/* Open Asset Import Library (ASSIMP) ---------------------------------------------------------------------- Copyright (c) 2006-2008, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------- */ /** Implementation of the OptimizeGraphProcess post-processing step*/ #include "AssimpPCH.h" #include "OptimizeGraphProcess.h" #include "Hash.h" using namespace Assimp; // MSB for type unsigned int #define AI_OG_UINT_MSB (1u<<((sizeof(unsigned int)*8u)-1u)) #define AI_OG_UINT_MSB_2 (AI_OG_UINT_MSB>>1) // check whether a node/a mesh is locked #define AI_OG_IS_NODE_LOCKED(nd) (nd->mNumChildren & AI_OG_UINT_MSB) #define AI_OG_IS_MESH_LOCKED(ms) (ms->mNumBones & AI_OG_UINT_MSB) // check whether a node has locked meshes in its list #define AI_OG_HAS_NODE_LOCKED_MESHES(nd) (nd->mNumChildren & AI_OG_UINT_MSB_2) // unmask the two upper bits of an unsigned int #define AI_OG_UNMASK(p) (p & (~(AI_OG_UINT_MSB|AI_OG_UINT_MSB_2))) // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer OptimizeGraphProcess::OptimizeGraphProcess() { configMinNumFaces = AI_OG_MIN_NUM_FACES; configJoinInequalTransforms = AI_OG_JOIN_INEQUAL_TRANSFORMS; } // ------------------------------------------------------------------------------------------------ // Destructor, private as well OptimizeGraphProcess::~OptimizeGraphProcess() { // nothing to do here } // ------------------------------------------------------------------------------------------------ // Returns whether the processing step is present in the given flag field. bool OptimizeGraphProcess::IsActive( unsigned int pFlags) const { return (pFlags & aiProcess_OptimizeGraph) != 0; } // ------------------------------------------------------------------------------------------------ // Setup properties of the step void OptimizeGraphProcess::SetupProperties(const Importer* pImp) { // join nods with inequal transformations? configJoinInequalTransforms = pImp->GetPropertyInteger(AI_CONFIG_PP_OG_JOIN_INEQUAL_TRANSFORMS, AI_OG_JOIN_INEQUAL_TRANSFORMS) != 0 ? true : false; // minimum face number per node configMinNumFaces = pImp->GetPropertyInteger(AI_CONFIG_PP_OG_MIN_NUM_FACES, AI_OG_MIN_NUM_FACES); } // ------------------------------------------------------------------------------------------------ void OptimizeGraphProcess::FindLockedNodes(aiNode* node) { ai_assert(NULL != node); for (unsigned int i = 0; i < pScene->mNumAnimations;++i) { aiAnimation* pani = pScene->mAnimations[i]; for (unsigned int a = 0; a < pani->mNumChannels;++a) { aiNodeAnim* pba = pani->mChannels[a]; if (pba->mNodeName == node->mName) { // this node is locked node->mNumChildren |= AI_OG_UINT_MSB; } } } // call all children for (unsigned int i = 0; i < node->mNumChildren;++i) FindLockedNodes(node->mChildren[i]); } // ------------------------------------------------------------------------------------------------ void OptimizeGraphProcess::FindLockedMeshes(aiNode* node, MeshRefCount* pRefCount) { ai_assert(NULL != node && NULL != pRefCount); for (unsigned int i = 0;i < node->mNumMeshes;++i) { unsigned int m = node->mMeshes[i]; if (pRefCount[m].first) { // we have already one reference - lock the first node // that had a referenced to this mesh too if it has only // one mesh assigned. If there are multiple meshes, // the others could still be used for optimizations. if (pRefCount[m].second) { pRefCount[m].second->mNumChildren |= (pRefCount[m].second->mNumMeshes <= 1 ? AI_OG_UINT_MSB : AI_OG_UINT_MSB_2); pRefCount[m].second = NULL; } pScene->mMeshes[m]->mNumBones |= AI_OG_UINT_MSB; // lock this node node->mNumChildren |= (node->mNumMeshes <= 1 ? AI_OG_UINT_MSB : AI_OG_UINT_MSB_2); } else pRefCount[m].second = node; ++pRefCount[m].first; } // call all children for (unsigned int i = 0; i < node->mNumChildren;++i) FindLockedMeshes(node->mChildren[i],pRefCount); } // ------------------------------------------------------------------------------------------------ void