/* --------------------------------------------------------------------------- Open Asset Import Library (ASSIMP) --------------------------------------------------------------------------- Copyright (c) 2006-2008, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file Implementation of the ASE importer class */ #include "ASELoader.h" #include "3DSSpatialSort.h" #include "MaterialSystem.h" #include "../include/IOStream.h" #include "../include/IOSystem.h" #include "../include/aiMesh.h" #include "../include/aiScene.h" #include "../include/aiAssert.h" #include using namespace Assimp; using namespace Assimp::ASE; #define LOGOUT_WARN(x) // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer ASEImporter::ASEImporter() { } // ------------------------------------------------------------------------------------------------ // Destructor, private as well ASEImporter::~ASEImporter() { } // ------------------------------------------------------------------------------------------------ // Returns whether the class can handle the format of the given file. bool ASEImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler) const { // simple check of file extension is enough for the moment std::string::size_type pos = pFile.find_last_of('.'); // no file extension - can't read if( pos == std::string::npos) return false; std::string extension = pFile.substr( pos); if (extension.length() < 4)return false; if (extension[0] != '.')return false; if (extension[1] != 'a' && extension[1] != 'A')return false; if (extension[2] != 's' && extension[2] != 'S')return false; // NOTE: Sometimes the extension .ASK is also used if (extension[3] != 'e' && extension[3] != 'E' && extension[3] != 'k' && extension[3] != 'K')return false; return true; } // ------------------------------------------------------------------------------------------------ // Imports the given file into the given scene structure. void ASEImporter::InternReadFile( const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler) { boost::scoped_ptr file( pIOHandler->Open( pFile)); // Check whether we can read from the file if( file.get() == NULL) { throw new ImportErrorException( "Failed to open ASE file " + pFile + "."); } size_t fileSize = file->FileSize(); // allocate storage and copy the contents of the file to a memory buffer // (terminate it with zero) this->mBuffer = new unsigned char[fileSize+1]; file->Read( (void*)mBuffer, 1, fileSize); this->mBuffer[fileSize] = '\0'; // construct an ASE parser and parse the file this->mParser = new ASE::Parser((const char*)this->mBuffer); this->mParser->Parse(); // process all meshes for (std::vector::iterator i = this->mParser->m_vMeshes.begin(); i != this->mParser->m_vMeshes.end();++i) { // need to generate proper vertex normals if necessary this->GenerateNormals(*i); // now we need to create proper meshes from the import // we need to split them by materials, build valid vertex/face lists ... this->BuildUniqueRepresentation(*i); this->ConvertMeshes(*i,pScene); } // buil final material indices (remove submaterials and make the final list) this->BuildMaterialIndices(pScene); // build the final node graph this->BuildNodes(pScene); // delete the ASE parser delete this->mParser; this->mParser = NULL; return; } // ------------------------------------------------------------------------------------------------ void ASEImporter::BuildNodes(aiScene* pcScene) { ai_assert(NULL != pcScene); pcScene->mRootNode = new aiNode(); pcScene->mRootNode->mNumMeshes = 0; pcScene->mRootNode->mMeshes = 0; ai_assert(4 <= AI_MAX_NUMBER_OF_COLOR_SETS); std::vector > > stack; stack.reserve(pcScene->mNumMeshes); for (unsigned int