn[l++]); } } *length = (uint64_t)out - (uint64_t)((uint8_t*)h + len); len += *length; out = NULL; } } /* inlined assets */ if(model->numinlined && model->inlined && (flags & M3D_EXP_INLINE)) { for(j = 0; j < model->numinlined; j++) { if(!model->inlined[j].name || !*model->inlined[j].name || !model->inlined[j].length) continue; chunklen = 8 + si_s + model->inlined[j].length; h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen); if(!h) goto memerr; memcpy((uint8_t*)h + len, "ASET", 4); *((uint32_t*)((uint8_t*)h + len + 4)) = chunklen; out = (uint8_t*)h + len + 8; out = _m3d_addidx(out, si_s, _m3d_stridx(str, numstr, model->inlined[j].name)); memcpy(out, model->inlined[j].data, model->inlined[j].length); out = NULL; len += chunklen; } } /* extra chunks */ if(model->numunknown && model->unknown && (flags & M3D_EXP_EXTRA)) { for(j = 0; j < model->numunknown; j++) { if(!model->unknown[j] || model->unknown[j]->length < 8) continue; chunklen = model->unknown[j]->length; h = (m3dhdr_t*)M3D_REALLOC(h, len + chunklen); if(!h) goto memerr; memcpy((uint8_t*)h + len, model->unknown[j], chunklen); len += chunklen; } } /* add end chunk */ h = (m3dhdr_t*)M3D_REALLOC(h, len + 4); if(!h) goto memerr; memcpy((uint8_t*)h + len, "OMD3", 4); len += 4; /* zlib compress */ if(!(flags & M3D_EXP_NOZLIB)) { z = stbi_zlib_compress((unsigned char *)h, len, (int*)&l, 9); if(z && l > 0) { len = l; M3D_FREE(h); h = (m3dhdr_t*)z; } } /* add file header at the begining */ len += 8; out = (unsigned char*)M3D_MALLOC(len); if(!out) goto memerr; memcpy(out, "3DMO", 4); *((uint32_t*)(out + 4)) = len; memcpy(out + 8, h, len - 8); } if(size) *size = out ? len : 0; if(face) M3D_FREE(face); if(cmap) M3D_FREE(cmap); if(tmap) M3D_FREE(tmap); if(mtrl) M3D_FREE(mtrl); if(vrtx) M3D_FREE(vrtx); if(bone) M3D_FREE(bone); if(skin) M3D_FREE(skin); if(actn) M3D_FREE(actn); if(str) M3D_FREE(str); if(h) M3D_FREE(h); return out; } #endif #endif #ifdef __cplusplus } #include #include #include /*** C++ wrapper class ***/ namespace M3D { #ifdef M3D_IMPLEMENTATION class Model { public: m3d_t *model; public: Model() { this->model = (m3d_t*)malloc(sizeof(m3d_t)); memset(this->model, 0, sizeof(m3d_t)); } Model(_unused const std::string &data, _unused m3dread_t ReadFileCB, _unused m3dfree_t FreeCB, _unused M3D::Model mtllib) { #ifndef M3D_NOIMPORTER this->model = m3d_load((unsigned char *)data.data(), ReadFileCB, FreeCB, mtllib.model); #else Model(); #endif } Model(_unused const std::vector data, _unused m3dread_t ReadFileCB, _unused m3dfree_t FreeCB, _unused M3D::Model mtllib) { #ifndef M3D_NOIMPORTER this->model = m3d_load((unsigned char *)&data[0], ReadFileCB, FreeCB, mtllib.model); #else Model(); #endif } ~Model() { m3d_free(this->model); } public: m3d_t *getCStruct() { return this->model; } std::string getName() { return std::string(this->model->name); } void setName(std::string name) { this->model->name = (char*)name.c_str(); } std::string getLicense() { return std::string(this->model->license); } void setLicense(std::string license) { this->model->license = (char*)license.c_str(); } std::string getAuthor() { return std::string(this->model->author); } void setAuthor(std::string author) { this->model->author = (char*)author.c_str(); } std::string getDescription() { return std::string(this->model->desc); } void setDescription(std::string desc) { this->model->desc = (char*)desc.c_str(); } float getScale() { return this->model->scale; } void setScale(float scale) { this->model->scale = scale; } std::vector getColorMap() { return this->model->cmap ? std::vector(this->model->cmap, this->model->cmap + this->model->numcmap) : std::vector(); } std::vector getTextureMap() { return this->model->tmap ? std::vector(this->model->tmap, this->model->tmap + this->model->numtmap) : std::vector(); } std::vector getTextures() { return this->model->texture ? std::vector(this->model->texture, this->model->texture + this->model->numtexture) : std::vector(); } std::string getTextureName(int idx) { return idx >= 0 && (unsigned int)idx < this->model->numtexture ? std::string(this->model->texture[idx].name) : nullptr; } std::vector getBones() { return this->model->bone ? std::vector(this->model->bone, this->model->bone + this->model->numbone) : std::vector(); } std::string getBoneName(int idx) { return idx >= 0 && (unsigned int)idx < this->model->numbone ? std::string(this->model->bone[idx].name) : nullptr; } std::vector getMaterials() { return this->model->material ? std::vector(this->model->material, this->model->material + this->model->nummaterial) : std::vector(); } std::string getMaterialName(int idx) { return idx >= 0 && (unsigned int)idx < this->model->nummaterial ? std::string(this->model->material[idx].name) : nullptr; } int getMaterialPropertyInt(int idx, int type) { if (idx < 0 || (unsigned int)idx >= this->model->nummaterial || type < 0 || type >= 127 || !this->model->material[idx].prop) return -1; for (int i = 0; i < this->model->material[idx].numprop; i++) { if (this->model->material[idx].prop[i].type == type) return this->model->material[idx].prop[i].value.num; } return -1; } uint32_t getMaterialPropertyColor(int idx, int type) { return this->getMaterialPropertyInt(idx, type); } float getMaterialPropertyFloat(int idx, int type) { if (idx < 0 || (unsigned int)idx >= this->model->nummaterial || type < 0 || type >= 127 || !this->model->material[idx].prop) return -1.0f; for (int i = 0; i < this->model->material[idx].numprop; i++) { if (this->model->material[idx].prop[i].type == type) return this->model->material[idx].prop[i].value.fnum; } return -1.0f; } m3dtx_t* getMaterialPropertyMap(int idx, int type) { if (idx < 0 || (unsigned int)idx >= this->model->nummaterial || type < 128 || type > 255 || !this->model->material[idx].prop) return nullptr; for (int i = 0; i < this->model->material[idx].numprop; i++) { if (this->model->material[idx].prop[i].type == type) return this->model->material[idx].prop[i].value.textureid < this->model->numtexture ? &this->model->texture[this->model->material[idx].prop[i].value.textureid] : nullptr; } return nullptr; } std::vector getVertices() { return this->model->vertex ? std::vector(this->model->vertex, this->model->vertex + this->model->numvertex) : std::vector(); } std::vector getFace() { return this->model->face ? std::vector(this->model->face, this->model->face + this->model->numface) : std::vector(); } std::vector getSkin() { return this->model->skin ? std::vector(this->model->skin, this->model->skin + this->model->numskin) : std::vector(); } std::vector getActions() { return this->model->action ? std::vector(this->model->action, this->model->action + this->model->numaction) : std::vector(); } std::string getActionName(int aidx) { return aidx >= 0 && (unsigned int)aidx < this->model->numaction ? std::string(this->model->action[aidx].name) : nullptr; } unsigned int getActionDuration(int aidx) { return aidx >= 0 && (unsigned int)aidx < this->model->numaction ? this->model->action[aidx].durationmsec : 0; } std::vector getActionFrames(int aidx) { return aidx >= 0 && (unsigned int)aidx < this->model->numaction ? std::vector(this->model->action[aidx].frame, this->model->action[aidx].frame + this->model->action[aidx].numframe) : std::vector(); } unsigned int getActionFrameTimestamp(int aidx, int fidx) { return aidx >= 0 && (unsigned int)aidx < this->model->numaction? (fidx >= 0 && (unsigned int)fidx < this->model->action[aidx].numframe ? this->model->action[aidx].frame[fidx].msec : 0) : 0; } std::vector getActionFrameTransforms(int aidx, int fidx) { return aidx >= 0 && (unsigned int)aidx < this->model->numaction ? ( fidx >= 0 && (unsigned int)fidx < this->model->action[aidx].numframe ? std::vector(this->model->action[aidx].frame[fidx].transform, this->model->action[aidx].frame[fidx].transform + this->model->action[aidx].frame[fidx].numtransform) : std::vector()) : std::vector(); } std::vector getActionFrame(int aidx, int fidx, std::vector skeleton) { m3dtr_t *pose = m3d_frame(this->model, (unsigned int)aidx, (unsigned int)fidx, skeleton.size() ? &skeleton[0] : nullptr); return std::vector(pose, pose + this->model->numbone); } std::vector getActionPose(int aidx, unsigned int msec) { m3db_t *pose = m3d_pose(this->model, (unsigned int)aidx, (unsigned int)msec); return std::vector(pose, pose + this->model->numbone); } std::vector getInlinedAssets() { return this->model->inlined ? std::vector(this->model->inlined, this->model->inlined + this->model->numinlined) : std::vector(); } std::vector> getUnknowns() { return this->model->unknown ? std::vector>(this->model->unknown, this->model->unknown + this->model->numunknown) : std::vector>(); } std::vector Save(_unused int quality, _unused int flags) { #ifdef M3D_EXPORTER unsigned int size; unsigned char *ptr = m3d_save(this->model, quality, flags, &size); return ptr && size ? std::vector(ptr, ptr + size) : std::vector(); #else return std::vector(); #endif } }; #else class Model { public: m3d_t *model; public: Model(const std::string &data, m3dread_t ReadFileCB, m3dfree_t FreeCB); Model(const std::vector data, m3dread_t ReadFileCB, m3dfree_t FreeCB); Model(); ~Model(); public: m3d_t *getCStruct(); std::string getName(); void setName(std::string name); std::string getLicense(); void setLicense(std::string license); std::string getAuthor(); void setAuthor(std::string author); std::string getDescription(); void setDescription(std::string desc); float getScale(); void setScale(float scale); std::vector getColorMap(); std::vector getTextureMap(); std::vector getTextures(); std::string getTextureName(int idx); std::vector getBones(); std::string getBoneName(int idx); std::vector getMaterials(); std::string getMaterialName(int idx); int getMaterialPropertyInt(int idx, int type); uint32_t getMaterialPropertyColor(int idx, int type); float getMaterialPropertyFloat(int idx, int type); m3dtx_t* getMaterialPropertyMap(int idx, int type); std::vector getVertices(); std::vector getFace(); std::vector getSkin(); std::vector getActions(); std::string getActionName(int aidx); unsigned int getActionDuration(int aidx); std::vector getActionFrames(int aidx); unsigned int getActionFrameTimestamp(int aidx, int fidx); std::vector getActionFrameTransforms(int aidx, int fidx); std::vector getActionFrame(int aidx, int fidx, std::vector skeleton); std::vector getActionPose(int aidx, unsigned int msec); std::vector getInlinedAssets(); std::vector> getUnknowns(); std::vector Save(int quality, int flags); }; #endif /* impl */ } #endif /* __cplusplus */ #endif