OptimizeGraphProcess::FindLockedMeshes(aiNode* node) { ai_assert(NULL != node); MeshRefCount* pRefCount = new MeshRefCount[pScene->mNumMeshes]; for (unsigned int i = 0; i < pScene->mNumMeshes;++i) pRefCount[i] = MeshRefCount(); // execute the algorithm FindLockedMeshes(node,pRefCount); delete[] pRefCount; } // ------------------------------------------------------------------------------------------------ void OptimizeGraphProcess::UnlockNodes(aiNode* node) { ai_assert(NULL != node); node->mNumChildren &= ~(AI_OG_UINT_MSB|AI_OG_UINT_MSB_2); // call all children for (unsigned int i = 0; i < node->mNumChildren;++i) UnlockNodes(node->mChildren[i]); } // ------------------------------------------------------------------------------------------------ void OptimizeGraphProcess::UnlockMeshes() { for (unsigned int i = 0; i < pScene->mNumMeshes;++i) pScene->mMeshes[i]->mNumBones &= ~AI_OG_UINT_MSB; } // ------------------------------------------------------------------------------------------------ void OptimizeGraphProcess::ComputeMeshHashes() { mMeshHashes.resize(pScene->mNumMeshes); for (unsigned int i = 0; i < pScene->mNumMeshes;++i) { unsigned int iRet = 0; aiMesh* pcMesh = pScene->mMeshes[i]; // normals if (pcMesh->HasNormals())iRet |= 0x1; // tangents and bitangents if (pcMesh->HasTangentsAndBitangents())iRet |= 0x2; // texture coordinates unsigned int p = 0; ai_assert(4 >= AI_MAX_NUMBER_OF_TEXTURECOORDS); while (pcMesh->HasTextureCoords(p)) { iRet |= (0x100 << p++); // NOTE: meshes with numUVComp != 3 && != 2 aren't handled correctly here ai_assert(pcMesh->mNumUVComponents[p] == 3 || pcMesh->mNumUVComponents[p] == 2); if (3 == pcMesh->mNumUVComponents[p]) iRet |= (0x1000 << p++); } // vertex colors p = 0; ai_assert(4 >= AI_MAX_NUMBER_OF_COLOR_SETS); while (pcMesh->HasVertexColors(p))iRet |= (0x10000 << p++); mMeshHashes[i] = iRet; // material index -store it in the upper 1 1/2 bytes, so // are able to encode 2^12 material indices. iRet |= (pcMesh->mMaterialIndex << 20u); } } // ------------------------------------------------------------------------------------------------ inline unsigned int OptimizeGraphProcess::BinarySearch(NodeIndexList& sortedArray, unsigned int min, unsigned int& index, unsigned int iStart) { unsigned int first = iStart,last = (unsigned int)sortedArray.size()-1; while (first <= last) { unsigned int mid = (first + last) / 2; unsigned int id = sortedArray[mid].second; if (min > id) first = mid + 1; else if (min <= id) { last = mid - 1; if (!mid || min > sortedArray[last].second) { index = sortedArray[last].first; return mid; } } } return (unsigned int)sortedArray.size(); } // ------------------------------------------------------------------------------------------------ void OptimizeGraphProcess::BuildUniqueBoneList( std::vector::const_iterator it, std::vector::const_iterator end, std::list& asBones) { unsigned int iOffset = 0; for (; it != end;++it) { for (unsigned int l = 0; l < (*it)->mNumBones;++l) { aiBone* p = (*it)->mBones[l]; uint32_t itml = SuperFastHash(p->mName.data,(unsigned int)p->mName.length); std::list::iterator it2 = asBones.begin(); std::list::iterator end2 = asBones.end(); for (;it2 != end2;++it2) { if ((*it2).first == itml) { (*it2).pSrcBones.push_back(BoneSrcIndex(p,iOffset)); break; } } if (end2 == it2) { // need to begin a new bone entry asBones.push_back(BoneWithHash()); BoneWithHash& btz = asBones.back(); // setup members btz.first = itml; btz.second = &p->mName; btz.pSrcBones.push_back(BoneSrcIndex(p,iOffset)); } } iOffset += (*it)->mNumVertices; } } // ------------------------------------------------------------------------------------------------ void OptimizeGraphProcess::JoinBones( std::vector::const_iterator it, std::vector::const_iterator end, aiMesh* out) { ai_assert(NULL != out); // find we need to build an unique list of all bones. // we work with hashes to