i = 0; i < pcScene->mNumMeshes;++i) { // get the transformation matrix of the node aiMatrix4x4* pmTransform = (aiMatrix4x4*)pcScene->mMeshes[i]->mColors[2]; // search for an identical matrix in our list for (std::vector > >::iterator a = stack.begin(); a != stack.end();++a) { if ((*a).first == *pmTransform) { (*a).second.push_back(i); pmTransform->a1 = std::numeric_limits::quiet_NaN(); break; } } if (is_not_qnan(pmTransform->a1)) { // add a new entry ... stack.push_back(std::pair >( *pmTransform,std::list())); stack.back().second.push_back(i); } // delete the matrix delete pmTransform; pcScene->mMeshes[i]->mColors[2] = NULL; } // allocate enough space for the child nodes pcScene->mRootNode->mNumChildren = stack.size(); pcScene->mRootNode->mChildren = new aiNode*[stack.size()]; // now build all nodes for (std::vector > >::iterator a = stack.begin(); a != stack.end();++a) { aiNode* pcNode = new aiNode(); pcNode->mNumMeshes = (*a).second.size(); pcNode->mMeshes = new unsigned int[pcNode->mNumMeshes]; for (std::list::const_iterator i = (*a).second.begin(); i != (*a).second.end();++i) { *pcNode->mMeshes++ = *i; } pcNode->mMeshes -= pcNode->mNumMeshes; pcNode->mTransformation = (*a).first; *pcScene->mRootNode->mChildren++ = pcNode; } pcScene->mRootNode->mChildren -= stack.size(); return; } // ------------------------------------------------------------------------------------------------ void ASEImporter::BuildUniqueRepresentation(ASE::Mesh& mesh) { // allocate output storage std::vector mPositions; std::vector amTexCoords[AI_MAX_NUMBER_OF_TEXTURECOORDS]; std::vector mVertexColors; std::vector mNormals; unsigned int iSize = mesh.mFaces.size() * 3; mPositions.resize(iSize); // optional texture coordinates for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS;++i) { if (!mesh.amTexCoords[i].empty()) { amTexCoords[i].resize(iSize); } } // optional vertex colors if (!mesh.mVertexColors.empty()) { mVertexColors.resize(iSize); } // optional vertex normals (vertex normals can simply be copied) if (!mesh.mNormals.empty()) { mNormals.resize(iSize); } // iterate through all faces in the mesh unsigned int iCurrent = 0; for (std::vector::iterator i = mesh.mFaces.begin(); i != mesh.mFaces.end();++i) { for (unsigned int n = 0; n < 3;++n,++iCurrent) { mPositions[iCurrent] = mesh.mPositions[(*i).mIndices[n]]; // add texture coordinates for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c) { if (!mesh.amTexCoords[c].empty()) { amTexCoords[c][iCurrent] = mesh.amTexCoords[c][(*i).amUVIndices[c][n]]; } } // add vertex colors if (!mesh.mVertexColors.empty()) { mVertexColors[iCurrent] = mesh.mVertexColors[(*i).mColorIndices[n]]; } // add normal vectors if (!mesh.mNormals.empty()) { mNormals[iCurrent] = mesh.mNormals[(*i).mIndices[n]]; } // assign a new valid index to the face (*i).mIndices[n] = iCurrent; } } // replace the old arrays mesh.mNormals = mNormals; mesh.mPositions = mPositions; mesh.mVertexColors = mVertexColors; for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c) mesh.amTexCoords[c] = amTexCoords[c]; // now need to transform all vertices with the inverse of their // transformation matrix ... aiMatrix4x4 mInverse = mesh.mTransform; mInverse.Inverse(); for (std::vector::iterator i = mesh.mPositions.begin(); i != mesh.mPositions.end();++i) { (*i) = mInverse * (*i); } return; } // ------------------------------------------------------------------------------------------------ void ASEImporter::ConvertMaterial(ASE::Material& mat) { // allocate the output material mat.pcInstance = new MaterialHelper(); // At first add the base ambient color of the // scene to the material mat.mAmbient.r += this->mParser->m_clrAmbient.r; mat.mAmbient.g += this->mParser->m_clrAmbient.g; mat.mAmbient.b += this->mParser->m_clrAmbient.b; aiString name; name.Set( mat.mName); mat.pcInstance->AddProperty( &name, AI_MATKEY_NAME); // material colors mat.pcInstance->AddProperty( &mat.mAmbient, 1, AI_MATKEY_COLOR_AMBIENT); mat.pcInstance->AddProperty( &mat.mDiffuse, 1, AI_MATKEY_COLOR_DIFFUSE); mat.pcInstance->AddProperty( &mat.mSpecular, 1, AI_MATKEY_COLOR_SPECULAR); mat.pcInstance->AddProperty( &mat.mSpecularExponent, 1, AI_MATKEY_SHININESS); mat.pcInstance->AddProperty( &mat.mEmissive, 1, AI_MATKEY_COLOR_EMISSIVE); // opacity mat.pcInstance->AddProperty( &mat.mTransparency,1,AI_MATKEY_OPACITY); // shading mode aiShadingMode eShading = aiShadingMode_NoShading; switch (mat.mShading) { case Dot3DS::Dot3DSFile::Flat: eShading = aiShadingMode_Flat; break; case Dot3DS::Dot3DSFile::Phong : eShading = aiShadingMode_Phong; break; // I don't know what "Wire" shading should be, // assume it is simple lambertian diffuse (L dot N) shading case Dot3DS::Dot3DSFile::Wire: case Dot3DS::Dot3DSFile::Gouraud: eShading = aiShadingMode_Gouraud; break; case Dot3DS::Dot3DSFile::Metal : eShading = aiShadingMode_CookTorrance; break; } mat.pcInstance->AddProperty( (int*)&eShading,1,AI_MATKEY_SHADING_MODEL); if (Dot3DS::Dot3DSFile::Wire == mat.mShading) { // set the wireframe flag unsigned int iWire = 1; mat.pcInstance->AddProperty( (int*)&iWire,1,AI_MATKEY_ENABLE_WIREFRAME); } // texture, if there is one if( mat.sTexDiffuse.mMapName.length() > 0) { aiString tex; tex.Set( mat.sTexDiffuse.mMapName); mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_DIFFUSE(0)); if (is_not_qnan(mat.sTexDiffuse.mTextureBlend)) mat.pcInstance->AddProperty( &mat.sTexDiffuse.mTextureBlend, 1, AI_MATKEY_TEXBLEND_DIFFUSE(0)); } if( mat.sTexSpecular.mMapName.length() > 0) { aiString tex; tex.Set( mat.sTexSpecular.mMapName); mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_SPECULAR(0)); if (is_not_qnan(mat.sTexSpecular.mTextureBlend)) mat.pcInstance->AddProperty( &mat.sTexSpecular.mTextureBlend, 1, AI_MATKEY_TEXBLEND_SPECULAR(0)); } if( mat.sTexOpacity.mMapName.length() > 0) { aiString tex; tex.Set( mat.sTexOpacity.mMapName); mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_OPACITY(0)); if (is_not_qnan(mat.sTexOpacity.mTextureBlend)) mat.pcInstance->AddProperty( &mat.sTexOpacity.mTextureBlend, 1, AI_MATKEY_TEXBLEND_OPACITY(0)); } if( mat.sTexEmissive.mMapName.length() > 0) { aiString tex; tex.Set( mat.sTexEmissive.mMapName); mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_EMISSIVE(0)); if (is_not_qnan(mat.sTexEmissive.mTextureBlend)) mat.pcInstance->AddProperty( &mat.sTexEmissive.mTextureBlend, 1, AI_MATKEY_TEXBLEND_EMISSIVE(0)); } if( mat.sTexAmbient.mMapName.length() > 0) { aiString tex; tex.Set( mat.sTexAmbient.mMapName); mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_AMBIENT(0)); if (is_not_qnan(mat.sTexAmbient.mTextureBlend)) mat.pcInstance->AddProperty( &mat.sTexAmbient.mTextureBlend, 1, AI_MATKEY_TEXBLEND_AMBIENT(0)); } if( mat.sTexBump.mMapName.length() > 0) { aiString tex; tex.Set( mat.sTexBump.mMapName); mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_HEIGHT(0)); if (is_not_qnan(mat.sTexBump.mTextureBlend)) mat.pcInstance->AddProperty( &mat.sTexBump.mTextureBlend, 1, AI_MATKEY_TEXBLEND_HEIGHT(0)); } if( mat.sTexShininess.mMapName.length() > 0) { aiString tex; tex.Set( mat.sTexShininess.mMapName); mat.pcInstance->AddProperty( &tex, AI_MATKEY_TEXTURE_SHININESS(0)); if (is_not_qnan(mat.sTexShininess.mTextureBlend)) mat.pcInstance->AddProperty( &mat.sTexBump.mTextureBlend, 1, AI_MATKEY_TEXBLEND_SHININESS(0)); } // store the name of the material itself, too if( mat.mName.length() > 0) { aiString tex; tex.Set( mat.mName); mat.pcInstance->AddProperty( &tex, AI_MATKEY_NAME); } return; } // ------------------------------------------------------------------------------------------------ void ASEImporter::ConvertMeshes(ASE::Mesh& mesh, aiScene* pcScene) { ai_assert(NULL != pcScene); // validate the material index of the mesh if (mesh.iMaterialIndex >= this->mParser->m_vMaterials.size()) { mesh.iMaterialIndex = this->mParser->m_vMaterials.size()-1; LOGOUT_WARN("Material index is out of range"); } // List of all output meshes std::vector avOutMeshes; // if the material the mesh is assigned to is consisting of submeshes // we'll need to split it ... Quak. if (!this->mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials.empty()) { std::vector vSubMaterials = this->mParser-> m_vMaterials[mesh.iMaterialIndex].avSubMaterials; std::vector* aiSplit = new std::vector[ vSubMaterials.size()]; // build a list of all faces per submaterial unsigned int iNum = 0; for (unsigned int i = 0; i < mesh.mFaces.size();++i) { // check range if (mesh.mFaces[i].iMaterial >= vSubMaterials.size()) { LOGOUT_WARN("Submaterial index is out of range"); // use the last material instead aiSplit[vSubMaterials.size()-1].push_back(i); } else aiSplit[mesh.mFaces[i].iMaterial].push_back(i); } // now generate submeshes for (unsigned int p = 0; p < vSubMaterials.size();++p) { if (aiSplit[p].size() != 0) { aiMesh* p_pcOut = new aiMesh(); // let the sub material index p_pcOut->mMaterialIndex = p; // we will need this material this->mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials[p].bNeed = true; // store the real index here ... color channel 3 p_pcOut->mColors[3] = (aiColor4D*)(uintptr_t)mesh.iMaterialIndex; // store the real transformation matrix in color channel 2 p_pcOut->mColors[2] = (aiColor4D*) new aiMatrix4x4(mesh.mTransform); avOutMeshes.push_back(p_pcOut); // convert vertices p_pcOut->mNumVertices = aiSplit[p].size()*3; p_pcOut->mNumFaces = aiSplit[p].size(); // allocate enough storage for faces p_pcOut->mFaces = new aiFace[p_pcOut->mNumFaces]; if (p_pcOut->mNumVertices != 0) { p_pcOut->mVertices = new aiVector3D[p_pcOut->mNumVertices]; p_pcOut->mNormals = new aiVector3D[p_pcOut->mNumVertices]; unsigned int iBase = 0; for (unsigned int q = 0; q < aiSplit[p].size();++q) { unsigned int iIndex = aiSplit[p][q]; p_pcOut->mFaces[q].mIndices = new unsigned int[3]; p_pcOut->mFaces[q].mNumIndices = 3; for (unsigned int t = 0; t < 3;++t) { p_pcOut->mVertices[iBase] = mesh.mPositions[mesh.mFaces[iIndex].mIndices[t]]; p_pcOut->mNormals[iBase++] = mesh.mNormals[mesh.mFaces[iIndex].mIndices[t]]; } p_pcOut->mFaces[q].mIndices[0] = iBase-2; p_pcOut->mFaces[q].mIndices[1] = iBase-1; p_pcOut->mFaces[q].mIndices[2] = iBase; } } // convert texture coordinates for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c) { if (!mesh.amTexCoords[c].empty()) { p_pcOut->mTextureCoords[c] = new aiVector3D[p_pcOut->mNumVertices]; unsigned int iBase = 0; for (unsigned int q = 0; q < aiSplit[p].size();++q) { unsigned int iIndex = aiSplit[p][q]; for (unsigned int t = 0; t < 3;++t) { p_pcOut->mTextureCoords[c][iBase++] = mesh.amTexCoords[c][mesh.mFaces[iIndex].mIndices[t]]; } } // setup the number of valid vertex components p_pcOut->mNumUVComponents[c] = mesh.mNumUVComponents[c]; } } // convert vertex colors (only one set supported) if (!mesh.mVertexColors.empty()) { p_pcOut->mColors[0] = new aiColor4D[p_pcOut->mNumVertices]; unsigned int iBase = 0; for (unsigned int q = 0; q < aiSplit[p].size();++q) { unsigned int iIndex = aiSplit[p][q]; for (unsigned int t = 0; t < 3;++t) { p_pcOut->mColors[0][iBase++] = mesh.mVertexColors[mesh.mFaces[iIndex].mIndices[t]]; } } } } } // delete storage delete[] aiSplit; } else { // otherwise we can simply copy the data to one output mesh aiMesh* p_pcOut = new aiMesh(); // set an empty sub material index p_pcOut->mMaterialIndex = ASE::Face::DEFAULT_MATINDEX; this->mParser->m_vMaterials[mesh.iMaterialIndex].bNeed = true; // store the real index here ... in color channel 3 p_pcOut->mColors[3] = (aiColor4D*)(uintptr_t)mesh.iMaterialIndex; // store the transformation matrix in color channel 2 p_pcOut->mColors[2] = (aiColor4D*) new aiMatrix4x4(mesh.mTransform); avOutMeshes.push_back(p_pcOut); // convert vertices p_pcOut->mNumVertices = mesh.mPositions.size(); p_pcOut->mNumFaces = mesh.mFaces.size(); // allocate enough storage for faces p_pcOut->mFaces = new aiFace[p_pcOut->mNumFaces]; // copy vertices p_pcOut->mVertices = new aiVector3D[mesh.mPositions.size()]; memcpy(p_pcOut->mVertices,&mesh.mPositions[0], mesh.mPositions.size() * sizeof(aiVector3D)); // copy normals p_pcOut->mNormals = new aiVector3D[mesh.mNormals.size()]; memcpy(p_pcOut->mNormals,&mesh.mNormals[0], mesh.mNormals.size() * sizeof(aiVector3D)); // copy texture coordinates for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c) { if (!mesh.amTexCoords[c].empty()) { p_pcOut->mTextureCoords[c] = new aiVector3D[mesh.amTexCoords[c].size()]; memcpy(p_pcOut->mTextureCoords[c],&mesh.amTexCoords[c][0], mesh.amTexCoords[c].size() * sizeof(aiVector3D)); // setup the number of valid vertex components p_pcOut->mNumUVComponents[c] = mesh.mNumUVComponents[c]; } } // copy vertex colors if (!mesh.mVertexColors.empty()) { p_pcOut->mColors[0] = new aiColor4D[mesh.mVertexColors.size()]; memcpy(p_pcOut->mColors[0],&mesh.mVertexColors[0], mesh.mVertexColors.size() * sizeof(aiColor4D)); } // copy faces for (unsigned int iFace = 0; iFace < p_pcOut->mNumFaces;++iFace) { p_pcOut->mFaces[iFace].mNumIndices = 3; p_pcOut->mFaces[iFace].mIndices = new unsigned int[3]; // copy indices p_pcOut->mFaces[iFace].mIndices[0] = mesh.mFaces[iFace].mIndices[0]; p_pcOut->mFaces[iFace].mIndices[1] = mesh.mFaces[iFace].mIndices[1]; p_pcOut->mFaces[iFace].mIndices[2] = mesh.mFaces[iFace].mIndices[2]; } } // now build the output mesh list pcScene->mNumMeshes = avOutMeshes.size(); pcScene->mMeshes = new aiMesh*[pcScene->mNumMeshes]; for (unsigned int i = 0; i < pcScene->mNumMeshes;++i) pcScene->mMeshes[i] = avOutMeshes[i]; return; } // ------------------------------------------------------------------------------------------------ void ASEImporter::BuildMaterialIndices(aiScene* pcScene) { ai_assert(NULL != pcScene); // iterate through all materials and check whether we need them unsigned int iNum = 0; for (unsigned int iMat = 0; iMat < this->mParser->m_vMaterials.size();++iMat) { if (this->mParser->m_vMaterials[iMat].bNeed) { // convert it to the aiMaterial layout this->ConvertMaterial(this->mParser->m_vMaterials[iMat]); iNum++; } for (unsigned int iSubMat = 0; iSubMat < this->mParser->m_vMaterials[ iMat].avSubMaterials.size();++iSubMat) { if (this->mParser->m_vMaterials[iMat].avSubMaterials[iSubMat].bNeed) { // convert it to the aiMaterial layout this->ConvertMaterial(this->mParser->m_vMaterials[iMat].avSubMaterials[iSubMat]); iNum++; } } } // allocate the output material array pcScene->mNumMaterials = iNum; pcScene->mMaterials = new aiMaterial*[pcScene->mNumMaterials]; iNum = 0; for (unsigned int iMat = 0; iMat < this->mParser->m_vMaterials.size();++iMat) { if (this->mParser->m_vMaterials[iMat].bNeed) { ai_assert(NULL != this->mParser->m_vMaterials[iMat].pcInstance); pcScene->mMaterials[iNum] = this->mParser->m_vMaterials[iMat].pcInstance; // iterate through all meshes and search for one which is using // this top-level material index for (unsigned int iMesh = 0; iMesh < pcScene->mNumMeshes;++iMesh) { if (ASE::Face::DEFAULT_MATINDEX == pcScene->mMeshes[iMesh]->mMaterialIndex && iMat == (uintptr_t)pcScene->mMeshes[iMesh]->mColors[3]) { pcScene->mMeshes[iMesh]->mMaterialIndex = iNum; pcScene->mMeshes[iMesh]->mColors[3] = NULL; } } iNum++; } for (unsigned int iSubMat = 0; iSubMat < this->mParser->m_vMaterials[iMat].avSubMaterials.size();++iSubMat) { if (this->mParser->m_vMaterials[iMat].avSubMaterials[iSubMat].bNeed) { ai_assert(NULL != this->mParser->m_vMaterials[iMat].avSubMaterials[iSubMat].pcInstance); pcScene->mMaterials[iNum] = this->mParser->m_vMaterials[iMat]. avSubMaterials[iSubMat].pcInstance; // iterate through all meshes and search for one which is using // this sub-level material index for (unsigned int iMesh = 0; iMesh < pcScene->mNumMeshes;++iMesh) { if (iSubMat == pcScene->mMeshes[iMesh]->mMaterialIndex && iMat == (uintptr_t)pcScene->mMeshes[iMesh]->mColors[3]) { pcScene->mMeshes[iMesh]->mMaterialIndex = iNum; pcScene->mMeshes[iMesh]->mColors[3] = NULL; } } iNum++; } } } // finished! return; } // ------------------------------------------------------------------------------------------------ // Generate normal vectors basing on smoothing groups void ASEImporter::GenerateNormals(ASE::Mesh& mesh) { if (mesh.mNormals.empty()) { // need to calculate normals ... // TODO: Find a way to merge this with the code in 3DSGenNormals.cpp mesh.mNormals.resize(mesh.mPositions.size(),aiVector3D()); for( unsigned int a = 0; a < mesh.mFaces.size(); a++) { const ASE::Face& face = mesh.mFaces[a]; // assume it is a triangle aiVector3D* pV1 = &mesh.mPositions[face.i1]; aiVector3D* pV2 = &mesh.mPositions[face.i2]; aiVector3D* pV3 = &mesh.mPositions[face.i3]; aiVector3D pDelta1 = *pV2 - *pV1; aiVector3D pDelta2 = *pV3 - *pV1; aiVector3D vNor = pDelta1 ^ pDelta2; mesh.mNormals[face.i1] = vNor; mesh.mNormals[face.i2] = vNor; mesh.mNormals[face.i3] = vNor; } // calculate the position bounds so we have a reliable epsilon to // check position differences against // @Schrompf: This is the 7th time this snippet is repeated! aiVector3D minVec( 1e10f, 1e10f, 1e10f), maxVec( -1e10f, -1e10f, -1e10f); for( unsigned int a = 0; a < mesh.mPositions.size(); a++) { minVec.x = std::min( minVec.x, mesh.mPositions[a].x); minVec.y = std::min( minVec.y, mesh.mPositions[a].y); minVec.z = std::min( minVec.z, mesh.mPositions[a].z); maxVec.x = std::max( maxVec.x, mesh.mPositions[a].x); maxVec.y = std::max( maxVec.y, mesh.mPositions[a].y); maxVec.z = std::max( maxVec.z, mesh.mPositions[a].z); } const float posEpsilon = (maxVec - minVec).Length() * 1e-5f; std::vector avNormals; avNormals.resize(mesh.mNormals.size()); // now generate the spatial sort tree D3DSSpatialSorter sSort; for( std::vector::iterator i = mesh.mFaces.begin(); i != mesh.mFaces.end();++i){sSort.AddFace(&(*i),mesh.mPositions);} sSort.Prepare(); for( std::vector::iterator i = mesh.mFaces.begin(); i != mesh.mFaces.end();++i) { std::vector poResult; for (unsigned int c = 0; c < 3;++c) { sSort.FindPositions(mesh.mPositions[(*i).mIndices[c]],(*i).iSmoothGroup, posEpsilon,poResult); aiVector3D vNormals; float fDiv = 0.0f; for (std::vector::const_iterator a = poResult.begin(); a != poResult.end();++a) { vNormals += mesh.mNormals[(*a)]; fDiv += 1.0f; } vNormals.x /= fDiv;vNormals.y /= fDiv;vNormals.z /= fDiv; vNormals.Normalize(); avNormals[(*i).mIndices[c]] = vNormals; poResult.clear(); } } mesh.mNormals = avNormals; } return; }