make the comparisons MUCH faster, // at least if we have many bones. std::list asBones; BuildUniqueBoneList(it,end,asBones); // now create the output bones out->mBones = new aiBone*[asBones.size()]; for (std::list::const_iterator it = asBones.begin(), end = asBones.end(); it != end;++it) { aiBone* pc = out->mBones[out->mNumBones++] = new aiBone(); pc->mName = aiString( *((*it).second )); // get an itrator to the end of the list std::vector< BoneSrcIndex >::const_iterator wend = (*it).pSrcBones.end(); // loop through all bones to be joined for this bone for (std::vector< BoneSrcIndex >::const_iterator wmit = (*it).pSrcBones.begin(); wmit != wend; ++wmit) { pc->mNumWeights += (*wmit).first->mNumWeights; // NOTE: different offset matrices for bones with equal names // are - at the moment - not handled correctly. if (wmit != (*it).pSrcBones.begin() && pc->mOffsetMatrix != (*wmit).first->mOffsetMatrix) { DefaultLogger::get()->warn("Bones with equal names but different " "offset matrices can't be joined at the moment. If this causes " "problems, deactivate the OptimizeGraph-Step"); continue; } pc->mOffsetMatrix = (*wmit).first->mOffsetMatrix; } // allocate the vertex weight array aiVertexWeight* avw = pc->mWeights = new aiVertexWeight[pc->mNumWeights]; // and copy the final weights - adjust the vertex IDs by the // face index offset of the coresponding mesh. for (std::vector< BoneSrcIndex >::const_iterator wmit = (*it).pSrcBones.begin(); wmit != wend; ++wmit) { aiBone* pip = (*wmit).first; for (unsigned int mp = 0; mp < pip->mNumWeights;++mp,++avw) { const aiVertexWeight& vfi = pip->mWeights[mp]; avw->mWeight = vfi.mWeight; avw->mVertexId = vfi.mVertexId + (*wmit).second; } } } } // ------------------------------------------------------------------------------------------------ void OptimizeGraphProcess::JoinMeshes(std::vector& meshList, aiMesh*& out, unsigned int max) { ai_assert(NULL != out && 0 != max); out->mMaterialIndex = meshList[0]->mMaterialIndex; // allocate the output mesh out = new aiMesh(); std::vector::const_iterator end = meshList.begin()+max; for (std::vector::const_iterator it = meshList.begin(); it != end;++it) { out->mNumVertices += (*it)->mNumVertices; out->mNumFaces += (*it)->mNumFaces; out->mNumBones += AI_OG_UNMASK((*it)->mNumBones); // combine primitive type flags out->mPrimitiveTypes |= (*it)->mPrimitiveTypes; } if (out->mNumVertices) // just for safety { aiVector3D* pv2; // copy vertex positions if (meshList[0]->HasPositions()) { pv2 = out->mVertices = new aiVector3D[out->mNumVertices]; for (std::vector::const_iterator it = meshList.begin(); it != end;++it) { ::memcpy(pv2,(*it)->mVertices,(*it)->mNumVertices*sizeof(aiVector3D)); pv2 += (*it)->mNumVertices; } } // copy normals if (meshList[0]->HasNormals()) { pv2 = out->mNormals = new aiVector3D[out->mNumVertices]; for (std::vector::const_iterator it = meshList.begin(); it != end;++it) { ::memcpy(pv2,(*it)->mNormals,(*it)->mNumVertices*sizeof(aiVector3D)); pv2 += (*it)->mNumVertices; } } // copy tangents and bitangents if (meshList[0]->HasTangentsAndBitangents()) { pv2 = out->mTangents = new aiVector3D[out->mNumVertices]; aiVector3D* pv2b = out->mBitangents = new aiVector3D[out->mNumVertices]; for (std::vector::const_iterator it = meshList.begin(); it != end;++it) { ::memcpy(pv2, (*it)->mTangents, (*it)->mNumVertices*sizeof(aiVector3D)); ::memcpy(pv2b,(*it)->mBitangents,(*it)->mNumVertices*sizeof(aiVector3D)); pv2 += (*it)->mNumVertices; pv2b += (*it)->mNumVertices; } } // copy texture coordinates unsigned int n = 0; while (meshList[0]->HasTextureCoords(n)) { out->mNumUVComponents[n] = meshList[0]->mNumUVComponents[n]; pv2 = out->mTextureCoords[n] = new aiVector3D[out->mNumVertices]; for (std::vector::const_iterator it = meshList.begin(); it != end;++it) { ::memcpy(pv2,(*it)->mTextureCoords[n],(*it)->mNumVertices*sizeof(aiVector3D)); pv2 += (*it)->mNumVertices; } ++n; } // copy vertex colors n = 0; while (meshList[0]->HasVertexColors(n)) { aiColor4D* pv2 = out->mColors[n] = new aiColor4D[out->mNumVertices]; for (std::vector::const_iterator it = meshList.begin(); it != end;++it) { ::memcpy(pv2,(*it)->mColors[n],(*it)->mNumVertices*sizeof(aiColor4D)); pv2 += (*it)->mNumVertices; } ++n; } } if (out->mNumFaces) // just for safety { // copy faces out->mFaces = new aiFace[out->mNumFaces]; aiFace* pf2 = out->mFaces; unsigned int ofs = 0; for (std::vector::const_iterator it = meshList.begin(); it != end;++it) { for (unsigned int m = 0; m < (*it)->mNumFaces;++m,++pf2) { aiFace& face = (*it)->mFaces[m]; pf2->mNumIndices = face.mNumIndices; pf2->mIndices = face.mIndices; if (ofs) { // add the offset to the vertex for (unsigned int q = 0; q < face.mNumIndices; ++q) face.mIndices[q] += ofs; } ofs += (*it)->mNumVertices; face.mIndices = NULL; } } } // bones - as this is quite lengthy, I moved the code to a separate function if (out->mNumBones)JoinBones(meshList.begin(),end,out); // delete all source meshes for (std::vector::const_iterator it = meshList.begin(); it != end;++it) delete *it; } // ------------------------------------------------------------------------------------------------ void OptimizeGraphProcess::ApplyNodeMeshesOptimization(aiNode* pNode) { ai_assert(NULL != pNode); // find all meshes which are compatible and could therefore be joined. // we can't join meshes that are locked std::vector apcMeshes(pNode->mNumMeshes); unsigned int iNumMeshes; for (unsigned int m = 0, ttt = 0; m < pNode->mNumMeshes;++m) { iNumMeshes = 0; unsigned int nm = pNode->mMeshes[m]; if (0xffffffff == nm || AI_OG_IS_MESH_LOCKED(pScene->mMeshes[nm]))continue; for (unsigned int q = m+1; q < pNode->mNumMeshes;++q) { register unsigned int nq = pNode->mMeshes[q]; // skip locked meshes if (AI_OG_IS_MESH_LOCKED(pScene->mMeshes[nq]))continue; // compare the mesh hashes if (mMeshHashes[nm] == mMeshHashes[nq]) { apcMeshes[iNumMeshes++] = pScene->mMeshes[nq]; pNode->mMeshes[q] = 0xffffffff; } } aiMesh* out; if (iNumMeshes > 0) { apcMeshes[iNumMeshes++] = pScene->mMeshes[nm]; JoinMeshes(apcMeshes,out,iNumMeshes); } else out = pScene->mMeshes[nm]; pNode->mMeshes[ttt++] = (unsigned int)mOutputMeshes.size(); mOutputMeshes.push_back(out); } } // ------------------------------------------------------------------------------------------------ void OptimizeGraphProcess::TransformMeshes(aiNode* quak,aiNode* pNode) { for (unsigned int pl = 0; pl < quak->mNumMeshes;++pl) { aiMesh* mariusIsHot = pScene->mMeshes[quak->mMeshes[pl]]; aiMatrix4x4 mMatTransform = pNode->mTransformation; // transformation: first back to the parent's local space, // later into the local space of the destination child node mMatTransform.Inverse(); mMatTransform = quak->mTransformation * mMatTransform; // transform all vertices for (unsigned int oo =0; oo < mariusIsHot->mNumVertices;++oo) mariusIsHot->mVertices[oo] = mMatTransform * mariusIsHot->mVertices[oo]; // transform all normal vectors if (mariusIsHot->HasNormals()) { mMatTransform.Inverse().Transpose(); for (unsigned int oo =0; oo < mariusIsHot->mNumVertices;++oo) mariusIsHot->mNormals[oo] = mMatTransform * mariusIsHot->mNormals[oo]; } } } // ------------------------------------------------------------------------------------------------ void OptimizeGraphProcess::ApplyOptimizations(aiNode* node) { ai_assert(NULL != node); unsigned int iJoinedIndex = 0; // first: node index; second: number of faces in node NodeIndexList aiBelowTreshold; aiBelowTreshold.reserve(node->mNumChildren); for (unsigned int i = 0; i < node->mNumChildren;++i) { aiNode* pChild = node->mChildren[i]; if (AI_OG_IS_NODE_LOCKED(pChild) || !pChild->mNumMeshes)continue; // find out how many faces this node is referencing unsigned int iFaceCnt = 0; for (unsigned int a = 0; a < pChild->mNumMeshes;++a) iFaceCnt += pScene->mMeshes[pChild->mMeshes[a]]->mNumFaces; // are we below the treshold? if (iFaceCnt < configMinNumFaces) { aiBelowTreshold.push_back(NodeIndexEntry()); NodeIndexEntry& p = aiBelowTreshold.back(); p.first = i; p.second = iFaceCnt; p.pNode = pChild; } } if (!aiBelowTreshold.empty()) { // some typedefs for the data structures we'll need typedef std::pair JoinListEntry; std::vector aiJoinList(aiBelowTreshold.size()); std::vector aiTempList(aiBelowTreshold.size()); unsigned int iNumJoins, iNumTemp; // sort the list by size std::sort(aiBelowTreshold.begin(),aiBelowTreshold.end()); unsigned int iStart = 0; for (NodeIndexList::const_iterator it = aiBelowTreshold.begin(),end = aiBelowTreshold.end(); it != end; /*++it */++iStart) { aiNode* pNode = node->mChildren[(*it).first]; // get the hash of the mesh const unsigned int iMeshVFormat = mMeshHashes[pNode->mMeshes[0]]; // we search for a node with more faces than this ... find // the one that fits best and continue until we've reached // treshold size. int iDiff = configMinNumFaces-(*it).second; for (;;) { // do a binary search and start the iteration there unsigned int index; unsigned int start = BinarySearch(aiBelowTreshold,iDiff,index,iStart); if (index == (*it).first)start++; if (start >= aiBelowTreshold.size()) { // there is no node with enough faces. take the first start = 0; } // todo: implement algorithm to find the best possible combination ... iNumTemp = 0; while( start < aiBelowTreshold.size()) { // check whether the node has akready been processed before const NodeIndexEntry& entry = aiBelowTreshold[start]; if (!entry.pNode)continue; const aiNode* pip = node->mChildren[entry.first]; if (configJoinInequalTransforms ) { // we need to check whether this node has locked meshes // in this case we can't add it here - the meshes will // be transformed from one to another coordinate space if (!AI_OG_HAS_NODE_LOCKED_MESHES(pip) || pip->mTransformation == pNode->mTransformation) aiTempList[iNumTemp++] = start; } else if (node->mChildren[entry.first]->mTransformation == pNode->mTransformation) { aiTempList[iNumTemp++] = start; break; } ++start; } if (iNumTemp) { // search for a node which has a mesh with // - the same material index // - the same vertex layout unsigned int d = iNumJoins = 0; for (unsigned int m = 0; m < iNumTemp;++m) { register unsigned int mn = aiTempList[m]; aiNode* pip = aiBelowTreshold[mn].pNode; for (unsigned int tt = 0; tt < pip->mNumMeshes;++tt) { register unsigned int mm = pip->mMeshes[tt]; if (mMeshHashes [ mm ] == iMeshVFormat) { d = mn; goto break_out; } } } break_out: aiJoinList[iNumJoins++] = JoinListEntry( aiBelowTreshold[d].first, d ); iDiff -= aiBelowTreshold[d].second; } // did we reach the target treshold? if (iDiff <= 0)break; } // did we found any nodes to be joined with *this* one? if (iNumJoins) { unsigned int iNumTotalChilds = pNode->mNumChildren; unsigned int iNumTotalMeshes = pNode->mNumMeshes; std::vector::const_iterator wend = aiJoinList.begin()+iNumJoins; // get output array bounds for (std::vector::const_iterator wit = aiJoinList.begin(); wit != wend;++wit ) { aiNode*& quak = node->mChildren[(*wit).first]; iNumTotalChilds += AI_OG_UNMASK( quak->mNumChildren ); iNumTotalMeshes += quak->mNumMeshes; } // build the output child list if (iNumTotalChilds != pNode->mNumChildren) { aiNode** ppc = pNode->mChildren; delete[] pNode->mChildren; pNode->mChildren = new aiNode*[iNumTotalChilds]; ::memcpy(pNode->mChildren,ppc, sizeof(void*)* AI_OG_UNMASK( pNode->mNumChildren )); for (std::vector::const_iterator wit = aiJoinList.begin(); wit != wend;++wit ) { aiNode*& quak = node->mChildren[(*wit).first]; ::memcpy(pNode->mChildren+pNode->mNumChildren, quak->mChildren, sizeof(void*)*quak->mNumChildren); pNode->mNumChildren += AI_OG_UNMASK( quak->mNumChildren ); } } // build the output mesh list unsigned int* ppc = pNode->mMeshes; delete[] pNode->mMeshes; pNode->mMeshes = new unsigned int[iNumTotalMeshes]; ::memcpy(pNode->mMeshes,ppc, sizeof(void*)*pNode->mNumMeshes); for (std::vector::const_iterator wit = aiJoinList.begin(); wit != wend;++wit ) { aiNode*& quak = node->mChildren[(*wit).first]; ::memcpy(pNode->mMeshes+pNode->mNumMeshes, quak->mMeshes, sizeof(unsigned int)*quak->mNumMeshes); // if the node has a transformation matrix that is not equal to ours, // we'll need to transform all vertices of the mesh into our // local coordinate space. if (configJoinInequalTransforms && quak->mTransformation != pNode->mTransformation) TransformMeshes(quak,pNode); pNode->mNumMeshes += quak->mNumMeshes; // remove the joined nodes from all lists. aiBelowTreshold[(*wit).second].pNode = NULL; if ((*wit).second == iStart+1)++iStart; } // now generate an output name for the joined nodes if (1 == iNumTotalChilds) { pNode->mName.length = ::sprintf( pNode->mName.data, "", iJoinedIndex++,iNumJoins+1); } } // now optimize the meshes in this node ApplyNodeMeshesOptimization(pNode); // note - this has been optimized away. The search in the binary // list starts with iStart, which is incremented each iteration ++it; // = aiBelowTreshold.erase(it); } } // call all children recursively for (unsigned int i = 0; i < node->mNumChildren;++i) ApplyOptimizations(node->mChildren[i]); } // ------------------------------------------------------------------------------------------------ void OptimizeGraphProcess::BuildOutputMeshList() { // all meshes should have been deleted before if they are // not contained in the new mesh list if (pScene->mNumMeshes < mOutputMeshes.size()) { delete[] pScene->mMeshes; pScene->mMeshes = new aiMesh*[mOutputMeshes.size()]; } pScene->mNumMeshes = (unsigned int)mOutputMeshes.size(); ::memcpy(pScene->mMeshes,&mOutputMeshes[0],pScene->mNumMeshes*sizeof(void*)); } // ------------------------------------------------------------------------------------------------ // Executes the post processing step on the given imported data. void OptimizeGraphProcess::Execute( aiScene* pScene) { throw new ImportErrorException("This step is disabled in this beta"); this->pScene = pScene; /* a) the term "mesh node" stands for a node with numMeshes > 0 b) the term "animation node" stands for a node with numMeshes == 0, regardless whether the node is referenced by animation channels. Algorithm: 1. Compute hashes for all meshes that we're able to check whether two meshes are compatible. 2. Remove animation nodes if we have been configured to do so 3. Find out which nodes may not be moved, so to speak are "locked" - a locked node will never be joined with neighbors. - A node lock is indicated by a set MSB in the aiNode::mNumChildren member 4. Find out which meshes are locked - they are referenced by more than one node. They will never be joined. Mark all nodes referencing such a mesh as "locked", too. - A mesh lock is indicated by a set MSB in the aiMesh::mNumBones member 5. For each unlocked node count the face numbers of all assigned meshes - if it is below the pre-defined treshold add the node to a list. For each node in the list - try to find enough joinable nodes to have enough faces all together. Two nodes are joined if: - none of them is locked - (optional) their world matrices are identical - nodes whose meshes share the same material indices are prefered Two meshes in one node are joined if: - their material indices are identical - none of them is locked - they share the same vertex format 6. Build the final mesh list 7. For all meshes and all nodes - remove locks. */ throw new ImportErrorException("OG step is still undeer development and not yet finished"); // STEP 1 ComputeMeshHashes(); // STEP 2 FindLockedNodes(pScene->mRootNode); // STEP 3 FindLockedMeshes(pScene->mRootNode); // STEP 4 ApplyOptimizations(pScene->mRootNode); // STEP 5 BuildOutputMeshList(); // STEP 6 UnlockNodes(pScene->mRootNode); UnlockMeshes(); }